請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15741
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林讚標(Tsan-piao Lin) | |
dc.contributor.author | Ko Ko | en |
dc.contributor.author | 柯克 | zh_TW |
dc.date.accessioned | 2021-06-07T17:51:07Z | - |
dc.date.copyright | 2012-10-12 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-10-03 | |
dc.identifier.citation | 張菀玲。(2012)。探討外加穀胱甘肽如何增加阿拉伯芥對非生物性逆境之耐受性機制。國立臺灣大學植物科學研究所碩士論文。1-60頁。
Abe, H., Urao, T., Ito, T., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2003). Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15: 63-78. Apel, K., and Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55: 373-399. Asada, K. (1999). The water-water cycle in chloroplast: scavenging of active oxygens and dissipation of excess photons. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 601-639. Bai, B., Sikron, N., Gendler, T., Kazachkova, Y., Barak, S., Grafi, G., Khozin-Goldberg, I., and Fait, A. (2011). Ecotypic variability in the metabolic response of seeds to diurnal hydration–dehydration cycles and its relationship to seed vigor. Plant Cell Physiol. 53: 38–52. Ball, L., Accotto, G.P., Bechtold, U., Creissen, G., Funck, D., Jimenez, A., Kular, B., Leyland, N., Mejia-Carranza, J., Reynolds, H., Karpinski, S., and Mullineaux, P.M. (2004). Evidence for a direct link between glutathione biosynthesis and stress defense gene expression in Arabidopsis. Plant Cell 16: 2448–2462. Barroso, C., Romero, L.C., Cejudo, F.J., Vega, J.M., and Gotor, C. (1999). Salt-specific regulation of the cystosolic O-acetylserine(tilo)lyasegene from Arabidopsis thaliana is dependent on abscisic acid. Plant Mol. Biol 40: 729–736. Blum, R., Meyer, K.C., Wunschmann, J., Lendzian, K.J., and Grill, E. (2010). Cytosolic action of phytochelatin synthase. Plant Physiol. 153: 159-169. Cairns, N.G., Pasternak, M., Wachter, A., Cobbett, C.S., and Meyer, A.J. (2006). Maturation of Arabidopsis seeds is dependent on glutathione biosynthesis within the embryo. Plant Physiol. 141: 446-455. Chen, L., Song, Y., Li, S., Zhang, L., Zou, C., and Yu, D. (2012a). The role of WRKY transcription factors in plant abiotic stresses. Biochim. Biophys. Acta. 1819: 120-128. Chen, J.H., Jiang, H.W., Hsieh, E.J., Chen, H.Y., Chien, C.T., Hsieh, H.L., and Lin, T.P. (2012b). Drought and salt stress tolerance of an Arabidopsis Glutathione S-transferase U17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid. Plant Physiol. 158: 340-351. Clough, S. J., and Bent, A. F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 6: 735-743. Dietz, K.J., Jacob, S., Oelze, M.L., Laxa, M., Tognetti, V., de Miranda, S.M.N., Baier, M., and Finkemeier, I. (2006). The function of peroxiredoxins in plant organelle redox metabolism. J. Exp. Bot. 57: 1697-1709. Dron, M., Clouse, S.D., Dixon, R.A., Lawton, M.A., and Lamb, C.J. (1988). Glutathione and fungal elicitor regulation of a plant defense gene promoter in electroporated protoplasts. Proc. Natl. Acad. Sci. USA 85: 6738-6742. Edwards, R., Dixon, D.P., and Walbot, V. (2000). Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health. Trends Plant Sci. 5: 193-198. Frear, D.S., and Swanson, H.R. (1970). Biosynthesis of S-glutathione: partial purification and properties of glutathione S-transferase from corn. Phytochem. 9: 2123-2132. Foyer, C.H., and Noctor, G. (2011). Ascorbate and glutathione: The heart of the redox hub. Plant Physiol. 155: 2-18. Fujita, M., Fujita, Y., Maruyama, K., Seki, M., Hiratsu, K., Ohme-Takagi, M., Tran, L. S. P., Yamaguchi-Shinozaki, K., and Shinozaki, K. (2004). A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J. 39: 863–876. Glazebrook, J., and Ausubel, F.M. (1994). Isolation of phytoalexindeficient mutants of Arabidopsis thaliana and characterization of their interactions with bacterial pathogens. Proc. Natl. Acad. Sci. USA 91: 8955–8959. Griffith, O.W. (1980). Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal. Biochem. 106: 207-212. Grill, E., Lffler, S., Winnacker, E.L., and Zenk, M.H. (1989). Phytochelatins, the heavy-metal binding peptides of plants, are synthesized from glutathione by a specific -γ-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc. Natl. Acad. Sci. USA 86: 6838-6842. Grill, E., Winnacker, E.L., and Zenk, M.H. (1987). Phytochelatins, a class of heavy-metal-binding peptides from plants, are functionally analogous to metallothioneins. Proc. Natl. Acad. Sci. USA 84: 439-443. Hagen, G., Uhrhammer, N., and Guilfoyle, T.J. (1988). Regulation of expression of an auxininduced soybean sequence by cadmium. J. Biol. Chem. 263: 6442-6446. Hoekstra, F. A., Golovina, E. A. and Buitink, J. (2001). Mechanisms of plant desiccation tolerance. Trends Plant Sci. 6: 1360-1385. Holmgren, A. (1976). Hydrogen donor system for Escherichia coli ribonucleoside- diphosphate reductase dependent upon glutathione Biochemistry. Proc. Natl. Acad. Sci. USA. 73: 2275-2279. Hopkins, F.G. (1929). On glutathione: a reinvestigation. J. Biol. Chem. 84: 269-320. Hopkins, F. G., and Morgan E. J. (1943). Appearance of glutathione during the early stage of germination of seeds. Nature. 152: 288-290. Koprivova, A., Mugford, S.T., and Kopriva, S. (2010). Arabidopsis root growth dependence on glutathione is linked to auxin transport. Plant Cell Rep. 29: 1157–1167. Lim, P.O., Kim, H.J., and Nam, H.G. (2007). Leaf senescence. Annu. Rev. Plant Biol. 58: 115-136. Lin, B.L., Wang, J.S., Liu, H.C., Chen, R.W., Meyer, Y., Barakat, A., and Delseny, M. (2001). Genomic analysis of the Hsp70 superfamily in Arabidopsis thaliana. Cell Stress Chaperones 6: 201–208. Lv, W. T., Lin, B., Zhang, M., and Hua, X. J. (2011) Proline accumulation is inhibitory to Arabidopsis seedlings during heat stress. Plant Physiol. 156: 1921-1933. May, M.J., Parker, J.E., Daniels, M.J., Leaver, C.J., and Cobbett C.S. (1996). An Arabidopsis mutant depleted in glutathione shows unaltered responses to fungal and bacterial pathogens. Mol. Plant Microbe Interact. 9: 349-356. Mittler, R., Vanderauwera, S., Gollery, M., and Van Breusegem, F. (2004). Reactive oxygen gene network of plants. Trends Plant Sci. 9: 490-498. Murashige, T., and Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15: 473. Noctor, G., and Foyer, C.H. (1998). ASCORBATE AND GLUTATHIONE: keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 249-279. Noctor, G., Gomez, L., Vanacker, H., and Foyer, C.H. (2002). Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling. J. Exp. Bot. 53: 1283-1304. Noctor, G., Queval, G., Mhamdi, A., Chaouch, S., and Foyer, C.H. (2011). Glutathione. Arabidopsis Book 9(1): 1-32. Oliver, M. J., Guo, L., Alexander, D. C., Ryals, J., Wone, B. W. M., and Cushman, J. C. (2011). A sister group contrast using untargeted global metabolomic analysis delineates the biochemical regulation underlying desiccation tolerance in Sporobolus stapfianus. Plant Cell. 23: 1231-1248. Parisy, V., Poinssot, B., Owsianowski, L., Buchala, A., Glazebrook, J., and Mauch, F. (2006). Identification of PAD2 as a c-glutamylcysteine synthetase highlights the importance of glutathione in disease resistance of Arabidopsis. Plant J. 49: 159–172. Passioura, J. B. (1988). Water transport in and to root. Ann. Rev. Plant Physiol. Plant Mol. Bioi. 39: 245-265. Pasternak, M., Lim, B., Wirtz, M., Hell, R., Cobbett, C.S., and Meyer, A.J. (2008). Restricting glutathione biosynthesis to the cytosol is sufficient for normal plant development. Plant J. 53: 999-1012. Saga, H., Ogawa, T., Kai, K., Suzuki, H., Ogata, Y., Sakurai, N., Shibata, D., and Ohta, D. (2012). Identification and characterization of ANAC042, a transcription factor family gene involved in the regulation of camalexin biosynthesis in Arabidopsis. Mol. Plant Microbe Interact. 25: 684-696. Senda, K., and Ogawa, K. (2004). Induction of PR-1 accumulation accompanied by runaway cell death in the lsd1 mutant of Arabidopsis is dependent on glutathione levels but independent of the redox state of glutathione. Plant Cell Physiol. 45: 1578-1585. Shimada, T. L., Shimada,T., and Hara-Nishimura, I. (2010). A rapid and non-destructive screenable marker, FAST, for identifying transformed seeds of Arabidopsis thaliana. Plant J. 61: 519–528. Shinozaki, K., and Yamaguchi-Shinozaki, K. (2007). Gene networks involved in drought stress response and tolerance. J. Exp. Bot. 58: 221-227. Shinozaki, K., Yamaguchi-Shinozaki, K., and Seki, M. (2003). Regulatory network of gene expression in the drought and cold stress responses. Curr. Opin. Plant Biol. 6: 410-417. Singla-Pareek, S. L., Yadav, S. K., Pareek, A., Reddy, M. K., and Sopory, S. K. (2008). Enhancing salt tolerance in a crop plant by overexpression of glyoxalase II. Transgenic Res. 17: 171–180. Su, T., Xu, J., Li, Y., Lei, L., Zhao, L., Yang, H., Feng, J., Liu, G., and Ren, D. (2011). Glutathione-indole-3-acetonitrile is required for camalexin biosynthesis in Arabidopsis thaliana. Plant Cell 23: 364–380. Suchandra, D. R., Mukesh, S., Prasanna, S. B., Mikhail, P., Hohn. T., and Neera, B.S. (2008).Generation of marker free salt tolerant transgenic plants of Arabidopsis thaliana using the gly I gene and cre gene under inducible promoters. Plant Cell Tiss. Organ. Cult. 95: 1–11. Takahashi, M., and Asada, K. (1988). Superoxide production in aprotic interior of chloroplast thylakoids. Arch. Biochem. Biophy. 267: 714-722. Thompson, J.E., and Barber, R.F. (1987). The role of free radicals in senescence and wounding. New Phytol. 105: 317-344. Tommasi, F., Paciolla, C., de Pinto, M. C., and De Gara, L. (2001). A comparative study of glutathione and ascorbate metabolism during germination of Pinus pinea L. seeds. J. Exp. Bot. 52: 1647-1654. Tran, L.S.P., Nakashima, K., Sakuma, Y., Simpson, S.D., Fujita, Y., Maruyama, K., Fujita, M., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2004). Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16: 2481-2498. Uno, Y., Furihata, T., Abe, H., Yoshida, R., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2000). Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc. Nati. Acad. Sci. USA . 97: 11632-11637. Vernoux, T., Wilson, R. C., Seeley, K. A., Reichheld, J. P., Muroy, S., Brown, S., Maughan, S. C., Cobbett, C. S., Van Montagu, M., Inze, D., May, M. J., and Sung, Z. R. (2000). The ROOT MERISTEMLESS1/CADMIUM SENSITIVE2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. Plant cell. 12: 97-110. Verslues, P.E., Agarwal, M., Katiyar-Agarwal, S., Zhu, J.H., and Zhu, J.K. (2006). Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J. 45: 523-539. Vivancos, P. D., Dong, Y., Ziegler, K., Markovic, J., Pallardo, F. V., Pellny, T. K., Verrier, P. J., and Foyer, C. H. (2010) Recruitment of glutathione into the nucleus during cell proliferation adjusts whole-cell redox homeostasis in Arabidopsis thaliana and lowers the oxidative defence shield. Plant J. 64: 825-828. Wachter, A., Wolf, S., Steiniger, H., Bogs, J., and Rausch, T. (2005). Differential targeting of GSH1 and GSH2 is achieved by multiple transcription initiation: implications for the compartmentation of glutathione biosynthesis in the Brassicaceae. Plant J. 41: 15-30. Wingate, V.P., Lawton, M.A., and Lamb, C.J. (1988). Glutathione causes a massive and selective induction of plant defense genes. Plant Physiol. 87: 206-210. Wang, W., Vinocur, B., Shoseyov, O., and Altman, A. (2004). Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends plant sci. 9: 244-252. Yang, S.D., Seo, P.J., Yoon, H.K., and Park, C.M. (2011). The Arabidopsis NAC transcription factor VNI2 integrates abscisic acid signals into leaf senescence via the COR/RD genes. Plant Cell 23: 2155-2168. Zhu, Y.L., Pilon-Smits, E.A.H., Jouanin, L., and Terry, N. (1999b). Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiol. 119: 73-79. Zhu, Y.L., Pilon-Smits, E.A.H., Tarun, A.S., Weber, S.U., Jouanin, L., and Terry, N. (1999a). Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing-glutamylcysteine synthetase. Plant Physiol. 121: 1169-1177. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15741 | - |
dc.description.abstract | GSH(glutathione,穀胱甘肽)是由三個胺基酸 (麩胺酸、半胱胺酸及甘胺酸) 組成的簡單含硫化物,是植物以及許多生物體內的主要非蛋白質硫醇化物。GSH參與許多細胞反應,尤其GSH的抗氧化功能在維持細胞內的氧化還原平衡扮演重要角色。根據我們先前觀察,外加GSH可以增進阿拉伯芥對於非生物性逆境的抗性,特別是乾旱及鹽逆境,然而,這方面的機制尚未明瞭。在本篇研究中,我們得到增加與減少功能的GSH合成基因GSH1的轉殖株,然後處理非生物逆境。在GSH1大量表現的轉基因植物中,有較高的GSH含量,同時在含鹽和ABA的培養基裡有較高的發芽率和較長的根。GSH1大量表現的轉基因植物在乾旱和鹽害的逆境中也有較高的存活率。同時以熱逆境處理GSH1大量表現的植株,其存活率較高。同時也發現GSH1大量表現的轉基因植物會影響植物體內脯胺酸(proline)的含量,但是不影響離層素(ABA)的含量。以乾旱大量表現的RD29A啟動子接上GSH1的大量表現轉殖株,發現比野生型的阿拉伯芥更有生長活力,同時也能對抗乾旱逆境。GSH1大量表現的轉基因植物,其老化標幟基因SAG12較野生型有延遲表現的現象。另外以monochlorobimane染GSH,觀察GSH在植株體內的分佈情形,發現到在逆境時GSH會優先累積在生長點和最年輕的葉子,GSH保護生長點不受逆境影響。總之,在本篇的研究中提供了許多證據說明內生性提高GSH的含量可以在逆境的狀況下保護阿拉伯芥,尤其是在生長點和新葉的部份。同時也新發現到GSH可以延緩植物的老化。 | zh_TW |
dc.description.abstract | Glutathione (L-γ-glutamyl-L-cysteinyl-Gly) is a simple sulfur compound composed of three amino acids and is the major non-protein thiol in many organisms including plants. Glutathione is involved in a plethora of cellular processes in addition to its role as an antioxidant and in the maintenance of cellular redox homeostasis. According to our previous observation, exogenously applied glutathione reduced form (GSH) could improve abiotic stress tolerance of Arabidopsis, especially under drought and salt stress. We suggested that GSH plays an important role to increase the vigor of plants. Whether endogenous elevated level of GSH also has the same effect needs to be evaluated. In this study, gain-of-function and loss-of-function of GSH synthesis mutants were obtained from different sources, and abiotic stress were applied to these mutant plants.GSH1 overexpressing lines accumulating much higher GSH content and much higher GSH/GSSG ratio showed higher germination rate and longer root length than wild-type plants in the salt-containing petri dish. Overexpression lines also showed some tolerance in drought and salt test, and exhibited higher survival rate in heat stress test. GSH1 overexpression influenced proline content, but didn’t influence ABA content. SAG12, the senescence marker gene, exhibited significantly delayed induction in GSH1 overexpression plants indicating the effect of GSH in the leaf senescence. We observed that higher GSH accumulation in shoot apical meristem under stress when the GSH was stained with monochlorobimane indicating. GSH protects preferencially shoot apical meristem and youngest leaves under stress. In conclusion, in this study we presented evidence to support endogenous GSH plays an important role to protect Arabidopsis under stress environment, especially the apical meristem and youngest leaves, and a new function in leaf senescence. | en |
dc.description.provenance | Made available in DSpace on 2021-06-07T17:51:07Z (GMT). No. of bitstreams: 1 ntu-101-R99b42015-1.pdf: 2328005 bytes, checksum: 85bac5aa98ae6fb832c16aca26aaeca8 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 目錄
摘要 1 Abstract 2 縮寫對照表 3 第一章 序論 4 1.0 前言 4 1.1 GSH之結構與植物體內生合成機制 4 1.3 GSH能增加植物對於生物性逆境之抗性 5 1.4 GSH能增進植物對於非生物性逆境之抗性 6 1.5 ABA與乾旱逆境的訊息傳導 8 1.5 相容性物質在植物對抗逆境中扮演的角色 9 1.6 實驗策略與研究目標 9 第二章 材料與方法 11 2.1 植物材料與生長條件 11 2.2 DNA萃取及Polymerase Chain Reaction (PCR)聚合酶連鎖反應 12 2.3 RNA萃取及cDNA合成之reverse transcriptase PCR(RT-PCR) 13 2.4 即時定量聚合酶連鎖反應 (real-time PCR) 15 2.5 植物轉型構築及轉基因植物的建立 16 2.6 GSH萃取與測量 16 2.7 ABA含量測量 17 2.8 發芽試驗 18 2.9 根長試驗 18 2.10 突變株的非生物性逆境容忍分析 19 2.11 脯氨酸(proline)含量測量 19 2.12 Glutathione染色 20 2.13 熱逆境下之生長情況測試 20 第三章 結果 21 3.1 篩選35S::GSH1同型合子 21 3.2 GSH含量測試 21 3.3 發芽率測試 21 3.4 根部延長測試 22 3.5 乾旱實驗 22 3.6 鹽逆境實驗 23 3.7 ABA含量實驗 23 3.8 Proline含量實驗 24 3.9 RD29A::GSH1建構與表型 24 3.10 GSH在植物體的分佈 25 3.11 GSH對植株老化的影響 26 3.12 GSH對熱逆境的影響 26 第四章 討論 27 4.1 GSH與發芽 27 4.2 GSH促進根長做為對抗逆境的手段 28 4.3 GSH在乾旱逆境中所扮演的角色 28 4.4 GSH在鹽害逆境中所扮演的角色 30 4.5 GSH與ABA的關係 30 4.6 GSH在植物體內的分佈情形 31 4.7 GSH在老化抑制上扮演重要的調控角色 32 4.8 GSH促進植物對抗熱逆境 33 4.9 總結論 34 參考文獻 35 圖表 43 附錄 60 | |
dc.language.iso | zh-TW | |
dc.title | 增加穀胱甘肽含量促進阿拉伯芥的生長活力與逆境的耐受性 | zh_TW |
dc.title | Increased concentration of total glutathione improves vigor and stress tolerances of Arabidopsis | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 鄭石通(Shih-Tong Jeng),張英?(Ing-Feng Chang),葉國楨(Kuo-Chen Yeh),莊榮輝(Rong-Huay Juang) | |
dc.subject.keyword | 穀胱甘肽,發芽,乾旱逆境,鹽害逆境,熱逆境,脯胺酸,老化, | zh_TW |
dc.subject.keyword | glutathione,germination,drought stress,salt stress,heat stress,proline,senescence, | en |
dc.relation.page | 64 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2012-10-04 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 植物科學研究所 | zh_TW |
顯示於系所單位: | 植物科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 2.27 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。