Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15731
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃德富(Tur-Fu Huang)
dc.contributor.authorChia-I Yenen
dc.contributor.author顏嘉怡zh_TW
dc.date.accessioned2021-06-07T17:50:55Z-
dc.date.copyright2013-03-04
dc.date.issued2012
dc.date.submitted2012-10-30
dc.identifier.citationArakida, Y., Suwa, K., Ohga, K., Yokota, M., Miyata, K., & Yamada, T. (1998). In vitro pharmacologic profile of ym158, a new dual antagonist for ltd4 and txa2 receptors. J Pharmacol Exp Ther., 287, 633-639.
Ashida, Y., Matsumoto, T., Kuriki, H., Shiraishi, M., Kato, K., & Terao, S. (1989). A novel anti-asthmatic quinone derivative, aa-2414 with a potent antagonistic activity against a variety of spasmogenic prostanoids. Prostaglandins., 38, 91-112.
Ashton, A., Cheng, Y., Helisch, A., & Ware, J. (2004). Thromboxane A2 receptor agonists antagonize the proangiogenic effects of fibroblast growth factor-2: role of receptor internalization, thrombospondin-1, and alpha(v)beta3. Circ Res., 94, 735-742.
Belhassen, L., Pelle, G., Dubois-Rande, J., & Adnot, S. (2003). Improved endothelial function by the thromboxane a2 receptor antagonist s18886 in patients with coronary artery disease treated with aspirin. J Am Coll Cardiol. , 41, 1198-1204.
Belton, O., Byrne, D., & Kearney, D. ( 2000). Cyclooxygenase-1 and -2- dependent prostacyclin formation in patients with atherosclerosis. Circulation, 102, 840-845.
Bhatt, D., & Topol, E. (2003). Scientific and therapeutic advances in antiplatelet therapy. . Nature Rev, 2, 15-28.
Bousser, M., Amarenco, P., Chamorro, A., Fisher, M., Ford, I., Fox, K. M., Hennerici, M., & Mattle, H. P. (2011). Terutroban versus aspirin in patients with cerebral ischaemic events (PERFORM): a randomised, double-blind, parallel-group trial. Lancet, 377, 2013-2022.
Carty, Macey, Mccartney, & Rampton. (2000). Ridogrel, a dual thromboxane synthase inhibitor and receptor antagonist: anti-inflammatory profile in inflammatory bowel disease. Aliment Pharmacol Ther, 14, 807-817.
Cayatte, A., Du, Y., Krasinski, J., Lavielle, G., Verbeuren, T., & Cohen, R. (2000). The Thromboxane Receptor Antagonist S18886 but Not Aspirin Inhibits Atherogenesis in Apo E-Deficient Mice : Evidence That Eicosanoids Other Than Thromboxane Contribute to Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 20, 1724-1728.
Chamorro, A. (2009). TP receptor antagonism: a new concept in atherothrombosis and stroke prevention. [Review]. Cerebrovasc Dis, 27, 20-27.
Chang, M., Lin, H., Peng, H., & Huang, T. (1998). Antithrombotic Effect of Crotalin, a Platelet Membrane Glycoprotein Ib Antagonist From Venom of Crotalus atrox. Blood, 91, 1582-1589.
Coker, S. (1984). Further evidence that thromboxane exacerbates arrhythmias: effects of uk38485 during coronary artery occlusion and reperfusion in anaesthetized greyhounds. J Mol Cell Cardiol., 16, 633-641.
DiMinno, G., & Silver, M. (1983). Mouse antithrombotic assay: a simple method for the evaluation of antithrombotic agents in vivo. Potentiation of antithrombotic activity by ethyl alcohol. J. Pharmacol. Exp. Ther., 225, 57-60.
Dogne, J., Hanson, J., & Leval, d. (2006). From the design to the clinical application of thromboxane modulators. Curr. Pharm. Des., 12.
Dogne, J., Hanson, J., & Pratico, D. (2005). Thromboxane, prostacyclin and isoprostanes: therapeutic targets in atherogenesis. Trends Pharmacol Sci., 26, 639-644.
Dogne, J., Hanson, J., Supuran, C., & Pratico, D. (2006). Coxibs and cardiovascular side-effects: from light to shadow. Curr Pharm Des, 12, 971-975.
Dowd, B., Hnatowich, M., Regan, J., Leader, W., Caron, M., & Lefkowitz, R. (1988). Site-directed mutagenesis of the cytoplasmic domains of the human beta 2-adrenergic receptor. Localization of regions involved in g protein-receptor coupling. 263, 15985-15992.
Fiddler, G., & Lumley, P. (1990). Preliminary clinical studies with thromboxane synthase inhibitors and thromboxane receptor blockers. A review. Circulation, 81, 169-178.
Francois, H., Makhanova, N., Ruiz, P., Ellison, J., Mao, L., Rockman, H., & Coffman, T. M. (2008). A role for the thromboxane receptor in l-NAME hypertension Renal physiology, 295, 1096-1102.
Funk, C., Furci, L., Moran, N., & Fitzgerald, G. (1993). Point mutation in the seventh hydrophobic domain of the human thromboxane a2 receptor allows discrimination between agonist and antagonist binding sites. Mol Pharmacol. , 44, 934-939.
Gao, Y., Yokota, R., Tang, S., Ashton, A., & Ware, J. (2000). Reversal of angiogenesis in vitro, induction of apoptosis, and inhibition of AKT phosphorylation in endothelial cells by thromboxane A(2). Circ Res., 87, 739-745.
Ghuysen, A., Dogné, J., Chiap, P., Rolin, S., Masereel, B., Lambermont, B., & Kolh, P. ( 2005). Pharmacological profile and therapeutic potential of BM-573, a combined thromboxane receptor antagonist and synthase inhibitor. Cardiovasc Drug Rev, 23, 1-14.
Goldhaber, S., & Bounameaux, H. (2012). Pulmonary embolism and deep vein thrombosis. Lancet, 379, 1835-1846.
Gorman, R., Johnson, R., Spilman, C., & Aiken, J. (1983). Inhibition of platelet thromboxane a2 synthase activity by sodium5-(30-pyridinyl methyl)benzofuran-2-carboxylate. Prostaglandins., 26, 325-342.
Hamberg, M., Svensson, J., & Samuelsson, B. (1975). Thromboxanes: A new group of biologically active compounds derived from prostaglandin endoperoxides. Proc Natl Acad Sci U S A 72, 2994-2998.
Hanasaki, K., & Arita, H. (1988). Characterization of a new compound, s-145, as a specific txa2 receptor antagonist in platelets. . Thromb Res., 50, 365-376.
Inoue, I., Taba, Y., & Miwa, C. (2002). Transcriptional and posttranslational regulation of cyclooxygenase-2 expression by fluid shear stress in vascular endothelial cells. Arterioscl Thromb Vasc Biol 22, 1415-1420.
Janssen, L., & Tazzeo, T. (2002). Involvement of TP and EP3 Receptors in Vasoconstrictor Responses to Isoprostanes in Pulmonary Vasculature Pharmacology and Experimental Therapeutics, 301, 1060-1066.
Jin, Y., & Hwang, K. (2004). Antiplatelet and antithrombotic activities of CP201, a newly synthesized 1,4-maphthoquinone derivative. Vascul Pharmacol, 41, 35-41.
Kobayashi, T., Tahara, Y., Matsumoto, M., & Iguchi, M. (2004). Roles of thromboxane A2 and prostacyclin in the development of atherosclerosis in apoE-deficient mice. J Clin Invest., 114, 784-794.
Ku, E., McPherson, S., & Signor, C. (1983). Characterization of imidazo[1,5-a]pyridine-5-hexanoic aci (cgs 13080) as a selective thromboxane synthetase inhibitor using in vitro and in vivo biochemical models. . Biochem Biophys Res Commun., 112, 899-906.
Laine, L. (2006). Review article: gastrointestinal bleeding with low-dose aspirin—what's the risk? Aliment Pharmacol Ther, 24, 897-908.
Leval, X., Hanson, J., & David, L. (2004). New developments on thromboxane and prostacyclin modulators part II: prostacyclin modulators. Curr Med Chem 11, 1243-1252.
Mannucci, P. (2004). Treatment of vonWillebrand's disease. N. Engl. J. Med., 351, 683-694.
Meadows, T., & Bhatt, D. (2007). Clinical Aspects of Platelet Inhibitors and Thrombus Formation. Circ Res. , 100, 1261-1275.
Michel, F., Silvestre, J., Waeckel, L., Corda, S., Verbeuren, T., & Vilaine, J. (2006). Thromboxane A2/prostaglandin H2 receptor activation mediates angiotensin II-induced postischemic neovascularization. Arterioscler Thromb Vasc Biol 26, 1493.
