Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15838
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭秋萍(Chiu-Ping Cheng)
dc.contributor.authorYung-Chu Tsaien
dc.contributor.author蔡詠竹zh_TW
dc.date.accessioned2021-06-07T17:53:18Z-
dc.date.copyright2012-08-22
dc.date.issued2012
dc.date.submitted2012-08-17
dc.identifier.citation趙鐸駿(2009).一個番茄鋅指蛋白基因之鑑任與功能分析。國立台灣大學植物科學研究所碩士論文。
陳雅婷(2011).探討茄科鋅指蛋白與EAS基因在病害與非生物性逆境反應之功能。國立台灣大學植物科學研究所碩士論文。
Amos, L.A., and Schlieper, D. (2005). Microtubules and maps. Adv. Protein Chem.71:257-98.
Atkinson, N.J., and Urwin, P.E. (2012). The interaction of plant biotic and abiotic stresses: from genes to the field. J. Exp. Bot. 63: 3523-3543.
Ban, R., Matsuzaki, H., Akashi, T., Sakashita, G., Taniguchi, H., Park, S.Y., Tanaka, H., Furukawa, K., and Urano, T. (2009). Mitotic regulation of the stability of microtubule plus-end tracking protein EB3 by ubiquitin ligase SIAH-1 and Aurora mitotic kinases. J. Biol. Chem. 284: 28367-28381.
Bari, R., and Jones, J. (2009). Role of plant hormones in plant defence responses. Plant Mol. Biol. 69: 473-488.
Beck, M., Komis, G., Muller, J., Menzel, D., and Samaj, J. (2010). Arabidopsis homologs of nucleus- and phragmoplast-localized kinase 2 and 3 and mitogen-activated protein kinase 4 are essential for microtubule organization. Plant Cell 22: 755-771.
Berrocal-Lobo, M., Stone, S., Yang, X., Antico, J., Callis, J., Ramonell, K.M., and Somerville, S. (2010). ATL9, a RING zinc finger protein with E3 ubiquitin ligase activity implicated in chitin- and NADPH oxidase-mediated defense responses. PLoS One 5: e14426.
Boller, T., and He, S.Y. (2009). Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science 324:742-744.
Book, A.J., Smalle, J., Lee, K.H., Yang, P., Walker, J.M., Casper, S., Holmes, J.H., Russo, L.A., Buzzinotti, Z.W., Jenik, P.D., and Vierstra, R.D. (2009). The RPN5 subunit of the 26S proteasome is essential for gametogenesis, sporophyte development, and complex assembly in Arabidopsis. Plant Cell 21: 460-478.
Boutte, Y., Vernhettes, S., and Satiat-Jeunemaitre, B. (2007). Involvement of the cytoskeleton in the secretory pathway and plasma membrane organisation of higher plant cells. Cell Biol. Int. 31: 649-654.
Burch-Smith, T.M., Schiff, M., Liu, Y., and Dinesh-Kumar, S.P. (2006). Efficient virus-induced gene silencing in Arabidopsis. Plant Physiol. 142: 21-27.
Burke, D., Gasdaska, P., and Hartwell, L. (1989). Dominant effects of tubulin overexpression in Saccharomyces cerevisiae. Mol. Cell. Biol. 9: 1049-1059.
Cao, F.Y., Yoshioka, K., and Desveaux, D. (2011). The roles of ABA in plant-pathogen interactions. J. Plant Res.124: 489-499.
Chen, B., Mariano, J., Tsai, Y.C., Chan, A.H., Cohen, M., and Weissman, A.M. (2006). The activity of a human endoplasmic reticulum-associated degradation E3, gp78, requires its Cue domain, RING finger, and an E2-binding site. Proc. Natl. Acad. Sci. USA 103: 341-346.
Chen, Y.Y., Lin, Y.M., Chao, T.C., Wang, J.F., Liu, A.C., Ho, F.I., and Cheng, C.P. (2009). Virus-induced gene silencing reveals the involvement of ethylene-, salicylic acid- and mitogen-activated protein kinase-related defense pathways in the resistance of tomato to bacterial wilt. Physiol. Plant. 136: 324-335.
Cheng, M.C., Hsieh, E.J., Chen, J.H., Chen, H.Y., and Lin, T.P. (2012). Arabidopsis RGLG2, functioning as a RING E3 ligase, interacts with AtERF53 and negatively regulates the plant drought stress response. Plant Physiol. 158: 363-375.
Cho, D., Shin, D., Jeon, B.W., and Kwak, J.M. (2009). ROS-mediated ABA signaling. J. Plant Biol. 52: 102-113.
Cho, S.K., Ryu, M.Y., Seo, D.H., Kang, B.G., and Kim, W.T. (2011). The Arabidopsis RING E3 ubiquitin ligase AtAIRP2 plays combinatory roles with AtAIRP1 in abscisic acid-mediated drought stress responses. Plant Physiol. 157: 2240-2257.
Coll, N.S., Epple, P., and Dangl, J.L. (2011). Programmed cell death in the plant immune system. Cell Death Differ. 18: 1247-1256.
Collings, D.A., Lill, A.W., Himmelspach, R., and Wasteneys, G.O. (2006). Hypersensitivity to cytoskeletal antagonists demonstrates microtubule-microfilament cross-talk in the control of root elongation in Arabidopsis thaliana. New Phytol. 170: 275-290.
Curin, M., Ojangu, E.L., Trutnyeva, K., Ilau, B., Truve, E., and Waigmann, E. (2007). MPB2C, a microtubule-associated plant factor, is required for microtubular accumulation of tobacco mosaic virus movement protein in plants. Plant Physiol. 143: 801-811.
Deshaies, R.J., and Joazeiro, C.A. (2009). RING domain E3 ubiquitin ligases. Annu. Rev. Biochem. 78: 399-434.
Deslandes, L., Olivier, J., Theulieres, F., Hirsch, J., Feng, D.X., Bittner-Eddy, P., Beynon, J., and Marco, Y. (2002). Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes. Proc. Natl. Acad. Sci. USA 99: 2404-2409.

Dhonukshe, P., and Gadella, T.W., Jr. (2003). Alteration of microtubule dynamic instability during preprophase band formation revealed by yellow fluorescent protein-CLIP170 microtubule plus-end labeling. Plant Cell 15: 597-611.
Du, L.Q., Ali, G.S., Simons, K.A., Hou, J.G., Yang, T.B., Reddy, A.S.N., and Poovaiah, B.W. (2009). Ca2+/calmodulin regulates salicylic-acid-mediated plant immunity. Nature 457: 1154-1158.
Feng, J. (2006). Microtubule: A common target for parkin and Parkinson's disease toxins. Neuroscientist 12: 469-476.
Foissner, I., Menzel, D., and Wasteneys, G.O. (2009). Microtubule-dependent motility and orientation of the cortical endoplasmic reticulum in elongating characean internodal cells. Cell Motil. Cytoskeleton 66: 142-155.
Fragniere, C., Serrano, M., Abou-Mansour, E., Metraux, J.P., and L'Haridon, F. (2011). Salicylic acid and its location in response to biotic and abiotic stress. FEBS Lett. 585: 1847-1852.
Fu, H., Lin, Y.L., and Fatimababy, A.S. (2010). Proteasomal recognition of ubiquitylated substrates. Trends Plant Sci. 15: 375-386.
Fujita, M., Fujita, Y., Noutoshi, Y., Takahashi, F., Narusaka, Y., Yamaguchi-Shinozaki, K., and Shinozaki, K. (2006). Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr. Opin. Plant Biol. 9: 436-442.
Fukasawa, K. (2011). Aberrant activation of cell cycle regulators, centrosome amplification, and mitotic defects. Hormones and cancer 2: 104-112.
Gallagher, E., Gao, M., Liu, Y.C., and Karin, M. (2006). Activation of the E3 ubiquitin ligase Itch through a phosphorylation-induced conformational change. Proc. Natl. Acad. Sci. USA 103: 1717-1722.
Gallois, J.L., Guyon-Debast, A., Lecureuil, A., Vezon, D., Carpentier, V., Bonhomme, S., and Guerche, P. (2009). The Arabidopsis proteasome RPT5 subunits are essential for gametophyte development and show accession-dependent redundancy. Plant Cell 21: 442-459.
Gechev, T.S., Van Breusegem, F., Stone, J.M., Denev, I., and Laloi, C. (2006). Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bioessays 28: 1091-1101.
Genin, S. (2010). Molecular traits controlling host range and adaptation to plants in Ralstonia solanacearum. New Phytol. 187: 920-928.
Genin, S., and Denny, T.P. (2012). Pathogenomics of the Ralstonia solanacearum Species Complex. Annu. Rev. Phytopathol. May 1.

Golldack, D., Luking, I., and Yang, O. (2011). Plant tolerance to drought and salinity: stress regulating transcription factors and their functional significance in the cellular transcriptional network. Plant Cell Rep. 30: 1383-1391.
Hamada, T. (2007). Microtubule-associated proteins in higher plants. J. Plant Res. 120: 79-98.
Hanson, P.M., Licardo, O., Hanudin, Wang, J.F., and Chen, J.T. (1998). Diallel analysis of bacterial wilt resistance in tomato derived from different sources. Plant Dis. 82: 74-78.
Hernandez-Blanco, C., Feng, D.X., Hu, J., Sanchez-Vallet, A., Deslandes, L., Llorente, F., Berrocal-Lobo, M., Keller, H., Barlet, X., Sanchez-Rodriguez, C., Anderson, L.K., Somerville, S., Marco, Y., and Molina, A. (2007). Impairment of cellulose synthases required for Arabidopsis secondary cell wall formation enhances disease resistance. Plant Cell 19: 890-903.
Hershko, A., and Ciechanover, A. (1998). The ubiquitin system. Annu. Rev. Biochem. 67: 425-479.
Hirsch, J., Deslandes, L., Feng, D.X., Balague, C., and Marco, Y. (2002). Delayed symptom development in ein2-1, an Arabidopsis ethylene-insensitive mutant, in response to bacterial wilt caused by Ralstonia Solanacearum. Phytopathology 92: 1142-1148.
Ho, F.I., Chen, Y.Y., Lin, Y.M., Cheng, C.P., and Wang, J.F. (2009). A tobacco rattle virus-induced gene silencing system for a soil-borne vascular pathogen Ralstonia solanacearum. Bot. Stud. 50: 413-424.
Huang, G.T., Ma, S.L., Bai, L.P., Zhang, L., Ma, H., Jia, P., Liu, J., Zhong, M., and Guo, Z.F. (2012). Signal transduction during cold, salt, and drought stresses in plants. Mol. Biol. Rep. 39: 969-987.
Huang, J., Chen, F., Del Casino, C., Autino, A., Shen, M., Yuan, S., Peng, J., Shi, H., Wang, C., Cresti, M., and Li, Y. (2006). An ankyrin repeat-containing protein, characterized as a ubiquitin ligase, is closely associated with membrane-enclosed organelles and required for pollen germination and pollen tube growth in lily. Plant Physiol. 140: 1374-1383.
Huang, Y., Li, C.Y., Pattison, D.L., Gray, W.M., Park, S., and Gibson, S.I. (2010). SUGAR-INSENSITIVE3, a RING E3 ligase, is a new player in plant sugar response. Plant Physiol. 152: 1889-1900.
Hunter, T. (2007). The age of crosstalk: Phosphorylation, ubiquitination, and beyond. Mol. Cell 28: 730-738.
Ikeda, F., and Dikic, I. (2008). Atypical ubiquitin chains: new molecular signals. 'Protein modifications: beyond the usual suspects' review series. EMBO Rep. 9: 536-542.
Iyengar, P.V., Hirota, T., Hirose, S., and Nakamura, N. (2011). Membrane-associated RING-CH 10 (MARCH10 Protein) is a microtubule-associated E3 ubiquitin ligase of the spermatid flagella. J. Biol. Chem. 286: 39082-39090.
Jaunet, T.X., and Wang, J.F. (1999). Variation in genotype and aggressiveness of Ralstonia solanacearum race 1 isolated from tomato in Taiwan. Phytopathology 89: 320-327.
Jung, J., Won, S.Y., Suh, S.C., Kim, H., Wing, R., Jeong, Y., Hwang, I., and Kim, M. (2007). The barley ERF-type transcription factor HvRAF confers enhanced pathogen resistance and salt tolerance in Arabidopsis. Planta 225: 575-588.
Kaloriti, D., Galva, C., Parupalli, C., Khalifa, N., Galvin, M., and Sedbrook, J.C. (2007). Microtubule associated proteins in plants and the processes they manage. J Integr. Plant Biol. 49: 1164-1173.
Konrad, K.R., Wudick, M.M., and Feijo, J.A. (2011). Calcium regulation of tip growth: new genes for old mechanisms. Curr. Opin. Plant Biol. 14: 721-730.
Kost, B., Mathur, J., and Chua, N.H. (1999). Cytoskeleton in plant development. Curr. Opin. Plant Biol. 2: 462-470.
Lamb, C., and Dixon, R.A. (1997). The oxidative burst in plant disease resistance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 251-275.
Latrasse, D., Benhamed, M., Henry, Y., Domenichini, S., Kim, W., Zhou, D.X., and Delarue, M. (2008). The MYST histone acetyltransferases are essential for gametophyte development in Arabidopsis. BMC Plant Biol.8: 121.
Le, J., Vandenbussche, F., De Cnodder, T., Van Der Straeten, D., and Verbelen, J.P. (2005). Cell elongation and microtubule behavior in the Arabidopsis hypocotyl: Responses to ethylene and auxin. J. Plant Growth Regul. 24: 166-178.
Lebeau, A., Daunay, M.C., Frary, A., Palloix, A., Wang, J.F., Dintinger, J., Chiroleu, F., Wicker, E., and Prior, P. (2011). Bacterial wilt resistance in tomato, pepper, and eggplant: Genetic resources respond to diverse strains in the Ralstonia solanacearum species complex. Phytopathology 101: 154-165.
Lee, S.C., and Luan, S. (2012). ABA signal transduction at the crossroad of biotic and abiotic stress responses. Plant Cell Environ. 35: 53-60.
Li, A., Wang, X., Leseberg, C.H., Jia, J., and Mao, L. (2008). Biotic and abiotic stress responses through calcium-dependent protein kinase (CDPK) signaling in wheat (Triticum aestivum L.). Plant Signal Behav. 3: 654-656.
Lin, S.S., Martin, R., Mongrand, S., Vandenabeele, S., Chen, K.C., Jang, I.C., and Chua, N.H. (2008a). RING1 E3 ligase localizes to plasma membrane lipid rafts to trigger FB1-induced programmed cell death in Arabidopsis. Plant J. 56: 550-561.
Lin, W.C., Lu, C.F., Wu, J.W., Cheng, M.L., Lin, Y.M., Yang, N.S., Black, L., Green, S.K., Wang, J.F., and Cheng, C.P. (2004). Transgenic tomato plants expressing the ArabidopsisNPR1 gene display enhanced resistance to a spectrum of fungal and bacterial diseases. Transgenic Res. 13: 567-581.
Lin, Y.M., Chou, I.C., Wang, J.F., Ho, F.I., Chu, Y.J., Huang, P.C., Lu, D.K., Shen, H.L., Elbaz, M., Huang, S.M., and Cheng, C.P. (2008b). Transposon mutagenesis reveals differential pathogenesis of Ralstonia solanacearum on tomato and Arabidopsis. Mol. Plant Microbe Interact. 21: 1261-1270.
Lindbo, J.A., Fitzmaurice, W.P., and della-Cioppa, G. (2001). Virus-mediated reprogramming of gene expression in plants. Curr. Opin. Plant Biol. 4: 181-185.
Liu, H., and Stone, S.L. (2010). Abscisic acid increases Arabidopsis ABI5 transcription factor levels by promoting KEG E3 ligase self-ubiquitination and proteasomal degradation. Plant Cell 22: 2630-2641.
Liu, J.J., Zhang, Y.Y., Qin, G.J., Tsuge, T., Sakaguchi, N., Luo, G., Sun, K.T., Shi, D.Q., Aki, S., Zheng, N.Y., Aoyama, T., Oka, A., Yang, W.C., Umeda, M., Xie, Q., Gu, H.Y., and Qu, L.J. (2008). Targeted degradation of the cyclin-dependent kinase inhibitor ICK4/KRP6 by RING-type E3 ligases is essential for mitotic cell cycle progression during Arabidopsis gametogenesis. Plant Cell 20:1538-1554.
Liu, Y., Schiff, M., and Dinesh-Kumar, S.P. (2002). Virus-induced gene silencing in tomato. Plant J. 31: 777-786.
Lu, B., Gong, Z., Wang, J., Zhang, J., and Liang, J. (2007). Microtubule dynamics in relation to osmotic stress-induced ABA accumulation in Zea mays roots. J. Exp. Bot. 58: 2565-2572.
Luo, H., Laluk, K., Lai, Z., Veronese, P., Song, F., and Mengiste, T. (2010). The Arabidopsis Botrytis Susceptible1 interactor defines a subclass of RING E3 ligases that regulate pathogen and stress responses. Plant Physiol. 154: 1766-1782.
Ma, H., and Sundaresan, V. (2010). Development of flowering plant gametophytes. Curr. Top. Dev. Biol. 91: 379-412.
Ma, W. (2011). Roles of Ca2+ and cyclic nucleotide gated channel in plant innate immunity. Plant Sci. 181: 342-346.
Macfarlane, S.A. (2010). Tobraviruses-plant pathogens and tools for biotechnology. Mol. Plant Pathol. 11: 577-583.
Maekawa, S., Sato, T., Asada, Y., Yasuda, S., Yoshida, M., Chiba, Y., and Yamaguchi, J. (2012). The Arabidopsis ubiquitin ligases ATL31 and ATL6 control the defense response as well as the carbon/nitrogen response. Plant Mol. Biol. 79: 217-227.
Maimbo, M., Ohnishi, K., Hikichi, Y., Yoshioka, H., and Kiba, A. (2007). Induction of a small heat shock protein and its functional roles in Nicotiana plants in the defense response against Ralstonia solanacearum. Plant Physiol. 145: 1588-1599.
Maimbo, M., Ohnishi, K., Hikichi, Y., Yoshioka, H., and Kiba, A. (2010). S-glycoprotein-like protein regulates defense responses in Nicotiana plants against Ralstonia solanacearum. Plant Physiol. 152: 2023-2035.
Mandal, S., Das, R.K., and Mishra, S. (2011). Differential occurrence of oxidative burst and antioxidative mechanism in compatible and incompatible interactions of Solanum lycopersicum and Ralstonia solanacearum. Plant Physio.l Biochem. 49: 117-123.
Mansfield, J., Genin, S., Magori, S., Citovsky, V., Sriariyanum, M., Ronald, P., Dow, M., Verdier, V., Beer, S.V., Machado, M.A., Toth, I., Salmond, G., and Foster, G.D. (2012). Top 10 plant pathogenic bacteria in molecular plant pathology. Mol. Plant Pathol. 13: 614-629.
Marino, D., Peeters, N., and Rivas, S. (2012). Ubiquitination during plant immune signaling. Plant Physiol.13: 402-408.
Matsuda, N., Suzuki, T., Tanaka, K., and Nakano, A. (2001). Rma1, a novel type of RING finger protein conserved from Arabidopsis to human, is a membrane-bound ubiquitin ligase. J. Cell Sci. 114: 1949-1957.
Mazzucotelli, E., Belloni, S., Marone, D., De Leonardis, A., Guerra, D., Di Fonzo, N., Cattivelli, L., and Mastrangelo, A. (2006). The E3 ubiquitin ligase gene family in plants: regulation by degradation. Curr. Genomics 7: 509-522.
Min, M.K., Kim, S.J., Miao, Y., Shin, J., Jiang, L., and Hwang, I. (2007). Overexpression of Arabidopsis AGD7 causes relocation of Golgi-localized proteins to the endoplasmic reticulum and inhibits protein trafficking in plant cells. Plant Physiol. 143: 1601-1614.
Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends. Plant Sci. 7: 405-410.
Mukhopadhyay, D., and Riezman, H. (2007). Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science 315: 201-205.
Mukhtar, M.S., Deslandes, L., Auriac, M.C., Marco, Y., and Somssich, I.E. (2008). The Arabidopsis transcription factor WRKY27influences wilt disease symptom development caused by Ralstonia solanacearum. Plant J. 56: 935-947.
Munns, R., and Tester, M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59: 651-681.

Murray, S.L., Ingle, R.A., Petersen, L.N., and Denby, K.J. (2007). Basal resistance against Pseudomonas syringae in Arabidopsis involves WRKY53 and a protein with homology to a nematode resistance protein. Mol. Plant-Microbe Interact. 20: 1431-1438.
Nakajima, K., Furutani, I., Tachimoto, H., Matsubara, H., and Hashimoto, T. (2004). SPIRAL1 encodes a plant-specific microtubule-localized protein required for directional control of rapidly expanding Arabidopsis cells. Plant Cell 16: 1178-1190.
Naseem, M., Philippi, N., Hussain, A., Wangorsch, G., Ahmed, N., and Dandekar, T. (2012). Integrated systems view on networking by hormones in Arabidopsis immunity reveals multiple crosstalk for cytokinin. Plant Cell 24: 1793-1814.
Nick, P. (2007). The plant cytoskeleton - new jobs for a versatile network. Protoplasma. 230: 125-127.
Ning, Y., Jantasuriyarat, C., Zhao, Q., Zhang, H., Chen, S., Liu, J., Liu, L., Tang, S., Park, C.H., Wang, X., Liu, X., Dai, L., Xie, Q., and Wang, G.L. (2011). The SINA E3 ligase OsDIS1 negatively regulates drought response in rice. Plant Physiol. 157: 242-255.
Pedley, K.F., and Martin, G.B. (2005). Role of mitogen-activated protein kinases in plant immunity. Curr. Opin. Plant Biol. 8: 541-547.
Peth, A., Boettcher, J.P., and Dubiel, W. (2007). Ubiquitin-dependent proteolysis of the microtubule end-binding protein 1, EB1, is controlled by the COP9 signalosome: Possible consequences for microtubule filament stability. J. Mol. Biol. 368: 550-563.
Pieterse, C.M.J., Leon-Reyes, A., Van der Ent, S., and Van Wees, S.C.M. (2009). Networking by small-molecule hormones in plant immunity. Nat. Chem. Biol. 5: 308-316.
Piterkova, J., Tomankova, K., Luhova, L., Petrivalsky, M., and Pec, P. (2005). Oxidative stress: Localization of reactive oxygen species formation and degradation in plant tissue. Chem List. 99: 455-466.
Poruchynsky, M.S., Sackett, D.L., Robey, R.W., Ward, Y., Annunziata, C., and Fojo, T. (2008). Proteasome inhibitors increase tubulin polymerization and stabilization in tissue culture cells - A possible mechanism contributing to peripheral neuropathy and cellular toxicity following proteasome inhibition. Cell Cycle 7: 940-949.
Potocky, M., Jones, M.A., Bezvoda, R., Smirnoff, N., and Zarsky, V. (2007). Reactive oxygen species produced by NADPH oxidase are involved in pollen tube growth. New Phytol. 174: 742-751.
Purkayastha, A., and Dasgupta, I. (2009). Virus-induced gene silencing: a versatile tool for discovery of gene functions in plants. Plant Physiol. Bioch. 47: 967-976.
Qin, F., Sakuma, Y., Tran, L.S.P., Maruyama, K., Kidokoro, S., Fujita, Y., Fujita, M., Umezawa, T., Sawano, Y., Miyazono, K.I., Tanokura, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2008). Arabidopsis DREB2A-interacting proteins function as RING E3 ligases and negatively regulate plant drought stress-responsive gene expression. Plant Cell 20:1693-1707.
Ren, X.Z., Chen, Z.Z., Liu, Y., Zhang, H.R., Zhang, M., Liu, Q.A., Hong, X.H., Zhu, J.K., and Gong, Z.Z. (2010). ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis. Plant J. 63: 417-429.
Ren, Y., Zhao, J.H., and Feng, J. (2003). Parkin binds to alpha/beta tubulin and increases their ubiquitination and degradation. J. Neurosci. 23: 3316-3324.
Robatzek, S., Bittel, P., Chinchilla, D., Kochner, P., Felix, G., Shiu, S.H., and Boller, T. (2007). Molecular identification and characterization of the tomato flagellin receptor LeFLS2, an orthologue of Arabidopsis FLS2 exhibiting characteristically different perception specificities. Plant Mol. Biol. 64: 539-547.
Santner, A., and Estelle, M. (2010). The ubiquitin-proteasome system regulates plant hormone signaling. Plant J. 61: 1029-1040.
Schenke, D., Bottcher, C., and Scheel, D. (2011). Crosstalk between abiotic ultraviolet-B stress and biotic (flg22) stress signalling in Arabidopsis prevents flavonol accumulation in favor of pathogen defence compound production. Plant Cell Environ. 34: 1849-1864.
Scholthof, K.B.G., Adkins, S., Czosnek, H., Palukaitis, P., Jacquot, E., Hohn, T., Hohn, B., Saunders, K., Candresse, T., Ahlquist, P., Hemenway, C., and Foster, G.D. (2011). Top 10 plant viruses in molecular plant pathology. Mol. Plant Pathol. 12: 938-954.
Schwessinger, B., Roux, M., Kadota, Y., Ntoukakis, V., Sklenar, J., Jones, A., and Zipfel, C. (2011). Phosphorylation-dependent differential regulation of plant growth, cell Death, and innate immunity by the regulatory receptor-like kinase BAK1. PLoS Genet. 7: e1002046.
Scoccianti, V., Ovidi, E., Taddei, A.R., Tiezzi, A., Crinelli, R., Gentilini, L., and Speranza, A. (2003). Involvement of the ubiquitin/proteasome pathway in the organisation and polarised growth of kiwifruit pollen tubes. Sex Plant Reprod. 16: 123-133.
Sedbrook, J.C. (2004). MAPs in plant cells: delineating microtubule growth dynamics and organization. Curr. Opin. Plant Biol. 7: 632-640.
Seo, Y.S., Choi, J.Y., Kim, S.J., Kim, E.Y., Shin, J.S., and Kim, W.T. (2012). Constitutive expression of CaRma1H1, a hot pepper ER-localized RING E3 ubiquitin ligase, increases tolerance to drought and salt stresses in transgenic tomato plants. Plant Cell Rep. (in press)
Sheng, X., Hu, Z., Lu, H., Wang, X., Baluska, F., Samaj, J., and Lin, J. (2006). Roles of the ubiquitin/proteasome pathway in pollen tube growth with emphasis on MG132-induced alterations in ultrastructure, cytoskeleton, and cell wall components. Plant Physiol. 141: 1578-1590.
Shinozaki, K., and Yamaguchi-Shinozaki, K. (2007). Gene networks involved in drought stress response and tolerance. J. Exp. Bot. 58: 221-227.
Smertenko, A., and Franklin-Tong, V.E. (2011). Organisation and regulation of the cytoskeleton in plant programmed cell death. Cell Death Differ. 18: 1263-1270.
Speranza, A., Scoccianti, V., Crinelli, R., Calzoni, G.L., and Magnani, M. (2001). Inhibition of proteastome activity strongly affects kiwifruit pollen germination. Involvement of the ubiquitin/proteasome pathway as a major regulator. Plant Physiol. 126: 1150-1161.
Spoel, S.H., Koornneef, A., Claessens, S.M.C., Korzelius, J.P., Van Pelt, J.A., Mueller, M.J., Buchala, A.J., Metraux, J.P., Brown, R., Kazan, K., Van Loon, L.C., Dong, X.N., and Pieterse, C.M.J. (2003). NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15: 760-770.
Stone, S.L. (2005). Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis. Plant Physiol. 137: 13-30.
Stone, S.L., Williams, L.A., Farmer, L.M., Vierstra, R.D., and Callis, J. (2006). KEEP ON GOING, a RING E3 ligase essential for Arabidopsis growth and development, is involved in abscisic acid signaling. Plant Cell 18: 3415-3428.
Suen, D.F., Wu, S.S., Chang, H.C., Dhugga, K.S., and Huang, A.H. (2003). Cell wall reactive proteins in the coat and wall of maize pollen: potential role in pollen tube growth on the stigma and through the style. J. Biol. Chem. 278: 43672-43681.
Takken, F.L.W., Luderer, R., Gabriels, S.H.E.J., Westerink, N., Lu, R., de Wit, P.J.G.M., and Joosten, M.H.A.J. (2000). A functional cloning strategy, based on a binary PVX-expression vector, to isolate HR-inducing cDNAs of plant pathogens. Plant J. 24: 275-283.
Tasset, C., Bernoux, M., Jauneau, A., Pouzet, C., Briere, C., Kieffer-Jacquinod, S., Rivas, S., Marco, Y., and Deslandes, L. (2010). Autoacetylation of the Ralstonia solanacearum effector PopP2 targets a lysine residue essential for RRS1-R-mediated immunity in Arabidopsis. PloS Pathog.6: e1001202.
Taylor, L.P., and Hepler, P.K. (1997). Pollen germination and tube growth. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 461-491.
Timmers, A.C. (2008). The role of the plant cytoskeleton in the interaction between legumes and rhizobia. J. Microsc. 231: 247-256.
Torres, M.A. (2010). ROS in biotic interactions. Physiol. Plantarum. 138: 414-429.
Trockenbacher, A., Suckow, V., Foerster, J., Winter, J., Krauss, S., Ropers, H.H., Schneider, R., and Schweiger, S. (2001). MID1, mutated in Opitz syndrome, encodes an ubiquitin ligase that targets phosphatase 2A for degradation. Nat. Genet. 29: 287-294.
Trujillo, M., and Shirasu, K. (2010). Ubiquitination in plant immunity. Curr. Opin. Plant Biol. 13: 402-408.
Wang, C., Li, J.J., and Yuan, M. (2007). Salt tolerance requires cortical microtubule reorganization in Arabidopsis. Plant Cell Physiol. 48: 1534-1547.
Wang, C., Zhang, L.J., and Huang, R.D. (2011a). Cytoskeleton and plant salt stress tolerance. Plant Signal. Behav. 6: 29-31.
Wang, J.F., and Lin, C.H. (2005). Colonization capacity of Ralstonia solanacearum tomato strains differing in aggressiveness on tomatoes and weeds. Bacterial Wilt Disease and the Ralstonia solanacearum Species Complex, pp. 73–79.
Wang, J.F., Olivier, J., Thoquet, P., Mangin, B., Sauviac, L., and Grimsley, N.H. (2000). Resistance of tomato line Hawaii7996 to Ralstonia solanacearum Pss4 in Taiwan is controlled mainly by a major strain-specific locus. Mol. Plant-Microbe. Interact. 13: 6-13.
Wang, J.G., and Hsieh, H.L. (2012). Induction of tomato Jasmonate-resistant 1-Like 1 gene expression can delay the colonization of Ralstonia solanacearum in transgenic tomato. Bot. Stud. 53: 75-84.
Wang, S., Kurepa, J., Hashimoto, T., and Smalle, J.A. (2011b). Salt stress-induced disassembly of Arabidopsis cortical microtubule arrays involves 26S proteasome-dependent degradation of SPIRAL1. Plant Cell 23: 3412-3427.
Wang, X.J., Taplick, J., Geva, N., and Oren, M. (2004). Inhibition of p53 degradation by Mdm2 acetylation. FEBS Lett. 561: 195-201.
Wang, Y., Zhang, W.Z., Song, L.F., Zou, J.J., Su, Z., and Wu, W.H. (2008). Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis. Plant Physiol. 148: 1201-1211.
Wasteneys, G.O., and Yang, Y.B. (2004). New views on the plant cytoskeleton. Plant Physiol. 136: 3884-3891.

Wei, C.F., Kvitko, B.H., Shimizu, R., Crabill, E., Alfano, J.R., Lin, N.C., Martin, G.B., Huang, H.C., and Collmer, A. (2007). A Pseudomonas syringae pv. tomato DC3000 mutant lacking the type III effector HopQ1-1 is able to cause disease in the model plant Nicotiana benthamiana. Plant J. 51: 32-46.
Xie, Y.M., and Varshavsky, A. (1999). The E2-E3 interaction in the N-end rule pathway: the RING-H2 finger of E3 is required for the synthesis of multiubiquitin chain. EMBO J. 18: 6832-6844.
Yamamoto, A., Friedlein, A., Imai, Y., Takahashi, R., Kahle, P.J., and Haass, C. (2005). Parkin phosphorylation and modulation of its E3 ubiquitin ligase activity. J. Biol. Chem. 280: 3390-3399.
Yang, F., Jiang, Q., Zhao, J.H., Ren, Y., Sutton, M.D., and Feng, J. (2005). Parkin stabilizes microtubules through strong binding mediated by three independent domains. J. Biol. Chem. 280: 17154-17162.
Yoo, S.D., Cho, Y.H., and Sheen, J. (2007). Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat. Protoc. 2: 1565-1572.
Zhang, D., Wengier, D., Shuai, B., Gui, C.P., Muschietti, J., McCormick, S., and Tang, W.H. (2008). The pollen receptor kinase LePRK2 mediates growth-promoting signals and positively regulates pollen germination and tube growth. Plant Physiol.148:1368-1379.
Zheng, X.Y., Spivey, N.W., Zeng, W., Liu, P.P., Fu, Z.Q., Klessig, D.F., He, S.Y., and Dong, X. (2012). Coronatine promotes Pseudomonas syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid accumulation. Cell Host Microbe. 11: 587-596.
Zhou, J.X., Zhang, H.B., Yang, Y.H., Zhang, Z.J., Zhang, H.W., Hu, X.W., Chen, J., Wang, X.C., and Huang, R.F. (2008). Abscisic acid regulates TSRF1-mediated resistance to Ralstonia solanacearum by modifying the expression of GCC box-containing genes in tobacco. J. Exp. Bot. 59: 645-652.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15838-
dc.description.abstract我們先前發現一功能未知之番茄C3H2C3 type RING E3 ubiquitin ligase,將之命名為SlREL1 (Solanum lycopersicum RING E3 Ligase 1)。SlREL1可能參與番茄抗青枯病品系H7996之防禦反應,其表現在花與熟果較高,且其蛋白產物可能坐落在細胞骨架上。本研究旨在進一步探討SlREL1與其同源基因之蛋白質特性及功能。序列比對結果發現番茄有另一REL基因(SlREL2);此兩蛋白質在其C端除了保守的RING domain外,也同時有一序列保守但功能未知的DAR1 domain (domain associated with RING 1)。SlREL1被預測具有一進核訊號與許多可能可被激酶進行磷酸化的區域。微管螢光標定物與微管聚合抑制劑試驗確認SlREL1坐落在微管網路上,且其胺基酸片段1-170為必要區段。In vitro self-ubiquitination assay證實SlREL1具有E3 ligase活性,且RING和DAR1 domains在其活性上具關鍵角色。SlREL1-RNAi轉殖番茄之青枯病抗性提高,且其花粉萌發情形較為遲緩,而過量表現SlREL1的轉基因菸草其青枯病病程發展則略為提早。根據短暫基因靜默與過量表現試驗結果初步推測SlREL1在乾旱、鹽害及氧化逆境反應也許不具關鍵功能。此外,阿拉伯芥有三個REL基因(AtREL1、AtREL2及AtREL3),且其蛋白質產物在C端亦具有保守的RING domain與DAR1 domain;阿拉伯芥微陣列資料顯示AtREL1/2之轉錄表現在花粉中最高且會受許多病害與非生物性逆境因子調控,而AtREL3表現則較不受這些因子影響。此外,AtREL1也在細胞中呈現絲狀分布,且亦具有E3 ligase活性。這些結果指出SlREL1為一坐落在微管上之E3 ligase,其RING與DAR1 domain皆參與其酵素活性之維持,且阿拉伯芥AtREL1亦具有與SlREL1類似的蛋白質特性。SlREL1可能參與花粉萌發與青枯病反應。zh_TW
dc.description.abstractPreviously, an uncharacterized tomato C3H2C3 type RING E3 ubiquitin ligase was identified and namely SlREL1 (Solanum lycopersicum RING E3 Ligase 1). SlREL1was suggested to be involved in tomato response to bacterial wilt (BW), abundantly expressed in tomato flowers and mature fruits, and its protein product co-localized with the cytoskeleton. This study aimed to further investigate the protein properties and the biological functions of SlREL1 and its homologs in tomato and Arabidopsis. A paralog of SlREL1 was identified in tomato and named SlREL2; In addition to the RING domain, these RELs contain a conserved DAR1 (domain associated with RING1) domain without known functions. Bioinformatic analysis suggested that SlREL1 may contain a nucleus localization signal and several phosphorylation sites. SlREL1 was found to be localized on the microtubule via an unknown domain located at the region of amino acid 1~170. In vitro self-ubiquitination assay verified that SlREL1 conferred E3 ligase activity, and its RING and DAR1 domains were important for the activity. SlREL1-RNAi transgenic tomato plants conferred enhanced resistance to BW and its pollen germination was delayed, while transgenic Nicotiana benthamiana plants over-expressing SlREL1 displayed slightly increased susceptibility to BW. Furthermore, transient gene silencing and overexpression assays suggested that SlREL1 might not play an important role in tomato response to drought, salinity and oxidative stress. three Arabidopsis RELs were identified and named AtREL1, AtREL2 and AtREL3. Available Arabidopsis microarray data revealed that AtREL1/2 abundantly expressed in pollen grains and could be induced by various biotic and abiotic stresses, while AtREL3 did not exhibit similar tissue-specific and stress-inducible expression patterns. In addition, AtREL1 shared similar sub-cellular localization pattern and enzyme properties with SlREL1. Together, these results point out that SlREL1, as a novel microtubule-localized E3 ligase, is involved in pollen development and BW response.en
dc.description.provenanceMade available in DSpace on 2021-06-07T17:53:18Z (GMT). No. of bitstreams: 1
ntu-101-R99b42017-1.pdf: 5123456 bytes, checksum: d6ab7285fe6e62049f331f453d4d9463 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents目錄
口試委員審定書 ii
謝誌 iii
中文摘要 vi
英文摘要 vii
縮寫與全名對照表 viii
目錄 x
表目錄 xiii
圖目錄 xiv
附錄目錄 xv
第一章前言 1
1. 植物泛素化系統與其功能 1
2. 細胞骨架 3
3. 植物病害反應與防禦機制 4
4. 植物病害與非生物逆境之交互作用 5
5. 青枯病 (Bacterial wilt, BW) 7
6. 植物花粉發育 9
7. 病毒誘導性基因靜默VIGS (Virus-induced gene silencing)與過量表現VMGO (Virus-mediated gene over-expression ) 10
8. 研究動機 11
第二章材料與方法 12
1. 植物材料簡介 12
2. 實驗用菌體與培養條件 12
3. 常用實驗方法 13
4. 植物 DNA 萃取 15
5. 植物 RNA 萃取 16
6. 反轉錄聚合酶連鎖反應 (Reverse transcription PCR, RT-PCR) 17
7. 半定量RT-PCR (Semi-quantitative RT-PCR, sqRT-PCR) 17
8. 蛋白質表現與純化 17
9. In vitro self-ubiquitination assay 19
10. 螢光重組蛋白質之定位分析(sub-cellular localization) 19
11. 番茄短暫性病毒誘導性基因靜默或過量表現 20
12. 番茄澆灌青枯病菌 21
13. 番茄乾旱逆境測試 22
14. 番茄鹽水澆灌測試 22
15. 番茄氧化逆境測試 22
16. 番茄與菸草基因轉殖 23
17. 番茄轉殖株澆灌青枯病菌菌系 Pss4 接種測試 25
18. 番茄轉殖株花粉萌發測試 25
19. 菸草轉殖株澆灌青枯病菌菌系 Pss4 接種測試 26
第三章結果 27
1. 番茄SlREL1基因之結構組成與其序列比對及分析 27
1.1 SlREL1之同源基因搜尋 27
1.2 SlREL1蛋白質序列分析 28
1.3 番茄及阿拉伯芥微陣列資料庫(microarray database)資料分析 28
2. SlREL1蛋白質在細胞中之坐落位置 29
3. SlREL1之E3 ligase活性測試 29
3.1製備SlREL1重組蛋白 30
3.2 E3 ligase活性測試 30
4. AtREL1之蛋白質特性分析 30
5. 以短暫基因靜默或過量表現策略分析SlREL1功能 31
5.1 青枯病測試 31
5.2 缺水逆境測試 31
5.3 氧化逆境測試 32
6. SlREL1靜默轉殖番茄之性狀分析 32
6.1青枯病測試 32
6.2花粉發育 33
7. 過量表現SlREL1轉殖菸草(N. benthamiana)之青枯病測試 33
第四章討論 34
1. DAR1 domain可能協助維持SlREL1之E3 ligase活性 34
2. SlREL1為一坐落在微管上之E3 ligase 35
3. SlREL1參與植物抗青枯病反應 37
4. SlREL1可能不參與植物乾旱、鹽害及氧化逆境反應 38
5. SlREL1參與花粉萌發 39
6. SlREL1可能參與之細胞反應機制 40
7. AtREL1具有與SlREL1相類似的蛋白質特性 41
dc.language.isozh-TW
dc.title番茄microtubule-associated RING E3 ligase 1之功能分析zh_TW
dc.titleFunctional characterization of tomato microtubule-associated RING E3 ligase 1en
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee符宏勇(Hong-yong FU),劉瑞芬(Ruey-Fen Liou),林讚標(Tsan-Piao Lin),張英?(Ing-Feng Chang)
dc.subject.keyword泛素化系統,E3 ligase,微管,青枯病,花粉,zh_TW
dc.subject.keywordubiquitination,E3 ligase,microtubule,bacterial wilt,pollen,en
dc.relation.page102
dc.rights.note未授權
dc.date.accepted2012-08-19
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
顯示於系所單位:植物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
5 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved