請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15880完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 盧虎生(Huu-Sheng Lur) | |
| dc.contributor.author | Wai-Tak Wong | en |
| dc.contributor.author | 黃威特 | zh_TW |
| dc.date.accessioned | 2021-06-07T17:54:23Z | - |
| dc.date.copyright | 2012-08-27 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-16 | |
| dc.identifier.citation | 蘇祖芳, 許乃霞, 孫成明, 張亞潔, 2003, 水稻抽穗後株型指標與產量形成關係的研究, 中國農業科學, 36:115-120.
Adesemoye, A.O., H.A. Torbert, J.W. Kloepper. 2009. Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb. Ecol. 58: 921-929. Aquilanti, L., F. Favilli, F. Clementi. 2004. Comparison of different strategies for isolation and preliminary identification of Azotobacter from soil samples. Soil Biol. Biochem. 36: 1475-1483. Balasubramanian, V., L. Singh. 1982. Efficiency of nitrogen fertilizer use under rainfed maize and irrigated wheat at Kadawa, northern Nigeria. Fertil.res. 3: 315-324. Barassi, C.A., G. Ayrault, C.M. Creus, R.J. Sueldo, M.T. Sobrero. 2006. Seed inoculation with Azospirillum mitigates NaCl effects on lettuce. Sci. Hortic. 109: 8-14. Bardiya, M., A. Gaur. 1974. Isolation and screening of microorganisms dissolving low-grade rock phosphate. Folia Microbiol. 19: 386-389. Bashan, Y., G. Holguin, L.E. de-Bashan. 2004. Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997-2003). Can. J. Microbiol. 50: 521-577. Becking, J.H. 2006 The family azotobacteraceae, p. 759-783. in M. Dworkin, et al. (ed.), A handbook on the biology of bacteria. Springer, Singapore. Boyd, M.A., M.A. Antonio, S.L. Hillier. 2005. Comparison of API 50 CH strips to whole-chromosomal DNA probes for identification of Lactobacillus species. J. Clin. Microbiol. 43: 5309-5311. Bryant, D.A., N.-U. Frigaard 2006. Prokaryotic photosynthesis and phototrophy illuminated. Trends Microbiol. 14: 488-496. Burgmann, H., F. Widmer, W.V. Sigler, J. Zeyer. 2004. New molecular screening tools for analysis of free-living diazotrophs in soil. Appl. Environ. Microbiol. 70: 240-247 Ceuterick, F., J. Peeters, K. Heremans, H. De Smedt, H. Olbrechts. 1978. Effect of high pressure, detergents and phaospholipase on the break in the arrhenius plot of Azotobacter nitrogenase. Biochemistry 87: 401-407. Chen, J.H. 2006 The combined use of chemical and organic fertilizers and/or biofertilizer for crop growth and soil fertility Food and Fertilizer Technology Center, Taipei. Chithrashree, A.C. Udayashankar, S. Chandra Nayaka, M.S. Reddy, C. Srinivas. 2011. Plant growth-promoting rhizobacteria mediate induced systemic resistance in rice against bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae. Biol. Control. 59 : 114–122 Cohen, M.F., H. Yamasaki, M. Mazzola. 2004. Bioremediation of soils by plant–microbe systems. Int. J. Green Energy 1: 301-312. Dighe, N.S., D. Shukla, R.S. Kalkotwar, R.B. Laware, S.B. Bhawar, R.W. Gaikwad. 2010. Nitrogenase enzyme: A review. Der Pharmacia Sinica. 1: 77-84. Dilworth, M.J. 1966. Acetylene reduction by nitrogen-fixing preparations from Clostridium pasteurianum. Biochim. Biophys. Acta. 127: 285-294. Djossou, O., I. Perraud-Gaime, F.L. Mirleau, G. Rodriguez-Serrano, G. Karou, S. Niamke, I. Ouzari, A. Boudabous, S. Roussos. 2011. Robusta coffee beans post-harvest microflora: Lactobacillus plantarum sp. as potential antagonist of Aspergillus carbonarius. Anaerobe. 17: 267-272. Feigin, A. 1985. Fertilization management of crops irrigated with saline water. Plant Soil. 89: 285-299. Franche, C., K. Lindstrom, C. Elmerich. 2009. Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 321: 35-59. Gallon, J.R. 1981. The oxygen sensitivity of nitrogenase: a problem for biochemists and micro-organisms. Trends Biochem. Sci. 6: 19-23. Glick, B., Z. Cheng, J. Czarny, J. Duan. 2007. Promotion of plant growth by ACC deaminase-producing soil bacteria. Plant Pathol. 119: 329-339. Govindjee, J.H. Hammond, H. Merkelo. 1972. Lifetime of the excited state in vivo: II. bacteriochlorophyll in photosynthetic bacteria at room temperature. Biophys. J. 12: 809-814. Gruber, N., J.N. Galloway. 2008. An earth-system perspective of the global nitrogen cycle. Nature 451: 293-296. Gyaneshwar, P., G. Naresh Kumar, L.J. Parekh, P.S. Poole. 2002. Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245: 83-93. Harari, A., J. Kigel, Y. Okon. 1988. Involvement of IAA in the interaction between Azospirillum brasilense and Panicum miliaceum roots. Plant Soil. 110:275-282. Harper, S.H.T., J.M. Lynch. 1980. Microbial effects on the germination and seedling growth of barley. New Phytol. 84: 473-481. Hartmann, A., J.I. Baldani. 2006 The genus Azospirillum, p. 115-140. in M. Dworkin, et al. (ed.), A handbook on the biology of bacteria. Springer, New York. Hartmann, A., M. Rothballer, M. Schmid. 2008. Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant Soil 312: 7-14. Hillmer, P., Gest, H. 1977. H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: production and utilization of H2 by resting cells. J. Bacteriol. 129: 732-739. Iba, K., K. Takamiya, Y. Toh, M. Nishimura. 1988. Roles of bacteriochlorophyll and carotenoid synthesis in formation of intracytoplasmic membrane systems and pigment-protein complexes in an aerobic photosynthetic bacterium, Erythrobacter sp. strain OCh114. J. Bacteriol. 170: 1843-1847. Imhoff, J.F., H.G. Truper, N. Pfennig. 1984. Rearrangement of the species and genera of the phototrophic “purple nonsulfur bacteria”. Int. J. of Syst. Bacteriol. 34: 340-343. Jin, H., Y. Zhao, X. Lei, G. Xue, Y. Tang, Y. He. 2011 Treat shrimp wastewater with compound photosynthetic bacteria, computer distributed control and Intelligent environmental monitoring (CDCIEM), 2011 International Conference on. p. 2352-2355. Kalisz, A. 2011. Growth and earliness of chinese cabbage (Brassica rapa var. chinensis) as a function of time and weather conditions. Folia Hort. 23: 131-138. Kizilkaya, R. 2009. Nitrogen fixation capacity of Azotobacter spp. strains isolated from soils in different ecosystems and relationship between them and the microbiological properties of soils. J. Environ. Biol. 30: 73-82. Kloepper, J., J. Leong, M. Teintze, M. Schroth. 1980. Pseudomonas siderophores: A mechanism explaining disease-suppressive soils. Curr. Microbiol. 4: 317-320. Koh, R.H., H.G. Song. 2007. Effects of application of Rhodopseudomonas sp. on seed germination and growth of tomato under axenic conditions. J. Microbiol. Biotechnol. 17: 1805-1810. Kobayashi, M., M. Haque. 1971. Contribution to nitrogen fixation and soil fertility by photosynthetic bacteria. Plant Soil. 35:443-456. Koptsik, S., N. Berezina, S. Livantsova. 2001. Effects of natural soil acidification on biodiversity in boreal forest ecosystems. Water, Air, Soil Poll. 130: 1025-1030. Larimer, F.W., P. Chain, L. Hauser, J. Lamerdin, S. Malfatti, L. Do, M.L. Land, D.A. Pelletier, J.T. Beatty, A.S. Lang, F.R. Tabita, J.L. Gibson, T.E. Hanson, C. Bobst, J.L. Torres, C. Peres, F.H. Harrison, J. Gibson, C.S. Harwood. 2004. Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nat. Biotechnol. 22: 55-61. Lee, K.H., R.H. Koh, H.G. Song. 2008. Enhancement of growth and yield of tomato by Rhodopseudomonas sp. under greenhouse conditions. J. Microbiol. 46: 641-646. Loach, P.A. 2000. Supramolecular complexes in photosynthetic bacteria. Proc. Natl. Acad. Sci. 97: 5016-5018. Loh, F.C.W., J.C. Grabosky, N.L. Bassuk. 2002. Using the SPAD 502 meter to assess chlorophyll and nitrogen content of benjamin fig and cottonwood leaves. HortTechnology 12: 682-686. Marchesi, J.R., T. Sato, A.J. Weightman, T.A. Martin, J.C. Fry, S.J. Hiom, W.G. Wade. 1998. Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl. Environ. Microbiol. 64: 795-799. Maudinas, B., M. Chemardin, E. Yovanovitch, P. Gadal. 1981. Gnotobiotic cultures of rice plants up to ear stage in the absence of combined nitrogen source but in the presence of free living nitrogen fixing bacteria Azotobacter vinelandii and Rhodopseudomonas capsulata. Plant Soil 60: 85-97. Mayer, A.M. 1958. Determination of indole acetic acid by the salkowsky reaction. Nature. 182: 1670-1671. Meyer, J., B.C. Kelley, P.M. Vignais. 1978. Effect of light nitrogenase function and synthesis in Rhodopseudomonas capsulata. J. Bacteriol. 136: 201-208. Michiels, K., J. Vanderleyden, A. Gool. 1989. Azospirillum — plant root associations: a review. Biol. Fert. Soils 8: 356-368. Miransari, M. 2011. Arbuscular mycorrhizal fungi and nitrogen uptake. Arch. Microbiol. 193: 77-81. Mujlyati, S. 2009. Effect of manure and NPK to increase soil bacterial population of Azotobacter and Azospirillus in chili (Capsicum annum) cultivation. Nus. Biosci. 1: 59-64. Nihorimbere, V., M. Ongena, M. Smargiassi, P. Thonart. 2011 Beneficial effect of the rhizosphere microbial community for plant growth and health. Biotechnol Agron. Soc. Environ. 15: 327-337. Overmann, J., F. Garcia-pichel. 2006 The phototrophic way of life p. 32-85. in M. Dworkin, et al. (ed.), A handbook on the biology of bacteria. Springer, Singapore. Peck, S.C., H. Kende. 1995. Sequential induction of the ethylene biosynthetic enzymes by indole-3-acetic acid in etiolated peas. Plant Mol. Biol. 28: 293-301. Qi, Z., X.-H. Zhang, N. Boon, P. Bossier. 2009. Probiotics in aquaculture of China — Current state, problems and prospect. Aquaculture 290: 15-21. Rajasekhar, N., C. Sasikala, C.V. Ramana. 1999. Photoproduction of indole 3-acetic acid by Rhodobacter sphaeroides from indole and glycine. Biotechnol. Lett. 21: 543-545. Ravi S.Gadagi, S. Tongmn. 2002. New isolation method for microorganisms solulbilizing iron and aluminum phosphates using dyes. Soil Sci. Plant Nutr. 48:615-618. Reichenba, H. 1924 Genus III. Hyalangium gen. nov., p. in G. M. Garrity, et al. (ed.), Systematic bacteriology. Springer New York. Rinaudo, G., B. Dreyfus, Y. Dommergues. 1983. Sesbania rostrata green manure and the nitrogen content of rice crop and soil. Soil Biol. Biochem. 15: 111-113. Rogan, B., M. Lemke, M. Levandowsky, T. Gorrell. 2005. Exploring the sulfur nutrient cycle using the winogradsky column. Am. Biol. Teach. 67: 348-356. Saleque, M.A., M.J. Abedin, N.I. Bhuiyan, S.K. Zaman, G.M. Panaullah. 2004. Long-term effects of inorganic and organic fertilizer sources on yield and nutrient accumulation of lowland rice. Field Crop Res. 86: 53-65. Saravanakumar, D., K. Muthumeena, N. Lavanya, S. Suresh, L. Rajendran, T. Raguchander, R. Samiyappan. 2007. Pseudomonas-induced defence molecules in rice plants against leaffolder (Cnaphalocrocis medinalis) pest. Pest Manag Sci. 63: 714-721. Sarker, S.D., L. Nahar, Y. Kumarasamy. 2007. Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods. 42: 321-324. Schlegel, H.G., H.W. Jannasch. 2006 Prokaryotes and their habitats, p. 137-184. in M. Dworkin, et al. (ed.), A Handbook on the Biology of Bacteria. Springer, Singapore. Smith, P.B., K.M. Tomfohrde, D.L. Rhoden, A. Balows. 1972. API system: a multitube micromethod for identification of enterobacteriaceae. Appl. Microbiol. 24: 449-452. Steenhoudt, O., J. Vanderleyden. 2000. Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. F.E.M.S. Microbiol. Rev. 24: 487-506. Thuler, D.S., E.I. Floh, W. Handro, H.R. Barbosa. 2003. Plant growth regulators and amino acids released by Azospirillum sp in chemically defined media. Lett. Appl. Microbiol. 37: 174-178. Twigg, R.S. 1945 Oxidation-reduction aspects of resazurin. Nature. 155:401-402. van Niel, C.B. 1971 Techniques for the enrichment, isolation, and maintenance of the photosynthetic bacteria, p. 3-28. in P. Anthony San (ed.), Methods in Enzymology. Academic Press. Vessey, J.K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255: 571-586. von der Weid, I., G.F. Duarte, J.D. van Elsas, L. Seldin. 2002. Paenibacillus brasilensis sp. nov., a novel nitrogen-fixing species isolated from the maize rhizosphere in Brazil. Int J. Syst. Evol. Microbiol. 52: 2147-2153. Yadav, S.K., M. Dhote, P. Kumar, J. Sharma, T. Chakrabarti, A.A. Juwarkar. 2010. Differential antioxidative enzyme responses of Jatropha curcas L. to chromium stress. Hazard. Waste Hazard. 180: 609-615. Zhang, D., H. Yang, Z. Huang, W. Zhang, S.J. Liu. 2002. Rhodopseudomonas faecalis sp. nov., a phototrophic bacterium isolated from an anaerobic reactor that digests chicken faeces. Int. J. Syst. Evol. Microbiol. 52: 2055-2060. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15880 | - |
| dc.description.abstract | 可促進植物生長之根圈微生物 (plant growth-pomoting rhizobacteria, PGPR) 已被證明可以有效改良土壤的理化性質,促進作物生長、減少病害,進而達到增加收量與提高品質的效果。本研究的目的,是要從台灣各地的農耕地中分離具有應用潛力的固氮菌群以及光合菌群,進而開發出能促進肥效、提高作物產量以及增強抗逆境等功能的微生物製劑。固氮菌的分離方式採用優勢培養,再結合分子快速篩選法從土壤菌中挑選具有固氮能力的菌株;光合細菌則是利用Winogradsky土壤管柱進行分離。各菌株的身份鑑定採用分子生物學的方法,根據各菌株的 16S rDNA 序列,與 NCBI 的 GeneBank 資料庫做相似度比對以判定菌種分類。所分離的 30 株固氮菌,分屬於Azotobacter、Azospira、Bacillus、Burkholderia、Pseudomonas、Sphingomonas、Acidovorax、Klebsiella 8個屬;10株光合菌則皆為 Rhodopseudomonas 屬。利用作物生長平台從分離菌株中挑選出下列八株具促進植物生長潛力的菌株: Azotobacter chroococcum YSE1、Azotobacter chroococcum YSE6、 Azospira sp.TPP4、Pseudomonas stutzeri YSC3C、 Bacillus sp. YSC4C、 Rhodopseudomonas palustris PS3、Rhodopseudomonas palustris YSC3、Rhodopseudomonas palustris YSC4。經由生理生化試驗,確認各潛力菌株的碳源利用、酵素活性、最適生長條件(溫度、酸鹼、鹽濃度)、固氮活性、植物生長激素 (吲哚乙酸) 生成能力以及溶磷能力。在小白菜盆栽試驗中,發現施用光合菌PS3菌肥的處理組可使植株的鮮重與乾重等農藝性狀達到與施用全量化肥同等水準。在水稻盆栽試驗中,發現施用 TPP4、YSC4C 以及 PS3 潛力菌肥的處理組,其營養生長期的株高與開花後的劍葉葉色值(SPAD值)皆較施用全量化肥組高。水稻農藝性狀分析結果顯示,以單株菌株TPP4取代半量慣型化肥用量組之榖粒產量高於全量慣行化學肥料組,同時可維持榖粒完整率。 | zh_TW |
| dc.description.abstract | Plant growth promoting rhizosphere bacteria (PGPR) has been shown to improve soil physical and chemical properties, increase growth of plants, and reduce plant diseases. The purposes of this study were to isolate and screen for nitrogen-fixing and photosynthetic bacteria from Taiwan agricultural lands and test for their biofertilizer potential. Bacteria that survived in N-free minimal medium and possessed the nitrogenase activity were selected as nitrogen-fixing bacteria. Photosynthetic bacteria were isolated by the Winogradsky method. All forty isolates were identified by 16S rDNA sequencing and phylogenetic analysis. Thirty isolates were belonged to eight genera, including Azotobacter, Azospira, Bacillus, Burkholderia, Pseudomonas, sphingomonas, Acidovorax, and Klebsiella; and ten strains classified to the genus Rhopseudomonas. Eight potential strains (TPP4,YSE1,YSE6,YSC3C, YSC4C, PS3, YSC3, YSC4) were screened from the isolates by using plant growth promoting tests. Their optimum growth conditions (including temperature, pH, and saintily), nitrogenase activity, phosphorus-solubilizing ability, and plant hormone auxin (indole-3-acetic acid, IAA) production ability were further examined by various physiological and biochemical assays. The potential strains were used as inoculants in pot experiments. Application of the photosynthetic bacteria (PS3) inoculant significantly improved plant height, plant fresh weight, and plant dry weight of Chinese cabbage. In addition, significant increases in shoot length and SPAD value of flag leaves were observed while the potential strains (PS3, TPP4 and YSC4C) were used as inoculants for cultivation of rice. According to analysis of agronomic traits, application of the nitrogen-fixing bacteria (TPP4) inoculant significantly improved the yield and quality of rice grain under 50% chemical fertilizer treatment. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T17:54:23Z (GMT). No. of bitstreams: 1 ntu-101-R99621122-1.pdf: 2705338 bytes, checksum: d839aa0099a7a053dcb81f68b0f316df (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 致謝 I
中文摘要 III Abstract IV 目錄 V 表目錄 VII 圖目錄 VIII 第一章、 緒論 1 一. 研究動機與目的 1 二. 研究背景及文獻回顧 1 第二章、 材料與方法 11 一. 游離態固氮菌篩選 11 二. 光合菌篩選 15 三. 16S rDNA基因序列分析 17 四. 潛力菌株形態學分析 18 五. 潛力菌株固氮活性測定 21 六. 潛力菌株IAA生成量測定 25 七. 潛力菌株溶磷能力測試 27 八. 潛力菌株最適生長測試 30 九. 潛力菌株碳源利用鑑定 (API 50 CH) 33 十. 潛力菌株API ZYM酵素活性測定系統 40 十一. 小白菜溫室盆栽試驗 43 十二. 水稻溫室試驗 49 十三.統計分析 55 第三章、 結果 56 一. 菌株分離與16 S rDNA基因序列分析 56 二. 潛力菌株形態學分析 60 三. 潛力菌株nifH基因之檢定 64 四. 潛力菌株固氮活性測試 65 五. 潛力菌株IAA的生成能力測試 66 六. 潛力菌株溶磷測試 67 七. 潛力菌株適合生長條件測試 68 (一) 適合生長溫度測試 68 (二) 適合生長酸鹼環境測試 69 (三) 適合生長鹽濃度測試 70 八. 潛力菌株碳源利用測定 (API 50 CH) 71 九. 潛力菌株API ZYM酵素活性測試 76 十. 小白菜盆栽試驗結果 (鮮重、乾重、株高測量)78 十一. 水稻盆栽試驗結果 87 第四章、 討論 99 附錄 104 參考文獻 105 | |
| dc.language.iso | zh-TW | |
| dc.subject | 光合菌 | zh_TW |
| dc.subject | 促進植物生長根圈微生物 | zh_TW |
| dc.subject | 微生物肥料固氮菌 | zh_TW |
| dc.subject | nitrogen-fixing bacteria | en |
| dc.subject | Plant growth promoting rhizosphere bacteria | en |
| dc.subject | Biofertilizer | en |
| dc.subject | photosynthetic bacteria | en |
| dc.title | 本土固氮菌與光合菌的分離鑑定暨特性研究並評估對作物生長促進的效果 | zh_TW |
| dc.title | Isolation, identification and characterization of indigenous nitrogen-fixing bacteria and photosynthetic bacteria, and evaluation of their plant growth-promoting effects | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 劉啟德(Chi-Te Liu) | |
| dc.contributor.oralexamcommittee | 李昆達(Kung-Ta Lee),劉?睿(Je-Ruei Liu) | |
| dc.subject.keyword | 促進植物生長根圈微生物,微生物肥料固氮菌,光合菌, | zh_TW |
| dc.subject.keyword | Plant growth promoting rhizosphere bacteria,Biofertilizer,nitrogen-fixing bacteria,photosynthetic bacteria, | en |
| dc.relation.page | 110 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2012-08-17 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農藝學研究所 | zh_TW |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 2.64 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