Michos, E., Ardehali, R., Blumenthal, R., Lange, R., & Ardehali, H. (2006). Aspirin and clopidogrel resistance. Mayo Clin Proc 81, 518-526.
Miggin, S., & Kinsella, B. (1998). Expression and tissue distribution of the mrnas encoding the human thromboxane a2 receptor (tp) alpha and beta isoforms. . Biochim Biophys Acta., 1425, 543-559.
Naik, M., Stalker, T., Brass, L., & Naik, U. (2012). JAM-A protects from thrombosis by suppressing integrin aIIbb3-dependent outside-in signaling in platelets. Blood, 119, 3352-3360.
Namba, T., Sugimoto, Y., Hirata, M., Hayashi, Y., Honda, A., & Watabe, A. (1992). Mouse thromboxane A2 receptor: cDNA cloning, expression and northern blot analysis. . Biochem Biophys Res Commun 184, 1197-1203.
Needleman, P., Moncada, S., Bunting, S., Vane, J., Hamberg, M., & Samuelsson, B. (1976). Identification of an enzyme in platelet microsomes which generates thromboxane A2 from prostaglandin endoperoxides. Nature 261, 558-560.
Offermanns, S. (2006). Activation of platelet function through G protein-coupled receptors. Circ. Res., 99, 1293-1304.
Offermanns, S., Laugwitz, K., Spicher, K., & Schultz, G. (1994). G proteins of the G12 family are activated via thromboxane A2 and thrombin receptors in human platelets. . Proc Natl Acad Sci U S A 91, 504-508.
Ogletree, M., Harris, D., Greenberg, R., Haslanger, M., & Nakane, M. (1985). Pharmacological actions of sq 29,548, a novel selective thromboxane antagonist. . J Pharmacol Exp Ther., 235, 435-441.
Osende, J., Shimbo, D., Fuster, V., Dubar, M., & Badimon, J. (2004). Antithrombotic effects of s 18886, a novel orally active thromboxane a2 receptor antagonist. J Thromb Haemost., 2, 492-498.
Pratico, D. (2008). Prostanoid and isoprostanoid pathways in atherogenesis. Atherosclerosis, 201, 8-16.
Ruggeri, Z. (2002). Platelets in atherothrombosis. . Nat. Med., 28, 1227-1234.
Serneri, G. N., Coccheri, C., Marubini, E., & Violi, F. (2004). Picotamide, a combined inhibitor of thromboxane A2 synthase and receptor, reduces 2-year mortality in diabetics with peripheral arterial disease: the DAVID study. Eur Heart J, 25, 1845-1852.
Shattil, S., & Newman, P. (2004). Integrins: dynamic scaffolds for adhesion and signaling in platelets. Blood, 104, 1606-1615.
Shen, R., & Tai, H. (1998). Thromboxanes: Synthase and receptors Journal of Biomedical Science 5, 153-172.
Sugimoto, H., Shichijo, M., Manabe, Y., Watanabe, A., & Shimazaki, M. (2003). An orally bioavailable small molecule antagonist of crth2, ramatroban (bay u3405), inhibits prostaglandin d2-induced eosinophil migration in vitro. J Pharmacol Exp Ther. , 305, 347-352.
Sun, F. F., Chapman, J., & McGuire, J. (1977). Metabolism of prostaglandin endoperoxide in animal tissues. . Prostaglandins Other Lipid Mediat., 14, 1055-1074.
Svensson, J., Hamberg, M., & Samuelsson, B. (1976). On the formation and effects of thromboxane A 2 in human platelets. Acta Physiol Scand, 98, 285-294.
Takayama, K., Yuhki, K., Ono, K., Fujino, T., Hara, A., & Yamada, T. (2005). Thromboxane A2 and prostaglandin F2 mediate inflammatory tachycardia. Nature Medicine 11, 562-566.
Tanaka, T., Ito, S., Higashino, R., Fukuta, Y., Fukuda, Y., & Takei, M. (1998). A new thromboxane receptor antagonist, z-335, ameliorates experimental thrombosis without prolonging the rat tail bleeding time. Thromb Res., 91, 229-235.
Thomas, D., Mannon, R., & Mannon, P. (1998). Coagulation defects and altered hemodynamic responses in mice lacking receptors for thromboxane A2. Clin Invest., 102, 1994-2001.
Tran, H., & Anand, S. (2004). Oral antiplatelet therapy in cerebrovascular disease, coronary artery disease, and peripheral arterial disease. Jama-Journal of the American Medical Association, 292(15), 1867-1874.
Tsuboi, K., Sugimoto, Y., & Ichikawa, A. (2002). Prostanoid receptor subtypes. Prostaglandins Other Lipid Mediat., 68, 535-556.
Turek, J., Halmos, T., Sullivan, N., Antonakis, K., & Breton, G. (2002). Mapping of a ligand-binding site for the human thromboxane a2 receptor protein. J Biol Chem., 277, 16791-16797.
Uchida, Y., & Murao, S. (1981). Effects of thromboxane synthetase inhibitors on cyclical reduction of coronary blood flow in dogs. . Jpn Heart J., 22, 971-975.
Vane, J., Bakhle, Y., & Botting, R. (1998). CYCLOOXYGENASES 1 AND 2. Annual Review of Pharmacology and Toxicology, 38, 97-120.
Vermylen, J., Defreyn, G., Carreras, L., Machin, S., Schaeren, V., & Verstraete, M. (1981). Thromboxane synthetase inhibition as antithrombotic strategy. Lancet, 8229, 1073-1075.
Yamada, N., Miyamoto, M., Isogaya, M., Suzuki, M., Ikezawa, S., & Ohno, M. (2003). Tra-418, a novel compound having both thromboxane a(2) receptor antagonistic and prostaglandin i(2) receptor agonistic activities: Its antiplatelet effects in human and animal platelets. . J Thromb Haemost., 1, 1813-1819.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15731-
dc.description.abstract血管栓塞是由一系列血小板與凝血因子的異常所導致,對於心血管、腦血管及周邊血管造成一定程度的影響。經過一系列化合物的篩選,我們發現化合物Ctkf6f2具抑制血小板凝集的活性,並且在測試濃度中不影響細胞膜完整性。在人類血小板懸浮液中,Ctkf6f2呈濃度相關性的抑制由膠原蛋白(collagen),花生四烯酸(A.A.)及U46619(TXA2類似物)所引起的血小板凝集,其IC50分別為3.4±0.6μM,3.2±1.0μM及1.17±0.2μM。 Ctkf6f2呈濃度相關抑制由collagen引起的 P-selectin表現量及TXB2的形成。在酵素活性分析方面,Ctkf6f2部分抑制thromboxane synthase的活性,但不影響COX-1酵素活性。且發現在U46619誘發血小板凝集的濃度反應曲線圖上,Ctkf6f2及5185對於TP受體呈現競爭性的拮抗作用。另一方面, 靜脈注射Ctkf6f2 (10 μg/g) 能顯著的抑制螢光素前處理之小鼠腸繫膜小靜脈血栓生成,且不影響小鼠的出血時間。同時,Ctkf6f2能有效抑制老鼠PRP之凝集反應,且更優於化合物5185。在肺栓塞實驗中,Ctkf6f2 能增加小鼠存活率及減少循環阻塞與栓子形成的數目。當口服給予Ctkf6f2 (80 mg/kg/day) 三天,Ctkf6f2證明能抑制血小板凝集且不會引起急性胃部之損傷,顯示其為口服有效之化合物。總結上述結果,Ctkf6f2於體內及體外實驗皆呈現強效抑制血小板之活性,此化合物具潛力進入未來的抗血栓藥物之研發。zh_TW
dc.description.abstractAtherothrombosis is a systemic process that affects the cardiovascular, cerebrovascular, and peripheral arterial systems. The abnormality of platelet activation plays a key role in its pathogenesis. We screened a series of synthetic compounds and found Ctkf6f2, a derivative of compound 5185, possesses concentration-dependent inhibition on platelet aggregation of washed human platelets induced by collagen (IC50=3.4±0.6μM) , arachidonic acid (IC50=3.2±1.0μM) and U46619 (IC50=1.17±0.2μM). Ctkf6f2 inhibited P-selectin expression and TXB2 formation induced by collagen in a concentration-dependent manner. In the enzyme assay, we found Ctkf6f2 partially inhibited thromboxane synthase activity and had little effect on COX-1 enzyme. Moreover, Ctkf6f2 produced a right-shift of the concentration- response curve of U46619, indicating a competitive antagonism on TP receptor. On the other hand, Ctkf6f2 significantly inhibited thrombus formation of the irradiated mesenteric vessels in fluorescein sodium-pretreated mice without significantly affecting the bleeding time induced by tail transaction. In addition, Ctkf6f2 significantly impaired platelet aggregation of mice PRP induced by collagen and U46619 compared to compound 5185. In the pulmonary embolism model, Ctkf6f2 was proved to increase the survival rate, reduce the circulation obstruction and number of emboli formation. Also, it exerts antiplatelet potent upon oral administration. Taken together, Ctkf6f2 may become a new potent antithrombotic agent.en
dc.description.provenanceMade available in DSpace on 2021-06-07T17:50:55Z (GMT). No. of bitstreams: 1
ntu-101-R99443014-1.pdf: 2976986 bytes, checksum: ba174a5825121b77fe0fadc48c64eddf (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents中文摘要 i
Abstract ii
Abbreviation table iii
Chapter1 Introduction 1
1.1 Atherothrombosis 1
1.2 Platelet adhesion, activation and aggregation 2
1.3 Arachidonic acid derivatives and Eicosanoids 3
1.4 Biosynthesis of thromboxane A2 6
1.5 Physiological role of thromboxane A2 7
1.6 Thromboxane A2 receptor 9
1.7 Therapeutic targeting of thromboxane receptor 11
1.8 Cyclooxygenase inhibitors 12
1.9 Limitations of aspirin 12
1.10 Inhibitors of thromboxane synthase 14
1.11 Antagonists of thromboxane A2 receptor 15
1.12 Dual-acting drugs 17
1.13 TP receptor antagonist and TXS synthase inhibitor 18
1.14 Aim of the research 19
Chapter 2 Materials and methods 33
2.1 Reagents and Animals 33
2.2 Preparaion of washed human platelets and platelet-rich plasma 34
2.3 Measurements of platelet aggregation 35
2.4 LDH assay 35
2.5 Measurement of thromboxane B2 formation 36
2.6 Flow cytometric analysis of P-selectin expression 36
2.7 Measurement of intracellular Ca2+ mobilization 37
2.8 Western blotting and immunoprecipitation 37
2.9 Ex vivo mouse platelet aggregation 38
2.10 Fluorescein sodium-induced platelet thrombus formation in mesenteric venules 39
2.11 Pulmonary embolism 40
2.12 Tail bleeding time in mice 40
2.13 Gastric ulcer assay 41
2.14 Statistic analysis 41
Chapter 3 Results 42
3.1 Ctkf6f2 was selected from 5185 derivatives for further study 42
3.2 Effect of Ctkf6f2 on platelet aggregation 43
3.3 Effect of Ctkf6f2 on platelet LDH release 44
3.4 Effect of Ctkf6f2 on collagen and U46619–induced intracellular Ca2+ mobilization 44
3.5 Effect of Ctkf6f2 on collagen and U46619–induced granule secretion 45
3.6 Effect of Ctkf6f2 on TXB2 formation of human platelets by collagen 45
3.7 Effect of competitive inhibition of compound 5185 and Ctkf6f2 on U46619-induced platelet aggregation 45
3.8 Effect of Ctkf6f2 on in vivo thrombosis mouse model 46
3.9 Effect of Ctkf6f2 on ex vivo mouse platelet aggregation 47
3.10 Effect of Ctkf6f2 on pulmonary histology 48
3.11 Effect of Ctkf6f2 on pulmonary thromboembolism 48
3.12 Effect of orally given Ctkf6f2 on ex vivo mouse platelet aggregation 49
3.13 Lack of gastric lesion in mice as Ctkf6f2 was orally administrated 49p;
3.14 Effect of Ctkf6f2 on tail bleeding time in mouse model 49
Chapter 4 Discussion 75
Chapter 5 Conclusion and perspective 83
References 87
dc.language.isoen
dc.subject凝集zh_TW
dc.subject血栓zh_TW
dc.subject血小板zh_TW
dc.subjectplateleten
dc.subjectthrombusen
dc.subjectaggregationen
dc.title新穎抗血栓藥物Ctkf6f2之藥理作用及機轉之探討zh_TW
dc.titleAction Mechanism and Pharmacological Effects of the Novel Antithrombotic Agent Ctkf6f2en
dc.typeThesis
dc.date.schoolyear101-1
dc.description.degree碩士
dc.contributor.oralexamcommittee鄧哲明(Che-Ming Teng),顏茂雄(Mao-Hsiung Yen),楊春茂,陳文彬
dc.subject.keyword血栓,血小板,凝集,zh_TW
dc.subject.keywordthrombus,platelet,aggregation,en
dc.relation.page96
dc.rights.note未授權
dc.date.accepted2012-10-30
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥理學研究所zh_TW
顯示於系所單位:藥理學科所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
2.91 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved