Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15773
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor翁啟惠(Chi-Huey Wong)
dc.contributor.authorWen-Cheng Chenen
dc.contributor.author陳文成zh_TW
dc.date.accessioned2021-06-07T17:51:50Z-
dc.date.copyright2012-09-04
dc.date.issued2012
dc.date.submitted2012-08-23
dc.identifier.citation1. Merrifield, R. B. J. Am. Chem. Soc., 1963, 85, 2149–2154
2. Kimmerlin, T.; Seebach, D. J. Peptide Res. 2005, 65, 229–260
3. Saiki, R.; Gelfand, D.; Stoffel, S.; Scharf, S.; Higuchi, R.m Horn, et al. Science 1988, 239, 487-491
4. A. Varki, Glycobiology 1993, 3, 97-130
5. Meezan, E.; Wu, H. C.; Black, P. H.; Robbins, P. W. Biochemistry 1969, 8, 2518–2524
6. Dube, D. H.; Bertozzi, C. R. Nat. Rev. Drug. Disc. 2004, 3, 863-873
7. Liang, R.; Yan, L.; Loebach, J.; Ge, M.; Uozumi, Y.;
8. Sekanina, K.; Horan, N.; Gildersleeve, J.; Thompson, C.; Smith, A.; Biswas, K.; Still, W. C.; Kahne, D. Science 1996, 274, 1520-1522
9. Boltje, T. J.; Li, C. X.; Boons, G. J. Org. Lett. 2010, 12, 4636-4639
10. Galonic, D. P.; Gin, D. Y. Nature 2007, 446, 1000-1007
11. Plante, O. J.; Palmacci, E. R.; Seeberger, P. H. Science 2001, 291, 1523-1527
12. Kuryashow, V.; Ragupathi, G.; Kim, I. J.; Breimer, M. E.; Danishefsky, S. J.; Livingston, P. O.; Lloyd, K. O. Glycoconjugate J. 1998, 15, 243-249
13. Seeberger, P. H.; Haase, W. C. Chem.l Rev. 2000, 100, 4349-4394
14. Randolph, J. T.; Mcclure, K. F.; Danishefsky, S. J. J. Am. Chem. Soc. 1995, 117, 5712-5719
15. Sears, P.; Wong, C. H. Science 2001, 291, 2344-2350
16. Zhang, Z. Y.; Ollmann, I. R.; Ye, X. S.; Wischnat, R.; Baasov, T.; Wong, C. H., J. Am. Chem. Soc. 1999, 121, 734-753.
17. Burkhart, F.; Zhang, Z. Y.; Wacowich-Sgarbi, S.; Wong, C. H. Angew. Chem. Int. Edit. 2001, 40, 1274-1277
18. Douglas, N. L.; Ley, S. V.; Lucking, U.; Warriner, S. L., J. Chem. Soc. Perkin Trans. 1 1998, 51, 51-65.
19. Koeller, K. M.; Wong, C. H. Nature 2001, 409, 232-240
20. Whitesides, G. M. J. Org. Chem. 1982, 47, 5416-5418
21. Beyer, T. A.; Sadler, J. E.; Rearick, J. I.; Paulson, J. C.; Hill, R. L. Adv. Enzymol. 1981, 52, 24-175
22. Ichikawa, Y.; Lin, Y. C.; Dumas, D. P.; Shen, G. J.; Garciajunceda, E.; Williams, M. A.; Bayer, R.; Ketcham, C.; Walker, L. E.; Paulson, J. C.; Wong, C. H. J. Am. Chem. Soc. 1992, 114, 9283-9298.
23. Wang, W.; Hu, T. S.; Frantom, P. A.; Zheng, T. Q.; Gerwe, B.; del Amo, D. S.; Garret, S.; Seidel, R. D.; Wu, P. Proc. Natl. Acad. Sci. USA 2009, 106, 16096-16101.
