Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 昆蟲學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15865
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李後晶
dc.contributor.authorYu-Hsien Linen
dc.contributor.author林育賢zh_TW
dc.date.accessioned2021-06-07T17:54:01Z-
dc.date.copyright2012-08-19
dc.date.issued2012
dc.date.submitted2012-08-16
dc.identifier.citationBatth, SS (1972) Pesticide effectiveness and biorhythm in the house fly. J Econ Entomol 65: 1191-1193.
Beaver, LM, Hooven, LA, Butcher, SM, Krishnan, N, Sherman, KA, Chow, ES and Giebultowicz, JM (2010) Circadian clock regulates response to pesticides in Drosophila via conserved Pdp1 pathway. Toxicol Sci 115: 513-520.
Beck, SD (1963) Physiology and ecology of photoperiodism. Bull Entomol Soc Am 9: 8-16.
Bull, DL and Lindquist, DA (1965) A comparative study of insecticide metabolism in photoperiod-entrained and unentrained bollworm larvae Heliothis zea (Boddie). Comp Biochem Physiol 16: 321-325.
Casida, JE and Quistad, GB (2004) Why insecticides are more toxic to insects than people: The unique toxicology of insects. J Pestic Sci 29: 81-86.
Ceriani, MF, Hogenesch, JB, Yanovsky, M, Panda, S, Straume, M and Kay, SA (2002) Genome-wide expression analysis in Drosophila reveals genes controlling circadian behavior. J Neurosci 22: 9305-9319.
Chelvanayagam, G, Parker, MW and Board, PG (2001) Fly fishing for GSTs: a unified nomenclature for mammalian and insect glutathione transferases. Chem-Biol Interact 133: 256-260.
Clark, AG and Shamaan, NA (1984) Evidence that DDT-dehydrochlorinase from the housefly is a glutathione S-transferase. Pestic Biochem Phys 22: 249-261.
Cole, CL and Adkisson, PL (1964) Daily rhythm in the susceptibility of an insect to a toxic agent. Science 144: 1148-1149.
Doherty, CJ and Kay, SA (2010) Circadian control of global gene expression patterns. Annu Rev Genet 44: 419-444.
Enayati, AA, Ranson, H and Hemingway, J (2005) Insect glutathione transferases and insecticide resistance. Insect Mol Biol 14: 3-8.
Fondacar, J and Butz, A (1970) Circadian rhythm of locomotor activity and susceptibility to methyl parathion of adult Tenebrio molitor (Coleoptera: Tenebrionidae). Ann Entomol Soc Am 63: 952-955.
Gachon, F and Firsov, D (2011) The role of circadian timing system on drug metabolism and detoxification. Expert Opin Drug Metab Toxicol 7: 147-158.
Hadnagy, W, Seemayer, NH, Kuhn, KH, Leng, G and Idel, H (1999) Induction of mitotic cell division disturbances and mitotic arrest by pyrethroids in V79 cell cultures. Toxicol Lett 107: 81-87.
Hayes, JD, Flanagan, JU and Jowsey, IR (2005) Glutathione transferases. Annu Rev Pharmacol Toxicol 45: 51-88.
Heidari, R, Devonshire, AL, Campbell, BE, Dorrian, SJ, Oakeshott, JG and Russell, RJ (2005) Hydrolysis of pyrethroids by carboxylesterases from Lucilia cuprina and Drosophila melanogaster with active sites modified by in vitro mutagenesis. Insect Biochem Mol Biol 35: 597-609.
Hemingway, J, Miyamoto, J and Herath, PRJ (1991) A possible novel link between organophosphorus and DDT insecticide resistance genes in Anopheles - supporting evidence from fenitrothion metabolism studies. Pestic Biochem Phys 39: 49-56.
Higgins, LG and Hayes, JD (2011) Mechanisms of induction of cytosolic and microsomal glutathione transferase (GST) genes by xenobiotics and pro-inflammatory agents. Drug Metab Rev 43: 92-137.
Hooven, LA, Sherman, KA, Butcher, S and Giebultowicz, JM (2009) Does the clock make the poison? circadian variation in response to pesticides. Plos One 4: e6469.
Ishida, N, Kaneko, M and Allada, R (1999) Biological clocks. Proc Natl Acad Sci U S A 96: 8819-8820.
Leaver, MJ and George, SG (1998) A piscine glutathione S-transferase which efficiently conjugates the end-products of lipid peroxidation. Mar Environ Res 46: 71-74.
Limoee, M, Enayati, AA, Ladonni, H, Vatandoost, H, Baseri, H and Oshaghi, MA (2007) Various mechanisms responsible for permethrin metabolic resistance in seven field-collected strains of the German cockroach from Iran, Blattella germanica (L.) (Dictyoptera: Blattellidae). Pestic Biochem Phys 87: 138-146.
Ma, B and Chang, FN (2007) Purification and cloning of a Delta class glutathione S-transferase displaying high peroxidase activity isolated from the German cockroach Blattella germanica. FEBS J 274: 1793-1803.
McDonald, MJ and Rosbash, M (2001) Microarray analysis and organization of circadian gene expression in Drosophila. Cell 107: 567-578.
Pszczolkowski, MA and Dobrowolski, M (1999) Circadian dynamics of locomotor activity and deltamethrin susceptibility in the pine weevil, Hylobius abietis. Phytoparasitica 27: 19-25.
Ptitsyn, AA, Reyes-Solis, G, Saavedra-Rodriguez, K, Betz, J, Suchman, EL, Carlson, JO and Black, WCt (2011) Rhythms and synchronization patterns in gene expression in the Aedes aegypti mosquito. BMC Genomics 12: 153.
Robinson, A, Huttley, GA, Booth, HS and Board, PG (2004) Modelling and bioinformatics studies of the human Kappa-class glutathione transferase predict a novel third glutathione transferase family with similarity to prokaryotic 2-hydroxychromene-2-carboxylate isomerases. Biochem J 379: 541-552.
Rund, SS, Hou, TY, Ward, SM, Collins, FH and Duffield, GE (2011) Genome-wide profiling of diel and circadian gene expression in the malaria vector Anopheles gambiae. Proc Natl Acad Sci U S A 108: 421-430.
Saisawang, C, Wongsantichon, J and Ketterman, AJ (2012) A preliminary characterization of the cytosolic glutathione transferase proteome from Drosophila melanogaster. Biochem J 442: 181-190.
Vontas, JG, Small, GJ and Hemingway, J (2001) Glutathione S-transferases as antioxidant defence agents confer pyrethroid resistance in Nilaparvata lugens. Biochem J 357: 65-72.
Wang, Y, Qiu, L, Ranson, H, Lumjuan, N, Hemingway, J, Setzer, WN, Meehan, EJ and Chen, L (2008) Structure of an insect epsilon class glutathione S-transferase from the malaria vector Anopheles gambiae provides an explanation for the high DDT-detoxifying activity. J Struct Biol 164: 228-235.
Wongsantichon, J, Robinson, RC and Ketterman, AJ (2010) Structural contributions of delta class glutathione transferase active-site residues to catalysis. Biochem J 428: 25-32.
Yang, YY, Liu, Y, Teng, HJ, Sauman, I, Sehnal, F and Lee, HJ (2010) Circadian control of permethrin-resistance in the mosquito Aedes aegypti. J Insect Physiol 56: 1219-1223.
Zmrzljak, UP and Rozman, D (2012) Circadian regulation of the hepatic endobiotic and xenobitoic detoxification pathways: the time matters. Chem Res Toxicol 25: 811-824.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15865-
dc.description.abstract在過去研究中,我們已知動物對於外來有害的物質之感性程度會表現出日週的節律現象,但在昆蟲的研究上,對於分子層次調控此節律現象的報告相當稀少,在此篇研究中,我們針對德國蜚蠊 (Blattella germanica) 對於百滅寧 (permethrin)之抗性節律以及 delta 類群的 glutathione S-transferase (BgGSTD1) 之分子調控進行探討。將雄性的德國蜚蠊,在不同時間點暴露於相同濃度劑量的百滅寧,結果顯示在光暗週期的環境下,德國蜚蠊在暗期對於百滅寧有較高的抗性,同樣的在全暗的環境下,德國蜚蠊在相時夜晚 (subjective night) 也表現出較高的抗性,證實了德國蜚蠊對於百滅寧的抗性是受到約日時鐘 (circadian clock) 調控。在分子調控的探討中,德國蜚蠊脂肪體中的 BgGSTD1 基因在亮期的初期,呈現表現量的高峰,且在光暗週期或是全暗的環境下,BgGSTD1 表現量皆呈現一日的節律現象,意味著 BgGSTD1 所調控的解毒反應呈現著日週律動,然而在 cytosolic GSTs (cGSTs) 酵素活性的實驗結果中,並沒有辦法觀察到與 BgGSTD1 基因表現相同的節律現象。接著利用核醣核酸干擾技術,對於 BgGSTD1 參與百滅寧的日週節律抗性上的功能性探討。注射 BgGSTD1 雙股的核糖核酸三天後,在 BgGSTD1 的基因表現以及 cGSTs 的酵素活性上皆顯著的降低,且在核糖核酸干擾造成 BgGSTD1 靜默效應下,德國蜚蠊在暗期對於百滅寧的抗性明顯降低,但是亮期沒有顯著的差異。從以上的結果中,我們證實 BgGSTD1 在德國蜚蠊對於百滅寧的日週律動抗性上,扮演著參與調控的角色。zh_TW
dc.description.abstractEven though numerous studies have confirmed the daily variation of susceptibility to xenobiotic compounds in animals, there are a few reports studying molecular mechanisms underlying the daily rhythm of insecticide resistance in insects. In the present study, we investigated the daily susceptibility rhythm to permethrin and the expression level of the delta class glutathione S-transferase (BgGSTD1) gene in Blattella germanica. Male cockroaches were exposed to the same concentration of permethrin at different time points in a light-dark cycle, and results showed that the highest resistance occurred at night. Furthermore, the circadian rhythm of permethrin resistance can be demonstrated by the highest resistance at subjective night under constant darkness. The mRNA level of the BgGSTD1 gene in the fat body of B. germanica peaked at the early day time under light-dark and constant dark conditions, whereas the enzyme activity of cytosolic GSTs wasn’t reflected the rhythmic pattern as well as BgGSTD1 expression. RNA interference (RNAi) was employed to study the function of BgGSTD1 in the circadian rhythm of permethrin resistance in B. germanica. Both BgGSTD1 mRNA level and cytosolic GSTs activity were significantly decreased by dsGSTD1 injection. In addition, the survival rate of B. germanica with silenced BgGSTD1 was significantly decreased at night but not in the day time when the cockroaches were exposed to permethrin. These results have demonstrated that BgGSTD1 plays an important role in circadian regulation of permethrin resistance in B. germanica.en
dc.description.provenanceMade available in DSpace on 2021-06-07T17:54:01Z (GMT). No. of bitstreams: 1
ntu-101-R99632012-1.pdf: 2353047 bytes, checksum: 160ed489fbf181f8aa41b9f86314adae (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員審定書. ...........................................i
誌謝......................................................ii
中文摘要..................................................iv
Abstract...................................................v
Contents.................................................vii
List of figures.........................................viii
Introduction...............................................1
Materials and Methods......................................4
Results...................................................10
Discussions...............................................19
References................................................23
Appendix..................................................29
dc.language.isoen
dc.subject百滅寧zh_TW
dc.subjectGSTzh_TW
dc.subject核醣核酸干擾zh_TW
dc.subject日週律動zh_TW
dc.subjectGSTen
dc.subjectPermethrinen
dc.subjectRNAien
dc.subjectcircadian rhythmen
dc.titleGlutathione S-Transferase 調控德國蜚蠊對百滅寧抗性之日週律動表現zh_TW
dc.titleGlutathione S-Transferase underlying the rhythmic resistance against permethrin in the German cockroach
(Blattella germanica)
en
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊永裕,陳美娥,李琦玫,張俊哲,蔡志偉
dc.subject.keyword百滅寧,核醣核酸干擾,日週律動,GST,zh_TW
dc.subject.keywordPermethrin,RNAi,circadian rhythm,GST,en
dc.relation.page29
dc.rights.note未授權
dc.date.accepted2012-08-17
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept昆蟲學研究所zh_TW
顯示於系所單位:昆蟲學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
2.3 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved