Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15811Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 周子賓(Tze-Bin Chou) | |
| dc.contributor.author | Chu-Ya Cheng | en |
| dc.contributor.author | 鄭竹雅 | zh_TW |
| dc.date.accessioned | 2021-06-07T17:52:40Z | - |
| dc.date.copyright | 2012-08-28 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-20 | |
| dc.identifier.citation | Aizer, A. and Shav-Tal, Y. (2008). Intracellular trafficking and dynamics of P bodies. Prion 2, 131-4.
Babu, K., Cai, Y., Bahri, S., Yang, X. and Chia, W. (2004). Roles of Bifocal, Homer, and F-actin in anchoring Oskar to the posterior cortex of Drosophila oocytes. Genes Dev 18, 138-43. Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-97. Benton, R. and St Johnston, D. (2002). Cell polarity: posterior Par-1 prevents proteolysis. Curr Biol 12, R479-81. Brendza, R. P., Serbus, L. R., Duffy, J. B. and Saxton, W. M. (2000). A function for kinesin I in the posterior transport of oskar mRNA and Staufen protein. Science 289, 2120-2. Cao, Q. and Richter, J. D. (2002). Dissolution of the maskin-eIF4E complex by cytoplasmic polyadenylation and poly(A)-binding protein controls cyclin B1 mRNA translation and oocyte maturation. EMBO J 21, 3852-62. Cha, B. J., Serbus, L. R., Koppetsch, B. S. and Theurkauf, W. E. (2002). Kinesin I-dependent cortical exclusion restricts pole plasm to the oocyte posterior. Nat Cell Biol 4, 592-8. Chou, T. B. and Perrimon, N. (1992). Use of a yeast site-specific recombinase to produce female germline chimeras in Drosophila. Genetics 131, 643-53. Clark, A., Meignin, C. and Davis, I. (2007). A Dynein-dependent shortcut rapidly delivers axis determination transcripts into the Drosophila oocyte. Development 134, 1955-65. Coller, J. and Parker, R. (2004). Eukaryotic mRNA decapping. Annu Rev Biochem 73, 861-90. Cook, H. A., Koppetsch, B. S., Wu, J. and Theurkauf, W. E. (2004). The Drosophila SDE3 homolog armitage is required for oskar mRNA silencing and embryonic axis specification. Cell 116, 817-29. Dalmay, T., Horsefield, R., Braunstein, T. H. and Baulcombe, D. C. (2001). SDE3 encodes an RNA helicase required for post-transcriptional gene silencing in Arabidopsis. EMBO J 20, 2069-78. Ephrussi, A., Dickinson, L. K. and Lehmann, R. (1991). Oskar organizes the germ plasm and directs localization of the posterior determinant nanos. Cell 66, 37-50. Fenger-Gron, M., Fillman, C., Norrild, B. and Lykke-Andersen, J. (2005). Multiple processing body factors and the ARE binding protein TTP activate mRNA decapping. Mol Cell 20, 905-15. Fillman, C. and Lykke-Andersen, J. (2005). RNA decapping inside and outside of processing bodies. Curr Opin Cell Biol 17, 326-31. Findley, S. D., Tamanaha, M., Clegg, N. J. and Ruohola-Baker, H. (2003). Maelstrom, a Drosophila spindle-class gene, encodes a protein that colocalizes with Vasa and RDE1/AGO1 homolog, Aubergine, in nuage. Development 130, 859-71. Glotzer, J. B., Saffrich, R., Glotzer, M. and Ephrussi, A. (1997). Cytoplasmic flows localize injected oskar RNA in Drosophila oocytes. Curr Biol 7, 326-37. Golic, K. G. (1991). Site-specific recombination between homologous chromosomes in Drosophila. Science 252, 958-61. Gonzalez-Reyes, A., Elliott, H. and St Johnston, D. (1995). Polarization of both major body axes in Drosophila by gurken-torpedo signalling. Nature 375, 654-8. Gonzalez-Reyes, A. and St Johnston, D. (1994). Role of oocyte position in establishment of anterior-posterior polarity in Drosophila. Science 266, 639-42. Grunert, S. and St Johnston, D. (1996). RNA localization and the development of asymmetry during Drosophila oogenesis. Curr Opin Genet Dev 6, 395-402. Hachet, O. and Ephrussi, A. (2004). Splicing of oskar RNA in the nucleus is coupled to its cytoplasmic localization. Nature 428, 959-63. He, F. and Jacobson, A. (1995). Identification of a novel component of the nonsense-mediated mRNA decay pathway by use of an interacting protein screen. Genes Dev 9, 437-54. Idriss, H. T. (2000). Man to trypanosome: the tubulin tyrosination/detyrosination cycle revisited. Cell Motil Cytoskeleton 45, 173-84. Jankovics, F., Sinka, R., Lukacsovich, T. and Erdelyi, M. (2002). MOESIN crosslinks actin and cell membrane in Drosophila oocytes and is required for OSKAR anchoring. Curr Biol 12, 2060-5. Jinek, M., Eulalio, A., Lingel, A., Helms, S., Conti, E. and Izaurralde, E. (2008). The C-terminal region of Ge-1 presents conserved structural features required for P-body localization. RNA 14, 1991-8. Kugler, J. M. and Lasko, P. (2009). Localization, anchoring and translational control of oskar, gurken, bicoid and nanos mRNA during Drosophila oogenesis. Fly (Austin) 3, 15-28. Lin, H. and Spradling, A. C. (1993). Germline stem cell division and egg chamber development in transplanted Drosophila germaria. Dev Biol 159, 140-52. Lin, H. and Spradling, A. C. (1995). Fusome asymmetry and oocyte determination in Drosophila. Dev Genet 16, 6-12. Loschi, M., Leishman, C. C., Berardone, N. and Boccaccio, G. L. (2009). Dynein and kinesin regulate stress-granule and P-body dynamics. J Cell Sci 122, 3973-82. Luduena, R. F. (1998). Multiple forms of tubulin: different gene products and covalent modifications. Int Rev Cytol 178, 207-75. Markussen, F. H., Michon, A. M., Breitwieser, W. and Ephrussi, A. (1995). Translational control of oskar generates short OSK, the isoform that induces pole plasma assembly. Development 121, 3723-32. Mische, S., Li, M., Serr, M. and Hays, T. S. (2007). Direct observation of regulated ribonucleoprotein transport across the nurse cell/oocyte boundary. Mol Biol Cell 18, 2254-63. Morisato, D. and Anderson, K. V. (1995). Signaling pathways that establish the dorsal-ventral pattern of the Drosophila embryo. Annu Rev Genet 29, 371-99. Nakamura, A., Amikura, R., Hanyu, K. and Kobayashi, S. (2001). Me31B silences translation of oocyte-localizing RNAs through the formation of cytoplasmic RNP complex during Drosophila oogenesis. Development 128, 3233-42. Nakamura, A., Sato, K. and Hanyu-Nakamura, K. (2004). Drosophila cup is an eIF4E binding protein that associates with Bruno and regulates oskar mRNA translation in oogenesis. Dev Cell 6, 69-78. Neuman-Silberberg, F. S. and Schupbach, T. (1996). The Drosophila TGF-alpha-like protein Gurken: expression and cellular localization during Drosophila oogenesis. Mech Dev 59, 105-13. Palacios, I. M., Gatfield, D., St Johnston, D. and Izaurralde, E. (2004). An eIF4AIII-containing complex required for mRNA localization and nonsense-mediated mRNA decay. Nature 427, 753-7. Palacios, I. M. and St Johnston, D. (2002). Kinesin light chain-independent function of the Kinesin heavy chain in cytoplasmic streaming and posterior localisation in the Drosophila oocyte. Development 129, 5473-85. Parker, R. and Sheth, U. (2007). P bodies and the control of mRNA translation and degradation. Mol Cell 25, 635-46. Perrimon, N. (1998). Creating mosaics in Drosophila. Int J Dev Biol 42, 243-7. Piccirillo, C., Khanna, R. and Kiledjian, M. (2003). Functional characterization of the mammalian mRNA decapping enzyme hDcp2. RNA 9, 1138-47. Robinson, D. N. and Cooley, L. (1997). Genetic analysis of the actin cytoskeleton in the Drosophila ovary. Annu Rev Cell Dev Biol 13, 147-70. Roth, S., Neuman-Silberberg, F. S., Barcelo, G. and Schupbach, T. (1995). cornichon and the EGF receptor signaling process are necessary for both anterior-posterior and dorsal-ventral pattern formation in Drosophila. Cell 81, 967-78. Spiegelman, B. M., Penningroth, S. M. and Kirschner, M. W. (1977). Turnover of tubulin and the N site GTP in Chinese hamster ovary cells. Cell 12, 587-600. St Johnston, D. (2005). Moving messages: the intracellular localization of mRNAs. Nat Rev Mol Cell Biol 6, 363-75. Steinhauer, J. and Kalderon, D. (2005). The RNA-binding protein Squid is required for the establishment of anteroposterior polarity in the Drosophila oocyte. Development 132, 5515-25. Sweet, T. J., Boyer, B., Hu, W., Baker, K. E. and Coller, J. (2007). Microtubule disruption stimulates P-body formation. RNA 13, 493-502. Tanaka, T., Kato, Y., Matsuda, K., Hanyu-Nakamura, K. and Nakamura, A. (2011). Drosophila Mon2 couples Oskar-induced endocytosis with actin remodeling for cortical anchorage of the germ plasm. Development 138, 2523-32. Tanaka, T. and Nakamura, A. (2008). The endocytic pathway acts downstream of Oskar in Drosophila germ plasm assembly. Development 135, 1107-17. Tanaka, T. and Nakamura, A. (2011). Oskar-induced endocytic activation and actin remodeling for anchorage of the Drosophila germ plasm. Bioarchitecture 1, 122-126. Teixeira, D., Sheth, U., Valencia-Sanchez, M. A., Brengues, M. and Parker, R. (2005). Processing bodies require RNA for assembly and contain nontranslating mRNAs. RNA 11, 371-82. Theurkauf, W. E., Smiley, S., Wong, M. L. and Alberts, B. M. (1992). Reorganization of the cytoskeleton during Drosophila oogenesis: implications for axis specification and intercellular transport. Development 115, 923-36. Vanzo, N., Oprins, A., Xanthakis, D., Ephrussi, A. and Rabouille, C. (2007). Stimulation of endocytosis and actin dynamics by Oskar polarizes the Drosophila oocyte. Dev Cell 12, 543-55. Wang, Z., Jiao, X., Carr-Schmid, A. and Kiledjian, M. (2002). The hDcp2 protein is a mammalian mRNA decapping enzyme. Proc Natl Acad Sci U S A 99, 12663-8. Wilhelm, J. E., Mansfield, J., Hom-Booher, N., Wang, S., Turck, C. W., Hazelrigg, T. and Vale, R. D. (2000). Isolation of a ribonucleoprotein complex involved in mRNA localization in Drosophila oocytes. J Cell Biol 148, 427-40. Wilhelm, J. E. and Smibert, C. A. (2005). Mechanisms of translational regulation in Drosophila. Biol Cell 97, 235-52. Xu, J., Yang, J. Y., Niu, Q. W. and Chua, N. H. (2006). Arabidopsis DCP2, DCP1, and VARICOSE form a decapping complex required for postembryonic development. Plant Cell 18, 3386-98. Yano, T., Lopez de Quinto, S., Matsui, Y., Shevchenko, A. and Ephrussi, A. (2004). Hrp48, a Drosophila hnRNPA/B homolog, binds and regulates translation of oskar mRNA. Dev Cell 6, 637-48. Yu, J. H., Yang, W. H., Gulick, T., Bloch, K. D. and Bloch, D. B. (2005). Ge-1 is a central component of the mammalian cytoplasmic mRNA processing body. RNA 11, 1795-802. Zimyanin, V., Lowe, N. and St Johnston, D. (2007). An oskar-dependent positive feedback loop maintains the polarity of the Drosophila oocyte. Curr Biol 17, 353-9. Zimyanin, V. L., Belaya, K., Pecreaux, J., Gilchrist, M. J., Clark, A., Davis, I. and St Johnston, D. (2008). In vivo imaging of oskar mRNA transport reveals the mechanism of posterior localization. Cell 134, 843-53. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15811 | - |
| dc.description.abstract | 果蠅體軸的發育在胚胎發育時期的時候開始建立,一些特定的母源核醣核酸(maternal mRNA)在護理細胞(nurse cell)中做好後會送到卵母細胞(oocyte)內,並且會因微管(microtubule)極性的分布而座落在不同的特定區域。Osk mRNA在護理細胞中做出來後,在微管的動力蛋白(motor protein),Kinesin,的幫助下,藉由微管的運輸送到卵母細胞的後端。是決定腹部體軸發育及形成pole plasm的重要蛋白質。
果蠅去頭蓋蛋白質2(dDcp2)及dGe-1都為組成降解體(P body)的成員之一,之前的研究都著重在他們降解核醣核酸的功能上,並指出這三種蛋白質彼此之間都有交互作用。我們在免疫螢光染色圖中也看見dGe-1及果蠅去頭蓋蛋白質2兩者在卵中的分布位置相近,且有部分重疊在一起。在免疫共沉澱法中也證實這兩者間確實如其他物種一般是有交互作用的。在實驗室之前的研究中顯示果蠅去頭蓋蛋白質2及dGe-1兩種蛋白質在果蠅的oogenesis當中,會對細胞骨架(cytoskeleton)造成一定程度的影響,並連帶影響到osk mRNP複合體的座落,但對於影響的機制目前並不清楚。我們進一步在果蠅中過度表現果蠅去頭蓋蛋白質2或dGe-1,發現在部分的卵中,於後端定位的Osk 蛋白質的量比對照組相對上升,代表果蠅去頭蓋蛋白質2及dGe-1兩者可能都有參與在osk mRNP複合體的座落上。 osk mRNP複合體被運送到卵母細胞後端需要微管及Kinesin的幫忙,而蛋白質被轉譯出來後要定位在後端則需要微絲(actin)及一些微絲相關的蛋白質幫助。為了更了解這兩個蛋白質是如何影響到osk的座落,我們想了解dGe-1及dDcp2可能藉由哪些蛋白質的幫忙共同參與在osk mRNA的運輸上。Kinesin heavy chain (KHC)和Staufen(Stau)為osk mRNP複合體的成員之一,而Dmoe則是和微絲相關的蛋白質。利用免疫共沉澱法觀察dDcp2、dGe-1和KHC、Stau及Dmoe之間的關係。結果顯示,dDcp2和Dmoe及KHC之間是有交互作用的。 因此我們推論果蠅去頭蓋蛋白質2及dGe-1在卵母細胞皮層(oocyte cortex)當中互相會有交互作用,透過影響到不同的蛋白質同時去影響osk mRNP複合體的運輸及Osk蛋白質的定位。另外,我們認為果蠅去頭蓋蛋白質2及dGe-1影響微管組成的這個功能在演化上是具有保留性的。 | zh_TW |
| dc.description.abstract | The Drosophila axes are set up during oogenesis. Most maternal mRNA are made in the nurse cells, and then transported to the oocyte. Specific mRNAs are transported to specific areas by plus or minus end directed microtubule motors. Osk protein is important in determining the posterior pattern, and forming the pole plasm. The osk mRNA is transported with the osk mRNP complex to the posterior pole, and is done by kinesin, a plus end directed microtubule motor.
dDcp2 and dGe-1 are both components of the processing body. Their interaction, and function on the degradation mRNAs have been well characterized in Arabidopsis. In our study, the distribution pattern of dDcp2 and dGe-1 in Drosophila oocyte are similar, and they partially colocalize. Through co-immunoprecipitation, we showed that the interaction between dDcp2 and dGe-1 in Drosophila is like in other species. Previous findings in our lab showed that both dDcp2 and dGe-1 are important for microtubule organization in mid-oogenesis, and thus play an important role in transporting osk mRNP complex to the posterior pole of the oocyte. At the present, the role of dDcp2 and dGe-1 on the transportation of osk mRNP complex is poorly understood. We overexpressed dDcp2 or dGe-1 in Drosophila germ line cell, and found that Osk proteins increase in some oocytes’ posterior pole. This suggests both dDcp2 and dGe-1 are involved in osk mRNP complex localization. Transportation of the osk mRNP complex is microtubule and Kinesin dependent, while anchorage is dependent on some actin associate proteins. To understand how these proteins affect the localization of osk mRNA, we examined the interaction among dDcp2, dGe-1, KHC, Stau and Dmoe by co-immunoprecipitation. The results show that KHC and Dmoe interact with dDcp2. Our results suggest that dDcp2 and dGe-1 cooperate to affect osk mRNP complex localization through other intermediate proteins related to osk mRNA transport. Besides, the function of dDcp2 on affecting microtubule organization may be evolutionarily conserved. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T17:52:40Z (GMT). No. of bitstreams: 1 ntu-101-R99b43019-1.pdf: 4454229 bytes, checksum: 14f688294ee52d3dc85373f7aa8821ad (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 致謝 I
中文摘要 II Abstract IV Abbreviation XIV Introduction 1 1. The axial development in Drosophila oogenesis 1 1.1 Drosophila oogenesis 1 1.2 Axis determination 2 2. Processing body 5 2.1 mRNA degradation pathway 5 2.2 Previous studies on Processing body 6 2.3 The relationship between P body and cytoskeleton 7 2.5 Ge-1 plays a critical role in P body formation 9 3. Microtubule 10 3.1 Overview of microtubule 10 3.2 The dynamic stability of microtubule 11 3.3 The polarity of microtubule and the microtubule motor protein 12 3.4 The pattern of microtubules in Drosophila oogenesis 13 4. The process of osk mRNA transportation and protein anchorage 14 4.1 osk mRNP 14 4.2 The function of the Osk protein during Drosophila oogenesis 16 4.3 Regulation of Osk translation 17 4.4 osk mRNA transportation 20 4.5 The anchorage machanism of the Osk protein 22 5. Previous studies on dDcp2 and dGe-1 24 6. The aims of this thesis 27 Materials and methods 28 Result 38 1. Summary 38 2. dDcp2 and dGe-1 form a complex 41 2.1 Transgenic flies used in this research 42 2.2 The distribution pattern of dDcp2 and dGe-1 is similar in Drosophila oocyte 43 2.3 Co-immunoprecipitation experiment indicates the interaction between dDcp2 and dGe-1 45 2.4 dGe-1 signal in oocyte disappears under dDcp2de21 GLC background 46 3. dDcp2 and dGe-1 regulate the localization of osk mRNP complex 47 3.1 The level of Osk protein is increased when dDcp2 is overexpressed 47 3.2 The level of Osk protein is increased when dGe-1 is overexpressed 49 3.3 The level of Osk protein is decreased when dGe-1 and dDcp2 are double overexpression 51 4. The interaction among dDcp2, dGe-1, osk mRNP complex components and Dmoe 53 4.1 dDcp2A can interact with KHC in Drosophila ovary 54 4.2 dGe-1 cannot interact with KHC 55 4.3 dDcp2A cannot interact with Stau in S2 cell 56 4.4 dDcp2A can interact with Dmoe in S2 cell 57 5. hDcp2 has similar function as dDcp2 on microtubule regulation during Drosophila oogenesis 58 5.1 Transgenic flies used to study the function of hDcp2 in Drosophila oogenesis 58 5.2 hDcp2 can rescue the microtubule pattern in the oocyte of dDcp2de21 GLC 59 5.3 The scattered Osk protein in dDcp2de21 GLC oocyte can be complemented by over-expressing hDcp2 in Drosophila oocyte 60 Discussion 62 1. dDcp2 and dGe-1 form a complex in Drosophila ovaries 62 2. The level of Osk protein accumulate at the posterior is influenced by dGe-1 and dDcp2 64 3. The mechanism of dDcp2 involving in osk localization 66 4. hDcp2 affect the microtubule organization in Drosophila oogenesis 68 Figure 70 Reference 108 Supplementary data 117 | |
| dc.language.iso | en | |
| dc.subject | 卵母細胞發育 | zh_TW |
| dc.subject | 降解體 | zh_TW |
| dc.subject | dDcp2 | en |
| dc.subject | dGe-1 | en |
| dc.subject | oskar | en |
| dc.title | 降解體成員協同定位oskar 核醣蛋白複合體於卵母細胞後端 | zh_TW |
| dc.title | Processing body components cooperate to assist the posterior localization of oskar mRNP complex in the oocyte | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃偉邦(Wei-Pang Huang),董桂書(Kuei-Shu Tung),溫進德(Jin-Der Wen) | |
| dc.subject.keyword | 降解體,卵母細胞發育, | zh_TW |
| dc.subject.keyword | oskar,dDcp2,dGe-1, | en |
| dc.relation.page | 120 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2012-08-20 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| Appears in Collections: | 分子與細胞生物學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-101-1.pdf Restricted Access | 4.35 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
