請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15799完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳永芳 (Yang-Fang Chen) | |
| dc.contributor.author | Min-Ju Kuo | en |
| dc.contributor.author | 郭旻儒 | zh_TW |
| dc.date.accessioned | 2021-06-07T17:52:23Z | - |
| dc.date.copyright | 2020-08-25 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-03 | |
| dc.identifier.citation | Hampton, T., Report reveals scope of US antibiotic resistance threat. Jama, 2013. 310(16): p. 1661-1663. Zhong, Y., et al., Disinfection byproducts and their toxicity in wastewater effluents treated by the mixing oxidant of ClO2/Cl2. Water Research, 2019. 162: p. 471-481. Viana, D., J. Pires, and R. Braga, Biospeckle laser technique applied for estimating disinfection accomplishment of wastewaters subjected to chlorination. Process Safety and Environmental Protection, 2017. 109: p. 670-676. Martínez‐Huitle, C.A. and E. Brillas, Electrochemical alternatives for drinking water disinfection. Angewandte Chemie International Edition, 2008. 47(11): p. 1998-2005. Feng, H., et al., Occurrence of disinfection by-products in sewage treatment plants and the marine environment in Hong Kong. Ecotoxicology and Environmental Safety, 2019. 181: p. 404-411. Liu, C., et al., Formation of iodinated trihalomethanes and noniodinated disinfection byproducts during chloramination of algal organic matter extracted from Microcystis aeruginosa. Water research, 2019. 162: p. 115-126. You, J., et al., A review of visible light-active photocatalysts for water disinfection: Features and prospects. Chemical Engineering Journal, 2019. 373: p. 624-641. Li, Y., et al., Visible-light-driven photocatalytic disinfection mechanism of Pb-BiFeO3/rGO photocatalyst. Water research, 2019. 161: p. 251-261. Wu, B., et al., The enhanced photocatalytic properties of MnO2/g-C3N4 heterostructure for rapid sterilization under visible light. Journal of hazardous materials, 2019. 377: p. 227-236. Valdez-Castillo, M., J.O. Saucedo-Lucero, and S. Arriaga, Photocatalytic inactivation of airborne microorganisms in continuous flow using perlite-supported ZnO and TiO2. Chemical Engineering Journal, 2019. 374: p. 914-923. Nawaz, M.S. and M. Ahsan, Comparison of physico-chemical, advanced oxidation and biological techniques for the textile wastewater treatment. Alexandria Engineering Journal, 2014. 53(3): p. 717-722. Zhang, X., et al., Light-assisted rapid sterilization by a hydrogel incorporated with Ag3PO4/MoS2 composites for efficient wound disinfection. Chemical Engineering Journal, 2019. 374: p. 596-604. Pellicer, J.A., et al., Structural changes associated with the inactivation of lipoxygenase by pulsed light. LWT, 2019. 113: p. 108332. Bhavya, M. and H.U. Hebbar, Sono-photodynamic inactivation of Escherichia coli and Staphylococcus aureus in orange juice. Ultrasonics sonochemistry, 2019. 57: p. 108-115. Tsen, S.-W.D., et al., Selective photonic disinfection of cell culture using a visible ultrashort pulsed laser. IEEE Journal of Selected Topics in Quantum Electronics, 2015. 22(3): p. 371-378. Senna, P.M., et al., Microwave disinfection: cumulative effect of different power levels on physical properties of denture base resins. Journal of Prosthodontics: Implant, Esthetic and Reconstructive Dentistry, 2011. 20(8): p. 606-612. Li, Z., et al., Inactivation of Salmonella Enteritidis on eggshells by lactic acid spray. Food Control, 2019. 104: p. 201-207. Thomas-Popo, E., et al., Inactivation of Shiga-toxin-producing Escherichia coli, Salmonella enterica and natural microflora on tempered wheat grains by atmospheric cold plasma. Food Control, 2019. 104: p. 231-239. Ozturk, B. and I.Y. Sengun, Inactivation effect of marination liquids prepared with koruk juice and dried koruk pomace on Salmonella Typhimurium, Escherichia coli O157: H7 and Listeria monocytogenes inoculated on meat. International journal of food microbiology, 2019. 304: p. 32-38. Duan, C., et al., Carbohydrates-rich corncobs supported metal-organic frameworks as versatile biosorbents for dye removal and microbial inactivation. Carbohydrate polymers, 2019. 222: p. 115042. Tsen, S.-W.D., et al., Prospects for a novel ultrashort pulsed laser technology for pathogen inactivation. Journal of biomedical science, 2012. 19(1): p. 62. Mane, M.B., et al., A novel hybrid cavitation process for enhancing and altering rate of disinfection by use of natural oils derived from plants. Ultrasonics Sonochemistry, 2020. 61: p. 104820. Abeledo-Lameiro, M.J., et al., Inactivation of the waterborne pathogen Cryptosporidium parvum by photo-Fenton process under natural solar conditions. Applied Catalysis B: Environmental, 2019. 253: p. 341-347. Kunz, J.N., et al., Aluminum plasmonic nanoshielding in ultraviolet inactivation of bacteria. Scientific Reports, 2017. 7(1): p. 1-10. Bell, L., J. DiGangi, and J. Weinberg, An NGO introduction to mercury pollution and the Minamata convention on mercury. IPEN, Chicago, 2014. 11. Nyangaresi, P.O., et al., Comparison of UV-LED photolytic and UV-LED/TiO2 photocatalytic disinfection for Escherichia coli in water. Catalysis Today, 2019. 335: p. 200-207. Watson, I., Lasers: inactivation techniques. 2014. K. Warriner, J. Kolstad, P. Rumsby, and W. Waites, 'Carton sterilization by uv‐C excimer laser light: recovery of Bacillus subtilis spores on vegetable extracts and food simulation matrices,' Journal of applied microbiology, vol. 92, no. 6, pp. 1051-1057, 2002. M. G. Lindström, E. Wolf, and H. Fransson, 'The antibacterial effect of Nd: YAG laser treatment of teeth with apical periodontitis: a randomized controlled trial,' Journal of Endodontics, vol. 43, no. 6, pp. 857-863, 2017. K. N. Prodouz, J. C. Fratantoni, E. J. Boone, and R. F. Bonner, 'Use of laser-UV for inactivation of virus in blood products,' 1987. M. C. Lagunas-Solar, C. Pina, J. D. MacDONALD, and L. Bolkan, 'Development of pulsed UV light processes for surface fungal disinfection of fresh fruits,' Journal of Food Protection, vol. 69, no. 2, pp. 376-384, 2006. W. L. Smith, M. C. Lagunas-Solar, and J. S. Cullor, 'Use of pulsed ultraviolet laser light for the cold pasteurization of bovine milk,' Journal of food protection, vol. 65, no. 9, pp. 1480-1482, 2002. R. Gaughan, 'Disorderl Cr stals Produce Laser Light,' ed: LAURIN PUBL CO INC BERKSHIRE COMMON PO BOX 1146, PITTSFIELD, MA 01202 USA, 2001. Y. Tian, C. Chen, S. Li, and Q. Huo, 'Research progress on laser surface modification of titanium alloys,' Applied Surface Science, vol. 242, no. 1-2, pp. 177-184, 2005. J. Kleinschmidt, 'Reduction of laser speckle in photolithography by controlled disruption of spatial coherence of laser beam,' ed: Google Patents, 2005. S. Xiao, Q. Song, F. Wang, L. Liu, J. Liu, and L. Xu, 'Switchable random laser from dye-doped polymer dispersed liquid crystal waveguides,' IEEE journal of quantum electronics, vol. 43, no. 5, pp. 407-410, 2007. X. Wu and H. Cao, 'Statistical studies of random-lasing modes and amplified spontaneous-emission spikes in weakly scattering systems,' Physical Review A, vol. 77, no. 1, p. 013832, 2008. B. Redding, M. A. Choma, and H. Cao, 'Speckle-free laser imaging using random laser illumination,' Nature photonics, vol. 6, no. 6, pp. 355-359, 2012. X.-Y. Liu, C.-X. Shan, S.-P. Wang, Z.-Z. Zhang, and D.-Z. Shen, 'Electrically pumped random lasers fabricated from ZnO nanowire arrays,' Nanoscale, vol. 4, no. 9, pp. 2843-2846, 2012. M. Kataria et al., 'Self-Sufficient and Highly Efficient Gold Sandwich Upconversion Nanocomposite Lasers for Stretchable and Bio-applications,' ACS Applied Materials Interfaces, vol. 12, no. 17, pp. 19840-19854, 2020. R. Polson and Z. Vardeny, 'Cancerous tissue mapping from random lasing emission spectra,' Journal of Optics, vol. 12, no. 2, p. 024010, 2010. Buchanan, R. and S. Edelson, Effect of pH-dependent, stationary phase acid resistance on the thermal tolerance of Escherichia coli O157: H7. Food Microbiology, 1999. 16(5): p. 447-458. Sezonov, G., D. Joseleau-Petit, and R. d'Ari, Escherichia coli physiology in Luria-Bertani broth. Journal of bacteriology, 2007. 189(23): p. 8746-8749. Gross, R. and B. Rowe, Escherichia coli diarrhoea. Epidemiology Infection, 1985. 95(3): p. 531-550. Levine MM: Escherichia coli that cause diarrhea: enterotoxigenic, enteropathogenic, enteroinvasive, enterohemorragic, and enteroadherent. J Infect Dis 1987; 155: 377-389 Mirsepasi-Lauridsen, Hengameh Chloé, Bruce Andrew Vallance, Karen Angeliki Krogfelt, and Andreas Munk Petersen. 'Escherichia Coli Pathobionts Associated with Inflammatory Bowel Disease.' Clinical microbiology reviews 32, no. 2 (2019): e00060-18. Armstrong, Gregory L, Jill Hollingsworth, and J Glenn Morris Jr. 'Emerging Foodborne Pathogens: Escherichia Coli O157: H7 as a Model of Entry of a New Pathogen into the Food Supply of the Developed World.' (1996). Griffin, Patricia M, and Robert V Tauxe. 'The Epidemiology of Infections Caused by Escherichia Coli O157: H7, Other Enterohemorrhagic E. Coli, and the Associated Hemolytic Uremic Syndrome.' Epidemiologic reviews 13, no. 1 (1991): 60-98. Quimby, Richard S. Photonics and Lasers: An Introduction. John Wiley Sons, 2006. V.S. Letokhov, Sov. Phys. JETP 26 (1968) 835—840. D. Laser physics: The smallest random laser. Nature 406, 132–135 (2000). Luan, F., Gu, B., Gomes, A.S., Yong, K., Wen, S., Prasad, P.N. (2015). Lasing in nanocomposite random media. Nano Today, 10, 168-192. Wiersma, Diederik S, Paolo Bartolini, Ad Lagendijk, and Roberto Righini. 'Localization of Light in a Disordered Medium.' Nature 390, no. 6661 (1997): 671-73. Cao, Hui, Junying Y Xu, Yong Ling, Alexander L Burin, Eric W Seeling, Xiang Liu, and Robert PH Chang. 'Random Lasers with Coherent Feedback.' IEEE Journal of selected topics in quantum electronics 9, no. 1 (2003): 111-19. Mujumdar, Sushil. 'Quantification of Lineshape Fluctuations in Coherent Random Lasers.' SPIE Newsroom 3258 (2010). Xia, Jiangying, Kang Xie, Jiajun Ma, Xianxian Chen, Yaxin Li, Jianxiang Wen, Jingjing Chen, et al. 'The Transition from Incoherent to Coherent Random Laser in Defect Waveguide Based on Organic/Inorganic Hybrid Laser Dye.' Nanophotonics 7, no. 7 (2018): 1341-50. M. Pang, X. Bao, and L. Chen, 'Observation of narrow linewidth spikes in the coherent Brillouin random fiber laser,' Opt. Lett.38, 1866-1868 (2013). Liu, J., Garcia, P., Ek, S.et al.Random nanolasing in the Anderson localized regime. Nature Nanotech9,285–289 (2014). H. Cao, Y.G. Zhao, S.T. Ho, E.W. Seelig, Q.H. Wang, R.P.H.Chang, Phys. Rev. Lett. 82 (1999) 2278—2281. H. Cao, Y.G. Zhao, H.C. Ong, S.T. Ho, J.Y. Dai, J.Y. Wu, R.P.H.Chang, Appl. Phys. Lett. 73 (1998) 3656—3658. Iparraguirre, J. Azkargorta, J. Fernández, S. García-Revilla, M. Barredo-Zuriarrain, and R. Balda, 'Random laser model for Nd3+-doped powders and its application to stimulated emission cross-section calculations,' Opt. Express 26, 31018-31030 (2018). Y. Liao, W. Liao, S. Chang, C. Hou, C. Tai, M. Wu, Y. Hsu, R. Chou, T. Lin, and Y. Chen, 'A White Random Laser: A First Step Towards Angle-free Laser Illumination,' in Light, Energy and the Environment 2018 (E2, FTS, HISE, SOLAR, SSL), OSA Technical Digest (Optical Society of America, 2018), paper EW2A.2. Polson, Randal C, and Z Valy Vardeny. 'Random Lasing in Human Tissues.' Applied physics letters 85, no. 7 (2004): 1289-91. Redding, Brandon, Michael A Choma, and Hui Cao. 'Speckle-Free Laser Imaging Using Random Laser Illumination.' Nature photonics 6, no. 6 (2012): 355-59. Gottardo, Stefano, Stefano Cavalieri, Oleg Yaroshchuk, and Diederik S Wiersma. 'Quasi-Two-Dimensional Diffusive Random Laser Action.' Physical review letters 93, no. 26 (2004): 263901. E. Hutter, J. H. Fendler, Adv. Mater. 2004, 16, 1685. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15799 | - |
| dc.description.abstract | 近來,常規抗生素治療對許多抗藥性細菌的出現無效的現象越來越多,導致了新型有效殺菌技術的發展。具有高同調性,高方向性,單色和高強度等特點的紫外雷射是理想的殺菌光源。然而,雷射受到其固有的不利因素限制,例如高方向性,需要精細的製造以及雷射光斑。在這裡,深紫外光隨機雷射(DUV-RL)是通過將AlGaN多層量子阱(MQW)和 鋁納米粒子用作增益介質和等離子體散射中心來實現的。我們為首次隨機雷射殺菌提供了驗證,並且通過在微生物革蘭氏陰性細菌(大腸桿菌)上照射此光源來檢查深紫外光隨機雷射處理的結果。為了進一步利用DUV-RL處理的功能,本研究證明了該處理的一般性以及使用不同角度照射下的隨機雷射殺菌效率。最重要的是,期望在消毒場所應用隨機雷射系統能成功滿足當前雷射治療的空白,並為滅菌提供另一種選擇。
| zh_TW |
| dc.description.abstract | Recently, the ineffectiveness of conventional antibiotic treatments against the emergence of multidrug-resistant bacteria induces the development of novel effective disinfection technologies. Ultraviolet lasers, with several features, including high coherence, high directionality, monochromatic, and high intensity were the ideal candidate light source for disinfection; however, lasers are restricted by its inherent detriments such as high directionality, meticulous manufacturing, and the laser speckles. Here, the deep-ultraviolet random laser (DUV-RL) is realized by applying AlGaN Multiple Quantum wells (MQWs) and aluminum nanoparticles as the gain medium and plasmonic scattering centers. We provide proof of concept for the first random laser disinfection, and the results of this DUV-RL treatment are examined by implement this light source on model microbial strain-gram negative bacteria (Escherichia coli). To further exploit the functionality of the DUV-RL treatment, the generality of the treatment, and the disinfection efficiency of random laser treatment with different angle illumination are demonstrated in this study. Above all, it is expected that the success of applying random laser systems on disinfection arena can fulfill the empty piece of current laser treatment and offers another choice to inactivate the bacteria. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T17:52:23Z (GMT). No. of bitstreams: 1 U0001-0208202021433200.pdf: 2819914 bytes, checksum: 6b7671d45be2947d9d31ef94f3541fc1 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | CONTENTS 口試委員審定書 I 誌謝 II 中文摘要 III ABSTRACT IV CONTENTS V LIST OF FIGURES VII Chapter 1 Introduction 1 Reference 4 Chapter 2 Theoretical background 9 2.1 Escherichia coli 9 2.1.1 The Growth Curve of E. coli 9 2.1.2 Pathogenic characteristics of E.coli 11 2.2 Photoluminescence(PL) 13 2.3 Random laser mechanism 14 2.3.1 Non-coherent and coherent random laser 14 2.3.2 Spectral emission properties 17 2.4 Random Laser application 19 2.5 Surface Plasmon Resonance 20 Reference 22 Chapter 3 Experimental Details 25 3.1 Deep-ultraviolet Random Laser construction 25 3.2 Scanning Electron Microscopy (SEM) 27 3.3 Random Laser Measurement 30 3.4 The stages of E.coli cultivation 32 3.5 Deep-ultraviolet Random Laser Disinfection 33 Chapter 4 Results and Discussions 35 4.1 Deep-ultraviolet Random Laser Characteristics 35 4.2 Disinfection ratio of the DUV-RL treatment 38 4.3 Angle-Free Disinfection of DUV-RL 39 Chapter 5 Conclusion 41 LIST OF FIGURES Figure 2.1 Schematic diagram of the growth curve of Escherichia coli. 10 Figure 2.2 Schematic diagram of the electron transition that generates photon emission. 13 Figure 2.3 Working principle of lasing in traditional cavity and random media (a) conventional laser cavity; (b) random laser cavity illustrating the incoherent feedback (red arrows) and coherent feedback (green arrows); (c) illustration of spectral outputs of a conventional laser and a random laser; where the spikes free correspond to incoherent feedback, whereas the coherent feedback is recognized by its spiky signature. [11] 16 Figure 2.4 Intensity versus pumping energy. 17 Figure 2.5 Spectra of random laser detected in different angles. 18 Figure 2.6 Intensity and FWHM of random laser detected in different angles. 18 Figure 2.7 Schematic diagram of localized surface plasmon resonance of metal spheres. [25] 21 Figure 2.8 Field lines of wave-tinging vector near small sphere with/without localized plasmon resonance. [25] 21 Figure 3.1 Structure and preparation of deep-ultraviolet random laser. (a) Schematic of the deep-ultraviolet cavity-free laser. (b) Cross-sectional SEM image of deep-ultraviolet cavity-free laser. (c) SEM image of Al nanoparticles. 26 Figure 3.2 Schematic illustration of tube furnace to anneal. 26 Figure 3.3 Picture of tube furnace. 27 Figure 3.4 Schematic diagram of a scanning electron microscopy (SEM). 29 Figure 3.5 Picture of a scanning electron microscopy (SEM). 29 Figure 3.6 Schematic diagram of random laser instrument setup. 31 Figure 3.7 Picture of instrument for the measurement of random lasing. 31 Figure 3.8 Schematic diagram of E.coli cultivation. 32 Figure 3.9 Schematic diagram of DUV-RL treatment on biofilm. 33 Figure 3.10 Schematic diagram of DUV-RL treatment on biofilm at different angle. 34 Figure 3.11 Schematic diagram of DUV-RL treatment on suspension. 34 Figure 4.1. Schematic of Random Laser Disinfection. 35 Figure 4.2 Lasing spectra of the DUV-RL. (a) Evolutions of emission spectra with increasing excitation intensity for the device. (b) Excitation intensity dependences of the emission intensity showing threshold behaviors for the device. (c) Lasing spectra at pumping energy density 59.6 mJ/cm2. The inset in panel shows close-up images of the lasing peaks. (d) Full width at half-maximum as a function of pumping energy density. 37 Figure 4.3 Effects of the Random Laser disinfection ability. Photographic images of (a) biofilm and (b) suspension showing the culture growth of E. coli bacteria after exposure to (i) 0, (ii) 17.28 mJ/ cm2. Total coliforms with RL treatment on (c) biofilm and (d) suspension counterpart. 38 Figure 4.4 The DUV-RL treatment with different angle illumination. (a) The emission spectra and (b) threshold and (c) the full width at half-maximum of the DUV-RL under a broad angle observation. (d)The disinfection rate of the DUV-RL treatment with different angular illumination. 40 | |
| dc.language.iso | en | |
| dc.subject | 殺菌 | zh_TW |
| dc.subject | 紫外光 | zh_TW |
| dc.subject | 隨機雷射 | zh_TW |
| dc.subject | 細菌 | zh_TW |
| dc.subject | 大腸桿菌 | zh_TW |
| dc.subject | Escherichia coli | en |
| dc.subject | ultraviolet light | en |
| dc.subject | random laser | en |
| dc.subject | bacteria | en |
| dc.subject | disinfection | en |
| dc.title | 深紫外光隨機雷射殺菌
| zh_TW |
| dc.title | Deep Ultra-Violet Random Laser Disinfection | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 謝雅萍(Ya-Ping Hsieh),許芳琪(Fang-Chi Hsu) | |
| dc.subject.keyword | 紫外光,隨機雷射,細菌,大腸桿菌,殺菌, | zh_TW |
| dc.subject.keyword | ultraviolet light,random laser,bacteria,Escherichia coli,disinfection, | en |
| dc.relation.page | 41 | |
| dc.identifier.doi | 10.6342/NTU202002230 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-08-04 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 應用物理研究所 | zh_TW |
| 顯示於系所單位: | 應用物理研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0208202021433200.pdf 未授權公開取用 | 2.75 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
