請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15737完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡懷楨(Huai-Jen Tsai) | |
| dc.contributor.author | Chuan-Yang Fu | en |
| dc.contributor.author | 傅傳揚 | zh_TW |
| dc.date.accessioned | 2021-06-07T17:51:02Z | - |
| dc.date.copyright | 2012-11-22 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-10-17 | |
| dc.identifier.citation | 1. Krupnik, V.E., Sharp, J.D., Jiang, C., Robison, K., Chickering, T.W., Amaravadi, L.,
Brown, D.E., Guyot, D., Mays, G., Leiby, K., Chang, B., Duong, T., Goodearl, A.D., Gearing, D.P., Sokol, S.Y. and McCarthy, S.A. (1999). Functional and structural diversity of the human Dickkopf gene family. Gene 238, 301-313. 2. Nakamura, R.E., Hunter, D.D., Yi, H., Brunken, W.J. and Hackam, A.S. (2007). Identification of two novel activities of the Wnt signaling regulator Dickkopf 3 and characterization of its expression in the mouse retina. BMC Cell Biol. 8, 52. 3. Mao, B., Wu, W., Davidson, G., Marhold, J., Li, M., Mechler, B.M., Delius, H., Hoppe, D., Stannek, P., Walter, C., Glinka, A. and Niehrs, C. (2002). Kremen proteins are Dickkopf receptors that regulate Wnt/beta-catenin signalling. Nature 417, 664-667. 4. Semenov, M.V., Tamai, K., Brott, B.K., Kuhl, M., Sokol, S. and He, X. (2001). Head inducer Dickkopf-1 is a ligand for Wnt coreceptor LRP6. Curr. Biol. 11, 951-961. 5. Brott, B.K. and Sokol, S.Y. (2002). Regulation of Wnt/LRP signaling by distinct domains of Dickkopf proteins. Mol. Cell Biol. 22, 6100-6110. 6. Wu, W., Glinka, A., Delius, H. and Niehrs, C. (2000). Mutual antagonism between dickkopf1 and dickkopf2 regulates Wnt/beta-catenin signalling. Curr. Biol. 10, 1611-1614. 7. Li, L., Mao, J., Sun, L., Liu, W. and Wu, D. (2002). Second cysteine-rich domain of Dickkopf-2 activates canonical Wnt signaling pathway via LRP-6 independently of dishevelled. J. Biol. Chem. 277, 5977-5981. 8. Niehrs, C. (2006). Function and biological roles of the Dickkopf family of Wnt modulators. Oncogene 25, 7469-7481. 9. Mao, B. and Niehrs, C. (2003). Kremen2 modulates Dickkopf2 activity during Wnt/LRP6 signaling. Gene 302, 179-183. 10. Caricasole, A., Ferraro, T., Iacovelli, L., Barletta, E., Caruso, A., Melchiorri, D., Terstappen, G.C. and Nicoletti, F. (2003). Functional characterization of WNT7A 21 signaling in PC12 cells: interaction with A FZD5 x LRP6 receptor complex and modulation by Dickkopf proteins. J. Biol. Chem. 278, 37024-37031. 11. Hoang, B.H., Kubo, T., Healey, J.H., Yang, R., Nathan, S.S., Kolb, E.A., Mazza, B., Meyers, P.A. and Gorlick, R. (2004). Dickkopf 3 inhibits invasion and motility of Saos-2 osteosarcoma cells by modulating the Wnt-beta-catenin pathway. Cancer Res. 64, 2734-2739. 12. Tsuji, T., Nozaki, I., Miyazaki, M., Sakaguchi, M., Pu, H., Hamazaki, Y., Iijima, O. and Namba, M. (2001). Antiproliferative activity of REIC/Dkk-3 and its significant down-regulation in non-small-cell lung carcinomas. Biochem. Biophys. Res. Commun. 289, 257-263. 13. Nozaki, I., Tsuji, T., Iijima, O., Ohmura, Y., Andou, A., Miyazaki, M., Shimizu, N. and Namba, M. (2001). Reduced expression of REIC/Dkk-3 gene in non-small cell lung cancer. Int. J. Oncol. 19, 117-121. 14. Kurose, K., Sakaguchi, M., Nasu, Y., Ebara, S., Kaku, H., Kariyama, R., Arao, Y., Miyazaki, M., Tsushima, T., Namba, M., Kumon, H. and Huh, N.H. (2004). Decreased expression of REIC/Dkk-3 in human renal clear cell carcinoma. J. Urol. 171, 1314-1318. 15. Lodygin, D., Epanchintsev, A., Menssen, A., Diebold, J. and Hermeking, H. (2005). Functional epigenomics identifies genes frequently silenced in prostate cancer. Cancer Res. 65, 4218-4227. 16. Kuphal, S., Lodermeyer, S., Bataille, F., Schuierer, M., Hoang, B.H. and Bosserhoff, A.K. (2006). Expression of Dickkopf genes is strongly reduced in malignant melanoma. Oncogene 25, 5027-5036. 17. Kawasaki, K., Watanabe, M., Sakaguchi, M., Ogasawara, Y., Ochiai, K., Nasu, Y., Doihara, H., Kashiwakura, Y., Huh, N.H., Kumon, H. and Date, H. (2009). REIC/Dkk-3 overexpression downregulates P-glycoprotein in multidrug-resistant MCF7/ADR cells and induces apoptosis in breast cancer. Cancer Gene Ther. 16, 65-72. 18. Abarzua, F., Sakaguchi, M., Takaishi, M., Nasu, Y., Kurose, K., Ebara, S., Miyazaki, M., 22 Namba, M., Kumon, H. and Huh, N.H. (2005). Adenovirus-mediated overexpression of REIC/Dkk-3 selectively induces apoptosis in human prostate cancer cells through activation of c-Jun-NH2-kinase. Cancer Res. 65, 9617-9622. 19. Kawano, O., Sasaki, H., Endo, K., Suzuki, E., Haneda, H., Yukiue, H., Kobayashi, Y., Yano, M. and Fujii, Y. (2006). PIK3CA mutation status in Japanese lung cancer patients. Lung Cancer 54, 209-215. 20. Monaghan, A.P., Kioschis, P., Wu, W., Zuniga, A., Bock, D., Poustka, A., Delius, H. and Niehrs, C. (1999). Dickkopf genes are co-ordinately expressed in mesodermal lineages. Mech. Dev. 87, 45-56. 21. Untergasser, G., Martowicz, A., Hermann, M., Tochterle, S. and Meyer, D. (2011). Distinct expression patterns of dickkopf genes during late embryonic development of Danio rerio. Gene Expr. Patterns 11, 491-500. 22. Hsu, R.J., Lin, C.Y., Hoi, H.S., Zheng, S.K., Lin, C.C. and Tsai, H.J. (2010). Novel intronic microRNA represses zebrafish myf5 promoter activity through silencing dickkopf-3 gene. Nucleic Acids Res. 38, 4384-4393. 23. Hsu, R.J., Lin, C.C., Su, Y.F. and Tsai, H.J. (2011). dickkopf-3-related gene regulates the expression of zebrafish myf5 gene through phosphorylated p38a-dependent Smad4 activity. J. Biol. Chem. 286, 6855-6864. 24. Lee, E.J., Jo, M., Rho, S.B., Park, K., Yoo, Y.N., Park, J., Chae, M., Zhang, W. and Lee, J.H. (2009). Dkk3, downregulated in cervical cancer, functions as a negative regulator of beta-catenin. Int. J. Cancer 124, 287-297. 25. Ochiai, K., Watanabe, M., Ueki, H., Huang, P., Fujii, Y., Nasu, Y., Noguchi, H., Hirata, T., Sakaguchi, M., Huh, N.H., Kashiwakura, Y., Kaku, H. and Kumon, H. (2011). Tumor suppressor REIC/Dkk-3 interacts with the dynein light chain, Tctex-1. Biochem. Biophys. Res. Commun. 412, 391-395. 26. Chiang, Y.H., Wu, Y.J., Lu, Y.T., Chen, K.H., Lin, T.C., Chen, Y.K., Li, D.T., Shi, F.K., Chen, C.C. and Hsu, J.L. (2011). Simple and specific dual-wavelength excitable dye staining for glycoprotein detection in polyacrylamide gels and its application in 23 glycoproteomics. J. Biomed. Biotechnol. 2011, 780108. 27. Springer, T.A. (1997). Folding of the N-terminal, ligand-binding region of integrin alpha-subunits into a beta-propeller domain. Proc. Natl. Acad. Sci. U.S.A. 94, 65-72. 28. Chong, S.W., Korzh, V. and Jiang, Y.J. (2009). Myogenesis and molecules - insights from zebrafish Danio rerio. J. Fish Biol. 74, 1693-1755. 29. Hynes, R.O. (1987). Integrins: a family of cell surface receptors. Cell 48, 549-554. 30. Bajanca, F., Luz, M., Duxson, M.J. and Thorsteinsdottir, S. (2004). Integrins in the mouse myotome: developmental changes and differences between the epaxial and hypaxial lineage. Dev. Dyn. 231, 402-415. 31. Otey, C.A. (1996). pp125FAK in the focal adhesion. Int. Rev. Cytol. 167, 161-183. 32. Lewis, J.M., Baskaran, R., Taagepera, S., Schwartz, M.A. and Wang, J.Y. (1996). Integrin regulation of c-Abl tyrosine kinase activity and cytoplasmic-nuclear transport. Proc. Natl. Acad. Sci. U.S.A. 93, 15174-15179. 33. Clark, E.A. and Brugge, J.S. (1993). Redistribution of activated pp60c-src to integrin-dependent cytoskeletal complexes in thrombin-stimulated platelets. Mol. Cell Biol. 13, 1863-1871. 34. Cobb, B.S., Schaller, M.D., Leu, T.H. and Parsons, J.T. (1994). Stable association of pp60src and pp59fyn with the focal adhesion-associated protein tyrosine kinase, pp125FAK. Mol. Cell Biol. 14, 147-155. 35. Chen, Q., Kinch, M.S., Lin, T.H., Burridge, K. and Juliano, R.L. (1994). Integrin-mediated cell adhesion activates mitogen-activated protein kinases. J. Biol. Chem. 269, 26602-26605. 36. Zhu, X. and Assoian, R.K. (1995). Integrin-dependent activation of MAP kinase: a link to shape-dependent cell proliferation. Mol. Biol. Cell 6, 273-282. 37. Chun, J.S. and Jacobson, B.S. (1993). Requirement for diacylglycerol and protein kinase C in HeLa cell-substratum adhesion and their feedback amplification of arachidonic acid production for optimum cell spreading. Mol. Biol. Cell 4, 271-281. 38. Vuori, K. and Ruoslahti, E. (1993). Activation of protein kinase C precedes alpha 5 beta 24 1 integrin-mediated cell spreading on fibronectin. J. Biol. Chem. 268, 21459-21462. 39. McNamee, H.P., Ingber, D.E. and Schwartz, M.A. (1993). Adhesion to fibronectin stimulates inositol lipid synthesis and enhances PDGF-induced inositol lipid breakdown. J. Cell. Biol. 121, 673-678. 40. Lamarche, N., Tapon, N., Stowers, L., Burbelo, P.D., Aspenstrom, P., Bridges, T., Chant, J. and Hall, A. (1996). Rac and Cdc42 induce actin polymerization and G1 cell cycle progression independently of p65PAK and the JNK/SAPK MAP kinase cascade. Cell 87, 519-529. 41. Segat, D., Comai, R., Di, Marco, E., Strangio, A., Cancedda, R., Franzi, AT. and Tacchetti,C. (2002). Integrins alpha(6A)beta 1 and alpha(6B)beta 1 promote different stages of chondrogenic cell differentiation. J. Biol. Chem. 277, 31612-31622. 42. Buckingham, M., Bajard, L., Chang, T., Daubas, P., Hadchouel, J., Meilhac, S., Montarras, D., Rocancourt, D. and Relaix, F. (2003). The formation of skeletal muscle: from somite to limb. J. Anat. 202, 59-68. 43. Rudnicki, M.A., Schnegelsberg, P.N., Stead, R.H., Braun, T., Arnold, H.H. and Jaenisch, R. (1993). MyoD or Myf-5 is required for the formation of skeletal muscle. Cell 75, 1351-1359. 44. Tajbakhsh, S. (2005). Skeletal muscle stem and progenitor cells: reconciling genetics and lineage. Exp. Cell Res. 306, 364-372. 45. Chen Y.H. and Tsai H.J. (2002). Treatment with Myf5-morpholino results in somite patterning and brain formation defects in zebrafish. Differentiation, 70: 447-456. 46. Wilschut, K.J., van, Tol, H.T., Arkesteijn, G.J., Haagsman, H.P. and Roelen, B.A. (2011). Alpha 6 integrin is important for myogenic stem cell differentiation. Stem Cell Res. 7, 112-123. 47. Shattil, S.J., Kim, C. and Ginsberg, M.H. (2010). The final steps of integrin activation: the end game. Nat. Rev. Mol. Cell Biol. 11, 288-300. 48. Annes, J.P., Munger, J.S. and Rifkin, D.B. (2003). Making sense of latent TGFbeta activation. J. Cell Sci. 116, 217-224. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15737 | - |
| dc.description.abstract | 肌肉調控因子Myf5在肌肉發育中扮演了重要的角色,在斑馬魚Myf5中具有一個
microRNA(miR), 稱為miR3906 或miR-I300 , 目前已經被報導能夠來抑制 dickkopf-3-related gene (dkk3r 或 dkk3a),並進一步來調控myf5啟動子活性。然而會與 Dkk3a結合經由訊息傳遞來調控myf5的膜接受器依然是未知的。 為了探討會與Dkk3a結合的膜接受器,我們利用免疫沉澱的實驗與LC-MS/MS質譜 分析來篩選可能與Dkk3a結合的膜接受器,最後篩選到了Integrin α6b (Itgα6b)為可能與 Dkk3a結合的膜蛋白受器。為進一步確認,我們利用cell-surface binding assays來證實 Dkk3a會與Itgα6b在HEK-293T細胞膜上結合,同時Crosslinking immunoprecipitation實驗 也顯示出Itgα6b對於Dkk3a結合具有高親和力,我們進一步證實Itgα6b的β-propeller repeated domains是與Dkk3a結合的主要位置,並且當dkk3a mRNA與itgα6b mRNA注射到 胚胎中,myf5啟動子luciferase的活性會上升4倍。相反的當分別共同注射dkk3a mRNA與 itgα6b MO或itgα6b mRNA與dkk3a MO,其luciferase會下降至與控制組胚胎類似。另一方 面當itgα6b knockdown後會對胚胎造成不正常的體節形狀、較少的體節細胞數、減少或 消失的myf5表現與p38a磷酸化下降的缺失性狀,而這些在體節肌肉發育的缺失性狀與 dkk3a knockdown的胚胎是相類似的。 綜合上述實驗結果,我們證實了外泌型的Dkk3a會藉由與膜蛋白受器Itgα6b結合來 增加p38a蛋白的磷酸化進而在斑馬魚肌肉發育過程中來活化myf5啟動子的活性。 | zh_TW |
| dc.description.abstract | Myogenic regulatory factor Myf5 plays important roles in muscle development. In
zebrafish myf5, a microRNA (miR), termed miR-3906 or miR-In300, was reported to silence dickkopf-3-related gene (dkk3r or dkk3a), resulting in repressing myf5 promoter activity. However, the membrane receptor which interacts with ligand Dkk3a to control myf5 expression through signal transduction remains unknown. To address this question, we applied immunoprecipitation and LC-MS/MS mass spectrometry to screen putative membrane receptors of Dkk3a, and Integrin α6b (Itgα6b) was finally identified. To further confirm this, we employed cell-surface binding assays which showed that Dkk3a and Itgα6b co-expressed at the cell membrane of HEK-293T cells. Crosslinking immunoprecipitation data also showed high affinity of Itgα6b for Dkk3a. We further proved that the β-propeller repeated domains of Itgα6b are key segments bound by Dkk3a. Moreover, when dkk3a and itgα6b mRNAs were co-injected into embryos, luciferase activity was upregulated four-fold greater than that of control embryos. In contrast, the luciferase activities of dkk3a-knockdown embryos co-injected with itgα6b mRNA and itgα6b-knockdown embryos co-injected with dkk3a mRNA were decreased in a manner similar to control embryos, respectively. Knockdown of itgα6b resulted in abnormal somite shape, fewer somitic cells, weaker, or absent, myf5 expression, and reduced protein level of phosphorylated p38a in somites. These defective phenotypes of trunk muscular development were similar to those of dkk3a-knockdown embryos. We demonstrated that the secreted ligand Dkk3a binds to the membrane receptor Itgα6b, which increases the protein level of phosphorylated p38a and activates myf5 promoter activity of zebrafish embryos during myogenesis. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T17:51:02Z (GMT). No. of bitstreams: 1 ntu-101-D96b43002-1.pdf: 12425759 bytes, checksum: dfb3616e6684b6a3e1a605d5d32cc200 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 中文摘要 ---------------------------------------------1
Abstract ---------------------------------------------2 Introduction -----------------------------------------3 Materials and Methods --------------------------------5 Results ----------------------------------------------9 Conclusion ------------------------------------------15 Discussion ------------------------------------------16 Reference -------------------------------------------20 Figures and supplementary figures -------------------25 Table -----------------------------------------------43 Publication ----------------------------------------46 | |
| dc.language.iso | en | |
| dc.subject | Dickkopf | zh_TW |
| dc.subject | 斑馬魚 | zh_TW |
| dc.subject | 肌肉 | zh_TW |
| dc.subject | 膜接受器 | zh_TW |
| dc.subject | integrin | zh_TW |
| dc.subject | muscle | en |
| dc.subject | integrin | en |
| dc.subject | membrane receptor | en |
| dc.subject | Dickkopf | en |
| dc.subject | Zebrafish | en |
| dc.title | 斑馬魚Dickkopf-3-related gene (Dkk3a) 藉由膜蛋白受器
Integrinα6b 調控肌肉調控蛋白myf5 基因啟動子的活性 | zh_TW |
| dc.title | Zebrafish Dickkopf-3-related gene (Dkk3a) regulates the
promoter activity of myf5 through interaction with membrane receptor Integrinα6b | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 周子賓(ze-Bin Chou),張震東(Geen-Dong Chang),胡清華(Chin-Hwa Hu),楊啟伸(Chii-Shen Yang),管永恕(Yung-Shu Kuan) | |
| dc.subject.keyword | 斑馬魚,Dickkopf,肌肉,膜接受器,integrin, | zh_TW |
| dc.subject.keyword | Zebrafish,Dickkopf,muscle,membrane receptor,integrin, | en |
| dc.relation.page | 46 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2012-10-17 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 12.13 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