24. del Amo, D. S.; Wang, W.; Besanceney, C.; Zheng, T. Q.; He, Y. Z.; Gerwe, B.; Seidel, R. D.; Wu, P. Carbohydr. Res. 2010, 345, 1107-1113.
25. Kotake, T.; Hojo, S.; Yamaguchi, D.; Aohara, T.; Konishi, T.; Tsumuraya, Y. Biosci. Biotechnol. Biochem. 2007, 71, 761-771
26. Schnurr, J. A.; Storey, K. K.; Jung, H. J. G.; Somers, D. A.; Gronwald, J. W. Planta 2006, 224, 520-532.
27. Muthana, M. M.; Qu, J. Y.; Li, Y. H.; Zhang, L.; Yu, H.; Ding, L.; Malekan, H.; Chen, X. Chem. Commu. 2012, 48, 2728-2730
28. Liu, C. Y.; Chen, H. L.; Ko, C. M.; Chen, C. T. Tetrahedron 2011, 67, 872-876
29. Yang, J.; Fu, X.; Jia, Q.; Shen, J.; Biggins, J. B.; Jiang, J. Q.; Zhao, J. J.; Schmidt, J. J.; Wang, P. G.; Thorson, J. S. Org. Lett. 2003, 5, 2223-2226.
30. Burkart, M. D.; Vincent, S. P.; Duffels, A.; Murray, B. W.; Ley, S. V.; Wong, C. H. Bioorg. Med. Chem. 2000, 8, 1937-1946
31. Ali, M. H.; Collins, P. M.; Overend, W. G. Carbohydr. Res. 1990, 205, 428-434
32. Zanatta, S. D., Aust. J. Chem. 2007, 60, 963-963
33. Pilgrim, W.; Murphy, P. V. Org. Lett. 2009, 11, 939-942.
Haridas, V.; Sharma, Y. K.; Sahu, S.; Verma, R. P.; Sadanandan, S.; Kacheshwar, B. G. Tetrahedron 2011, 67, 1873-1884.
34. Zhou, Y.; Wang, S. X.; Zhang, K.; Jiang, X. Y. Angew. Chem. Int. Edit. 2008, 47, 7454-7456.
35. Yu, T. B.; Bai, J. Z.; Guan, Z. B. Angew. Chem. Int. Edit. 2009, 48, 1097-1101.
36. Jadhav, V. H.; Jang, S. H.; Jeong, H. J.; Lim, S. T.; Sohn, M. H.; Kim, J. Y.; Lee, S.; Lee, J. W.; Song, C. E.; Kim, D. W. Chem. Eur. J. 2012, 18, 3918-3924
37. Kaliappan, K. P.; Subrahmanyam, A. V. Org. Lett. 2007, 9, 1121-1124
38. Lee, H. H.; Hodgson, P. G.; Bernacki, R. J.; Korytnyk, W.; Sharma, M. Carbohydr. Res. 1988, 176, 59-72
39. Berkowitz, D. B.; Bose, M.; Pfannenstiel, T. J.; Doukov, T. J. Org. Chem. 2000, 65, 4498-4508.
40. Khedri, Z.; Muthana, M. M.; Li, Y. H.; Muthana, S. M.; Yu, H.; Cao, H. Z.; Chen, X. Chem. Commu. 2012, 48, 3357-3359.
41. Prandi, J. Carbohydr. Res. 2012, 347, 151-154.
42. Gyoergydeak, Zoltan; Szilagyi, Laszlo Liebigs Ann. Chem. , 1987, 3, 235 - 242
43. Barry V. L. J. Org. Chem. 1996, 61, 7719-7726
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15773-
dc.description.abstract醣類跟醣軛合物在生物體中是很重要的分子。舉例來講,醣類分子在癌症細胞生長 轉移擴散中扮演著很重要的角色。雖然近十幾年來很多化學合成的方法被研究發展出來,但是醣類軛合物的合成,尤其是有立體選擇性的醣基化反應還是有很多問題需要被解決。相對而言,利用醣基轉移酶來作酵素合成反應在立體選擇性上還有綠色化學上有很大的優勢。Arabidopsis thaliana UDP-sugar pyrophosphorylase (AtUSP) 是一種可以催化磷酸化單醣(sugar-1-phosphate)變成尿苷二磷酸醣(UDP-sugar)的酵素。 近來的研究指出AtUSP對不同的磷酸化單醣有很廣泛的專一性。我們對使用酵素合成非天然醣軛合物有很大的興趣。我們的目標是利用激酶將非天然的單醣轉化成1-磷酸化醣,然後用AtUSP催化尿苷二磷酸化醣的生成。而這些尿苷二磷酸化醣將來或許可以再用糖轉移酶合成我們想要的寡醣或多醣。為了測試AtUSP的專一性,我們合成了一些葡萄糖跟半乳糖的衍生物。這些衍生物在六號碳的位置做官能基的修飾,將原本的ㄧ級醇轉化成氟、疊氮、碳碳單鍵、雙鍵、還有三鍵。我們也合成了乙醯葡萄糖胺、乙醯半乳糖胺的衍生物,我們將乙醯基取代變成不同長度的末端疊氮烷醯基和5-戊炔醯基。我們利用胜肽鍵偶合反應來得到這些想要的產物。往後我們所利用的這些方法也可以拿來合成其它類似的分子。最後我們利用激酶想要拿到磷酸化糖以便於作往下的AtUSP專一性測試。不過我們發現我們所合成的衍生物反應速率太低了,沒有辦法拿到我們想要的1-磷酸化醣。或許接下來我們可以多試其它不同的激酶或者利用化學合成方法合成想要的1-磷酸化醣以便於可以很快速的了解AtUSP的對不同單醣衍生物的專一性。zh_TW
dc.description.abstractGlycans and glycoconjugates are important biomolecules, which participate in various cellular processes, e.g. cancer growth, infiltration, and metastasis. Although many chemical synthetic methods have been developed during last decade, the synthesis of glycoconjugates, especially the stereoselective glycosylation, remains to be problematic. In contrast, enzymatic synthesis using glycosyltransferases is advantageous in terms of not only chemical selectivities but also green chemistry. In this study, we looked into arabidopsis thaliana UDP-sugar pyrophosphorylase (AtUSP), an enzyme that catalyses the conversion of monosaccharide-1-phosphate to the respective UDP-sugars with broad specificity, and its application for the synthesis of glycoconjugate containing non-natural sugar. We attempted to use kinase to transfer non-nature monosacharides to monosacharide-1-phosphate followed by AtUSP-catalyzed transfermation of these monosacharides-1-phosphates to the respective UDP-sugars. To examine the substrate tolerance of AtUSP, we synthesized glucose and galactose analogues containing azido, fluorous, methyl, vinyl, and alkynyl groups at the C-6 position. The azido and fluorous ananlogues were prepared form C-6 OH free derivatives by SN2 reaction and fluorination, respectively, using DAST. Alkenyl and alkynyl mimics were synthesized from the corresponding aldehydes via Wittig olefination and Bestman-ohira reaction. Finally, methyl analogues were obtained by hydrogenation of corresponding alkenyl derivatives. We also synthesized GlcNAc and GalNAc analogues with different azidoalkylcarbonyl groups and pentynoyl groups. We applied amide bond formation to synthesize these compounds. This methodology is straightforward and may be applicable for the preparation of other sugar analogues. The evaluation of the synthesized analogues as substrates is under way. However, when we used kinase to catalyze the formation of monosaccharide-1-phosphates, the reaction rate is too slow to obtain any kinetic data. The problem may be solved by using more kinases or chemical method to synthesize these monosaccharide-1-phosphates to test AtUSP more quickly.en
dc.description.provenanceMade available in DSpace on 2021-06-07T17:51:50Z (GMT). No. of bitstreams: 1
ntu-101-R97223158-1.pdf: 2578027 bytes, checksum: df65c6fe446b6b3018fe48c52eb175e0 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsAbstract i
中文摘要 ii
Abbreviation iii
Chapter1 Introduction 1
1.1 Glycans 1
1.2 Chemical synthesis of oligosaccharides 2
1.3 Chemoenzymatic synthesis of oligosaccharides 4
1.4 The synthesis of oligosaccharides using non-nature NDP-sugar 6
1.5 Application of Arabidopsis thaliana UDP-sugar pyrophosphorylase 7
1.6 Synthesis of Sugar-1-phosphate 8
Chapter 2 Results and Discussion 10
2.1 Chemical synthesis of Galactose and Glucose analogues 10
2.2 Chemical synthesis of GlcNAc and GalNAc analogues 17
2.3 Kinase assay 19
Chapter 3 Summary 21
Chapter 4 Material and Methods 22
Chapter 5 References 43
Appendix Selected NMR and Mass spectra 45
Content of Schemes
Scheme 1. General Mechanism of Glycosylation 3
Scheme 2. One-Pot Synthesis of Globo H 4
Scheme 3. Chemosynthesis of Sialyl LeX 6
Scheme 4. Chemoenzymatic synthesis of modified Lex 7
Scheme 5. Hexokinase catalyzed the conversion of pentose to pentose-5-phosphate 8
Scheme 6. Non-nature monosacharides-1-phosphate formation catalyzed by kinase 9
Scheme 7. Synthesisi of 6-deoxy-6-azido-D-galactopyranose (1) 11
Scheme 8. Synthesis of 6-deoxy-6-fluoro-D-galactopyranose (!) 11
Scheme 9. Syntheis of 6,7-Deoxy-6-D-galacto-hept-6-enopyranose (4) and 6,7-Deoxy-6-D-galacto-heptopyranose (3) 12
Scheme 10. Synthesis of 6,7-deoxy-6-D-galacto-hept-6-ynopyranose (5) 13
Scheme 11. Mechanism of Bestmann-Ohira reaction 13
Scheme 12. Synthesis of Synthesisi of 6-deoxy -6-fluoro-D-glucopyranose (7) 14
Scheme 13. Synthesis of 6,7-deoxy-6-D-gluco-heptopyranose (8) 14
Scheme 14. Synthesis of 6-deoxy-6-azido-6-D-glucopyranose (6) 15
Scheme 15. Synthesis of 6,7-deoxy-6-D-gluco-hept-6-enopyranose (9) and 6,7-deoxy-6-D-gluco-hept-6-ynopyranose (10) 16
Scheme 16. Retrosynthesis analysis of GlcNAc and GalNAc analogues 17
Scheme 17. Synthesisi of azidoacid 18
Scheme 18. Synthesis of glucosamine and galactosamine analogues (39)-(46) 18
Scheme 19. Synthesis of 2-azido-2-deoxy-glucose and 2-azido-2-deoxy-galactose 19
Scheme 20. NADH/ATP coupled kinase assay 20
Content of Figures
Fig 1. Molecular Recognition Involves Cell-Surface Carbohydrates 1
Fig 2. Glucose and Galactose Analogues 10
Fig 3. GlcNAc and GalNAc analogues 17
Content of Tables
Table 1. Substrate Specificity and Kinetics of AtUSP 8
dc.language.isoen
dc.title利用半乳糖及葡萄糖衍生物探討尿苷二磷酸糖焦磷酸化酶的專一性zh_TW
dc.titleStudy the specificity of UDP-Sugar pyrophosphorylase using galactose and glucose analoguesen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳宗益(Chung-Yi Wu),洪上程(Shang-Cheng Hung)
dc.subject.keyword葡萄糖,半乳糖,葡萄糖胺,半乳糖胺,化學酵素合成,zh_TW
dc.subject.keywordglucose,galactose,glucosamine,galactosamine,chemoenzymatic synthesis,en
dc.relation.page65
dc.rights.note未授權
dc.date.accepted2012-08-23
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
2.52 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved