Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15858
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李允中
dc.contributor.authorCheng-Yu Hsuen
dc.contributor.author許政裕zh_TW
dc.date.accessioned2021-06-07T17:53:48Z-
dc.date.copyright2012-08-20
dc.date.issued2012
dc.date.submitted2012-08-17
dc.identifier.citation1.蕭世閔。2011。生質炭於焙燒過程之熱質傳遞模擬。碩士論文。台北:台灣大學生物產業機電工程學研究所。
2.張耀中。2007。下抽式氣化爐之空氣進氣及投料系統改良設計對產氣狀況之影響研究。碩士論文。台北:台灣大學機械工程學研究所。
3.Agrawal, K. R. 1988. Kinetics of reactions involved in pyrolysis of cellulose. I. The three eaction mode, Canadian Journal of Chemical Engineering, 66, 403-412.
4.Anthony, D. B., and J. B. Howard. 1976. Coal devolatilization and hydrogastifi cation. AIChE Journal 22:625–656.
5.Arias, B., C. Pevida, J. Fermoso, M. G. Plaza, F. Rubiera, and J. J. Pis. 2008. Influence of torrefaction on the grindability and reactivity of woody biomass. Fuel Processing Technology. 89(2): 169-175.
6.Avdhesh Kr, S. 2007. Modeling fluid and heat transport in the reactive, porous bed of downdraft (biomass) gasifier. International Journal of Heat and Fluid Flow. 28(6): 1518-1530.
7.Babu, B. V., and A. S. Chaurasia. 2004. Parametric study of thermal and thermodynamic properties on pyrolysis of biomass in thermally thick regime. Energ Convers Manage 45:53–72.
8.Bamford, C.H., J. Crank, and H. Malan. 1946. The combustion of wood, part I; Proc. Cambridge Philos. Soc. 42: 166-182.
9.Bergman AR, RWH Zwart, Boersma, and Kiel JHA. 2005. Torrefaction for Biomass Co-firing in Existing Coal-fired Power Stations, ECN-C--05-013.
10.Blasi, C. D., and C. Branca. 2001. Kinetics of primary product formation from wood pyrolysis. Ind Eng Chem Res 40: 5547-5556.
11.Bryden, K. M., K. M. Ragland, and C. J. Rutland. 2002. Modeling thermally thick pyrolysis of wood. Biomass and Bioenergy 22: 41-53.
12.Chen, W.-H., and P.-C. Kuo. 2011. Torrefaction and co-torrefaction characterization of hemicellulose, cellulose and lignin as well as torrefaction of some basic constituents in biomass. Energy. 36(2): 803-811.
13.Ciolkosz, D., T. Pennsylvania, R. Wallace, and B. A. Hamilton. 2011. A review of torrefaction for bioenergy feedstock. Society: 317-329.
14.Di Blasi, C., and M. Lanzetta. 1997. Intrinsic kinetics of isothermal xylan degradation in inert atmosphere. Journal of Analytical and Applied Pyrolysis. 40-41(0): 287-303.
15.Di Blasi, C. 2002. Modeling intra- and extra-particle processes of wood fast pyrolysis. AIChE J. 48: 2386-2397.
16.Demirbas, A., and M. M. Kucuk. 1999. Delignication of Ailanthus altissima and spruce orientalis with glycerol or alkaline glycerol at atmospheric pressure. Cellulose Chem Technol 27:679–686.
17.Encinar, J. M., F. J. Beltran, A. Bernalte, A. Ramiro, and J. F. Gonzalez. 1996. Pyrolysis of two agricultural residues: Olive and grape bagasse. Influence of particle size and temperature. Biomass and Bioenergy. 11(5): 397-409.
18.Figueiredo, J. L., C. Valenzuela, A. Bernalte, and J. M. Encinar. 1989. Pyrolysis of holm-oak wood: influence of temperature and particle size. Fuel. 68(8): 1012-1016.
19.Fletcher, D. F., B. S. Haynes, F. C. Christo, and S. D. Joseph. 2000. A CFD based combustion model of an entrained flow biomass gasifier. Applied Mathematical Modelling. 24(3): 165-182.
20.Gerun, L., M. Paraschiv, R. Vijeu, J. Bellettre, M. Tazerout, B. Gobel, and U. Henriksen. 2008. Numerical investigation of the partial oxidation in a two-stage downdraft gasifier. Fuel. 87(7): 1383-1393.
21.Gronli, M. G., and M. C. Melaaen. 2000. Mathematical model for wood pyrolysis - comparison of experimental measurement with model predictions. Energy and Fuels 14: 791-800.
22.Hakkou, M., M. Petrissans, P. Gerardin, and A. Zoulalian. 2006. Investigations of the reasons for fungal durability of heat-treated beech wood. Polymer Degradation and Stability. 91(2): 393-397.
23.Himmel, M. 1986. Comminution of biomass: hammer and mills. knife. Biotechnology and bioengineering symposium. 15(15): 39-58.
24.IEA Bioenergy, Task 34 Leader: Doug Elliott, Pyrolysis of biomass, www.pyne.co.uk, published 2010, Web page visited June, 2010.
25.Jayah, T. H., L. Aye, R. J. Fuller, and D. F. Stewart. 2003. Computer simulation of a downdraft wood gasifier for tea drying. Biomass and Bioenergy. 25(4): 459-469.
26.John, G.and Jim, L. 1982. Forest products and wood science : an introduction. 1st ed., 45. THE IOWA STATE UNIVERSITY PRESS.
27.Kohli, S. and M.R. Ravi. 2003. Biomass gasification for rural electrification: prospects and challenges. SESI Journal. 13(1 and 2) : 83-102.
28.Koufopanos, C. A., N. Papayannakos, G. Maschio, and A. Lucchesi. 1991. Modeling of the pyrolysis of biomass particles. Studies on kinetics, thermal and heat transfer effects.Can J Chem Eng 69: 907–915
29.Li, R., Jing, L., and M. M. He. 2011. Research on CFD of Fluidizaition of Biomass Waste Fast Pyrolysis Reactor. Advanced Materials Research. 201 - 203: 708-713.
30.Ratte, J., E., Fardet, D., Mateos, and J. S., Hery. (2011). Mathematical modelling of a continuous biomass torrefaction reactor: TORSPYD™ column. Biomass and Bioenergy, 35(8), 3481-3495. doi: 10.1016/j.biombioe.2011.04.045
31.Repellin, V., A. Govin, M. Rolland, and R. Guyonnet. 2010. Modelling anhydrous weight loss of wood chips during torrefaction in a pilot kiln. Biomass
and Bioenergy. 34(5), 602-609.
32.Ringer, M. B., V. Putsche, J. Scahill, and L. National Renewable Energy. 2006. Large-scale pyrolysis oil production : a technology assessment and economic analysis. Golden, CO: National Renewable Energy Laboratory.
33.Rousset, P., I. Turner, A. Donnot, and P. Perre. 2006. The choice of a low-temperature pyrolysis model at the microscopic level for use in a macroscopic formulation, Ann. For. Sci. 63:213-229.
34.Shleser R. 1994. Ethanol production in Hawaii: processes, feedstocks, and current economic feasibility of fuel-grade ethanol production in Hawaii, State of Hawaii. Department of Business, Economic Development & Tourism.
35.Tumuluru, J. S., S. Sokhansanj, and C. T. Wright. 2010. Biomass Torrefaction Process Review and Moving Bed Torrefaction System Model Development. ASAE Paper No. 1110456. St. Joseph, MI 49085-9659, USA.
36.Van Soest, P. J., and R. H. Wine. 1967. Use of detergents in the analysis of fibrous feeds. IV. Determination of plant cell-wall constituents. J. Assoc. Off. Anal. Chem. 50: 50-55.
37.Ward, S. W., and J. Braslaw. 1985. Experimental weight loss kinetics of wood pyrolysis under vacuum, Combust Flame 61:261.
38.Yan, W., T. C. Acharjee, C. J. Acharjee, V. R. Vasquez. 2009. Thermal pretreatment of lignocellulosic biomass. Environmental Progress & Sustainable Energy 28(3): 435-440.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15858-
dc.description.abstract植物做為生質燃料,因為可以藉由增加栽種來大規模取得原料,是十分具有發展潛力的石化替代能源之一;木材經過熱裂解後,在不同的反應條件而產生不同狀態的燃料,相較於氣、液燃料,固態燃料更便於運輸及貯藏,因此本研究中使用產生固態產物的焙燒反應進行研究。在本研究中使用COMSOL Multiphysics 4.2a軟體模擬20 mm立方體柳杉木質原料在焙燒時的熱、質傳遞現象,並且經由實驗加以驗證。從在焙燒過程因受熱傳遞阻力影響,由模擬得知半纖維素、纖維素、木質素濃度中心向表面遞減,同時生質炭以相反的趨勢產生。實驗的結果驗證,半纖維素、纖維素與模擬同樣的趨勢存在,但木質素因為分離過程中摻雜著類似木質素不為強酸溶解的焙燒產物,不容易單獨量測,但合計木質素與焙燒產物之總重與實驗模擬的數據趨勢相合。在重量的模擬及驗證中,以250℃、270℃、290℃焙燒30分鐘,重量模擬值與實驗值依序相差相差9.0%、9.1%、4.1%。而生質炭收率依序為39.1 %、36.3%、34.5%。以此基礎數據,設計一具焙燒爐來生產生質炭,此焙燒爐藉燃燒木材本身來供應反應所需熱源,不需經由外界加熱以達到節能環保的目的。使用電阻溫度計(RTD)測量焙燒時爐體的溫度分布,得知焙燒區可達到溫度200℃以上,並可控制焙燒反應溫度,但此焙燒爐原料的運動與排氣的處理仍待進一步的改進。zh_TW
dc.description.abstractWood is a high potential alternative to petrochemical fuels due to the mass production by growing plants. The pyrolysis of wood, which involves various conditions produces corresponding rich carbon content residues, char or gas and liquid products. Different from gas and liquid fuels, biochar, a stable solid created by pyrolysis of biomass, is easier for storage and transportation. In our study, therefore, we focused on the torrefaction process that leads to a final dry solid product. We used COMSOL Multiphysics 4.2a to simulate the heat and mass transfer of a cubed biomass, Cryptomeria japonica, with 20 mm edge length during torrefaction process. Then, we validated the simulation results by comparing to torrefaction experiments. Simulation result showed that the concentration of hemicellulose, cellulose, and lignin were decreased from the center towards the surface of biomass, meanwhile, the concentration of biochar was increased. Experimental data also indicated the same tendency of the concentration of hemicellulose, cellulose. It is hard to measure the concentration of lignin since some lignin-like products are undissolved during the separation of lignin by using strong acid solvents. However, we measured the total weight of products from torrefaction and lignin, and the measured data were agreed with the simulated results. During 30 min torrefaction process at 250°C, 270°C, and 290°C, the average error between simulation and experiment were 9.0%, 9.0, and 4..1%, respectively. Also, the yield of biochar are 39.19%, 36.13%, and 34.15%, respectively. According to previous results, we designed a torrefaction reactor for biochar production, and this reactor can obtain the energy from combustion of the wood itself for energy conservation and environmental protection. Besides, the performance of the reactor can be well operated in the temperature range for torrefaction, which is validated by using RTD (Resistance Temperature Detectors). However, improvements are needed for solid material flow and exhaustion in operation of this reactor.en
dc.description.provenanceMade available in DSpace on 2021-06-07T17:53:48Z (GMT). No. of bitstreams: 1
ntu-101-R99631044-1.pdf: 3751739 bytes, checksum: fbd4ced95d28164d1917431527e13fee (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 viii
符號說明 ix
第一章 前言與目的 1
1.1 前言 1
1.2 研究目的 2
第二章 文獻探討 3
2.1 熱裂解研究 3
2.1.1熱裂解現象 3
2.1.2熱裂解的型式 4
2.1.3 熱裂解後的優點 5
2.2木質原料 5
2.2.1纖維素 6
2.2.2半纖維素 6
2.2.3木質素 6
2.3熱裂解反應模型 6
2.4 熱裂解反應爐 8
2.4.1 顆粒大小 8
2.4.2氣化爐 9
2.4.3焙燒爐 11
第三章 研究方法 14
3.1模擬焙燒木材熱質傳變化 14
3.1.1模型假設 14
3.1.2熱傳模組設定 15
3.1.3質傳模組設定 17
3.2模擬驗證 17
3.2.1 溫度驗證 17
3.2.2化學實驗驗證 19
3.2.3初始成分測定 24
3.2.4重量實驗驗證 26
3.3熱裂解反應爐 26
3.3.1反應器原理 27
3.3.2反應器設計 29
3.3.3焙燒爐周邊設備 31
第四章 結果與討論 34
4.1溫度模擬及驗證結果 34
4.2濃度模擬及驗證結果 42
4.2.1焙燒成分分析 42
4.2.2灰分量測 45
4.2.3半纖維素濃度模擬與實驗驗證 45
4.2.4纖維素濃度模擬與實驗驗證 49
4.2.5殘餘木質素及炭濃度估算 52
4.2.6重量模擬及驗證結果 55
4.3焙燒爐燃燒實驗 57
第五章 結論 62
參考文獻 63
dc.language.isozh-TW
dc.subject有限元素法zh_TW
dc.subject焙燒zh_TW
dc.subject生質炭zh_TW
dc.subjectTorrefactionen
dc.subjectBiocharen
dc.subjectFEM methoden
dc.title移動床式生質物焙燒爐之初步研究zh_TW
dc.titlePreliminary Studies on Moving Bed Torrefaction System for Biomassen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃振康,林法勤
dc.subject.keyword焙燒,有限元素法,生質炭,zh_TW
dc.subject.keywordTorrefaction,FEM method,Biochar,en
dc.relation.page66
dc.rights.note未授權
dc.date.accepted2012-08-17
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物產業機電工程學研究所zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
3.66 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved