Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15720
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor汪重光(Chorng-Kuang Wang)
dc.contributor.authorKeng-Yu Linen
dc.contributor.author林耿裕zh_TW
dc.date.accessioned2021-06-07T17:50:43Z-
dc.date.copyright2013-01-16
dc.date.issued2012
dc.date.submitted2012-11-26
dc.identifier.citation[1] V. Ramakrishnan and P. T. Balsara, “A Wide-Range, High-Resolution, Compact, CMOS Time to Digital Converter,” 19th International Conference on VLSI Design, held jointly with 5th International Conference on Embedded Systems and Design, Jan. 2006.
[2] M. Lee and A. A. Abidi, “A 9b, 1.25ps Resolution Coarse-Fine Time-to-Digital Converter in 90nm CMOS that Amplifies a Time Residue,” IEEE Symposium on VLSI Circuits, pp.168-169, Jun. 2007.
[3] C. M. Hsu, “Techniques for High-Performance Digital Frequency Synthesis and Phase Control,” in PhD Thesis, Massachusetts Institute of Technology, Sep. 2008.
[4] M. Gorbics, K. Roberts, and R. Sumner, “Vernier Delay Line Interpolator and Coarse Counter Realignment,” U.S. Patent 5838754, Mar. 11, 1997.
[5] M. Lee, M. E. Heidari, and A. A. Abidi, “A Low-Noise Wideband Digital Phase-Locked Loop Based on a Coarse-Fine Time-to-Digital Converter with Subpicosecond Resolution” IEEE Journal of Solid-State Circuits, vol. 44, no. 10, pp. 2808-2816, Oct. 2009.
[6] M. Lee, M. E. Heidari, and A. A. Abidi, “A Low Noise, Wideband Digital Phase-Locked Loop Based on a New Time-to-Digital Converter with Subpicosecond Resolution” IEEE Symposium on VLSI Circuits, pp.112-113, Jun. 2008.
[7] C. M. Hsu, M. Z. Straayer, and M. H. Perrott, “A Low-Noise Wide-BW 3.6-GHz Digital ΔΣ Fractional-N Frequency Synthesizer with a Noise-Shaping Time-to-Digital Converter and Quantization Noise Cancellation,” IEEE Journal of Solid-State Circuits, vol. 43, no. 12, pp. 2776-2786, Dec. 2008.
[8] M. Z. Straayer and M. H. Perrott, “An Efficient High-Resolution 11-bit Noise-Shaping Multipath Gated Ring Oscillator TDC,” IEEE Symposium on VLSI Circuits, pp.82-83, Jun. 2008.
[9] M. Z. Straayer and M. H. Perrott, “A Multi-Path Gated Ring Oscillator TDC with First-Order Noise Shaping,” IEEE Journal of Solid-State Circuits, vol. 44, no. 4, pp. 1089-1098, Apr. 2009.
[10] M. Z. Straayer, “Noise Shaping Techniques for Analog and Time to Digital Converters Using Voltage Controlled Oscillators,” in PhD Thesis, Massachusetts Institute of Technology, Jun. 2008.
[11] R. E. Best, Phase-Locked loops – Design, Simulation, and Applications, 6th edition, McGraw-Hill, 2007.
[12] G. F. Franklin, J. D. Powell, and A. Emami-Naeini, Feedback Control of Dynamic Systems, 5th edition, Pearson Prentice Hall, 2006.
[13] M. Perrott, M. Trott, and C. Sodini, “A Modeling Approach for σ-δ Fractional-N Frequency Synthesizers Allowing Straightforward Noise Analysis,” IEEE Journal of Solid-State Circuits, vol. 37, no. 8, pp. 1028-1038, Aug. 2002.
[14] M. Perrott, “PLL Design Using the PLL Design Assistant Program.” [Online]. Available: http://www-mtl.mit.edu/researchgroups/perrottgroup/tools.html
[15] J. A. Tierno, A. V. Rylyakov, and D. J. Friedman, “A Wide Power Supply Range, Wide Tuning Range, All Static CMOS All Digital PLL in 65 nm SOI,” IEEE Journal of Solid-State Circuits, vol. 43, no. 1, pp. 42-51, Jan. 2008.
[16] J. Ayers, K. Mayaram, and T. S. Fiez, “An Ultralow-Power Receiver for Wireless Sensor Networks,” IEEE Journal of Solid-State Circuits, vol. 49, no. 9, pp. 1759-1769, Sep. 2010.
[17] M. Park and M. H. Perrott, “A 78 dB SNDR 87 mW 20 MHz Bandwidth Continuous-Time ΔΣ ADC with VCO-Based Integrator and Quantizer Implemented in 0.13 μm CMOS,” IEEE Journal of Solid-State Circuits, vol. 44, no. 12, pp. 3344-3358, Dec. 2009.
[18] S. Y. Yang, W. Z Chen, and T. Y. Lu, “A 7.1 mW, 10 GHz All Digital Frequency Synthesizer with Dynamically Reconfigured Digital Loop Filter in 90 nm CMOS Technology,” IEEE Journal of Solid-State Circuits, vol. 45, no. 3, pp. 578-586, Mar. 2010.
[19] S. J. Lee, B. Kim, and K. Lee, “A Novel High-Speed Ring Oscillator for Multiphase Clock Generation Using Negative Skewed Delay Scheme,” IEEE Journal of Solid-State Circuits, vol. 32, no. 2, pp. 289-291, Apr. 1997.
[20] N. Weste and D. Harris, CMOS VLSI Design – A circuits and Systems Perspective, 3rd ed., Addison-Wesley, 2005.
[21] R. Baker, CMOS – Circuit Design, Layout and Simulation, revised second edition, John Wiley & Sons, Inc., 2008.
[22] L. Fanori, A. Liscidini, and R. Castello, “3.3GHz DCO with a Frequency Resolution of 150Hz for All-Digital PLL,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 48-49, Feb. 2010.
[23] L. Fanori, A. Liscidini, and R. Castello, “Capacitive Degeneration in LC-Tank Oscillator for DCO Fine-Frequency Tuning,” IEEE Journal of Solid-State Circuits, vol. 45, no. 12, pp. 2737-2745, Dec. 2010.
[24] R. B. Staszewski and P. T. Balsara, All-Digital Frequency Synthesizer in Deep-Submicron CMOS, John Wiley & Sons, Inc., 2006.
[25] R. B. Staszewski, C. M. Hung, D. Leipold, and P. T. Balsara, “A First Multigigahertz Digitally Controlled Oscillatro for Wireless Applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 51, no. 11, pp. 2154-2164, Nov. 2003.
[26] M. Z. Straayer and M. H. Perrott, “ A Multi-Path Gated Ring Oscillator TDC with First-Order Noise Shaping,” IEEE Journal of Solid-State Circuits, vol. 44, pp. 1089-1098, Apr. 2009.
[27] X. Liangge, S. Lindfors, K. Stadius, and J. Ryynanen, “A 2.4-GHz Low-Power All-Digital Phase-Locked Loop,” IEEE Journal of Solid-State Circuits, vol. 45, no. 8, pp. 1513-1521, Aug. 2010.
[28] W. Grollitsch, R. Nonis, and N. D. Dalt, “A 1.4psrms-Period-Jitter TDC-Less Fractional-N Digital PLL with Digitally Controlled Ring Oscillator in 65 nm CMOS,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 478-480, Feb. 2010.
[29] D. S. Kim, H. Song, T. Kim, and D. K. Jeong, “A 0.3-1.4 GHz All-Digital Fractional-N PLL with Adaptive Loop Gain Controller,” IEEE Journal of Solid-State Circuits, vol. 45, no. 11, pp. 2300-2311, Nov. 2010.
[30] M. Brownlee, P. K. Hanumolu, K. Mayaram, and U. K. Moon, “A 0.5 to 2.5 GHz PLL with Fully Differential Supply-Regulated Tuning,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 588-589, Feb. 2006.
[31] E. Temporiti, C. Weltin-Wu, D. Baldi, R. Tonietto, and F. Svelto, “A 3 GHz Fractional All-Digital PLL with a 1.8 MHz Bandwidth Implementing Spur Reduction Techniques,” IEEE Journal of Solid-State Circuits, vol. 44, no. 3, pp. 824-834, Mar. 2009.
[32] C. Weltin-Wu, E. Temporiti, D. Baldi, and F. Svelto, “A 3GHz Fractional-N All-Digital PLL with Precise Time-to-Digital Converter Calibration and Mismatch Correction,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 344-618, Feb. 2008.
[33] R. B. Staszewski and P. T. Balsara, “Phase-Domain All-Digital Phase-Locked Loop,” IEEE Transactions on Circuits and Systems II, vol. 52, no. 3, pp. 159-163, Mar. 2005.
[34] R. B. Staszewski, C. M. Hung, K. Maggio, J. Wallberg, D. Leipold, and P. T. Balsara, “All-Digital Phase-Domain TX Frequency Synthesizer for Bluetooth Radios in 0.13μm CMOS,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 272-273, Feb. 2004.
[35] R. B. Staszewski, D. Leipold, C. M. Hung, and P. T. Balsara, “TDC-Based Frequency Synthesizer for Wireless Applications,” IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, pp. 215-218, Jun. 2004.
[36] R. B. Staszewski, S. Vemulapalli, P. Vallur, J. Wallberg, and P. T. Balsara, “1.3 V 20 ps Time-to-Digital Converter for Frequency Synthesis in 90-nm CMOS,” IEEE Transactions on Circuits and Systems II, vol. 53, no. 3, pp. 220-224, Mar. 2006.
[37] R. B. Staszewski et al., “All-Digital PLL and Transmitter for Mobile Phones,” IEEE Journal of Solid-State Circuits, vol. 40, no. 12, pp. 2469-2481, Dec. 2005.
[38] R. Srinivasan, D. Z. Turker, S. W. Park, and E. S. Sinencio, “A Low-Power Frequency Synthesizer with Quadrature Signal Generation for 2.4 GHz Zigbee Transceiver Applications,” IEEE International Symposium on Circuit and Systems, pp.429-432, May 2007.
[39] Y. C. Chuang, 'An All-Digital Phase-Locked with Dynamic Phase Control for Fast Locking,' in Master Thesis, Graduate Institute of Electronics Engineering, National Taiwan University, May 2011.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15720-
dc.description.abstract由於科技的不斷進步,元件尺寸及功率消耗持續地在下降,在單一晶片中,越來越多的功能區塊被包含進去,然而,隨著製程的演進,不理想的效應也伴隨著出現。類比元件面臨著元件特性的衰退,像是供給電壓的下降、漏電流的增加等等,因此,使用數位電路取代類比電路已成了一種趨勢。
2.4-GHz工業、科學以及醫療(ISM)頻帶被許多短距離無線通訊系統所使用,像是WLAN、Bluetooth以及Zigbee。近年來,鎖相迴路被廣泛地應用在有線及無線通訊系統之中,如同上述所提到的,全數位鎖相迴路更適合應用在先進的製程之中。因此,本論文提出一種使用低功率時間數位轉換器的全數位鎖相迴路。
在論文的一開始,會先分析此設計,並提出相對應的模型,緊接著會介紹電路如何實現。最後,本設計使用台積電0.18微米製程製造,而時間數位轉換器省下了66%的功率消耗。量測到的相位雜訊在1 MHz及10 MHz的頻率偏移下分別為-114 dBc/Hz和-118 dBc/Hz,量測到的均方根時脈抖動為0.64 ps。在1.8 V的供給電壓下量測到的功率消耗為14.1 mW。
zh_TW
dc.description.abstractDue to the progress in technology, device size and power consumption keep scaling down. Moreover, more and more function blocks are integrated in a single chip. However, there are also some non-ideal effects accompanied with the progressing CMOS technology. Analog devices suffer from the degrading characteristic such as decreasing supply voltage and increasing leakage current. Thus, it is a tendency that using digital circuits to replace analog circuits.
The 2.4-GHz industrial, scientific and medical (ISM) band is utilized by various short-range wireless systems such as WLAN, Bluetooth and Zigbee. Recently, phase-locked loops (PLLs) are widely used in wireless and wireline communication. As mentioned above, all-digital phase-locked loops (ADPLLs) are more suitable for advanced technology. Thus, this thesis presents an all-digital phase-locked loop with low power time-to-digital (TDC) converter.
The design is analyzed and modeled first, than the implantation is presented. Finally, the chip is fabricated in the TSMC 0.18 μm CMOS technology. The power consumption of TDC is reduced 66%. The measured phase noise are -114 dBc/Hz and -118 dBc/Hz at 1 MHz and 10 MHz offset, respectively and the rms jitter is 0.64 ps. The power consumption is 14.1 mW from 1.8 V supply voltage.
en
dc.description.provenanceMade available in DSpace on 2021-06-07T17:50:43Z (GMT). No. of bitstreams: 1
ntu-101-R98943031-1.pdf: 2159098 bytes, checksum: 75cc422907792e2a4927622476b8d3df (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 iii
ABSTRACT v
CONTENTS vii
LIST OF FIGURES ix
LIST OF TABLES xiii
Chapter 1 Introduction 1
1.1 Introduction of All-Digital Phase-Locked Loops (ADPLLs) 1
1.1.1 Time-to-Digital Converter (TDC) 1
1.1.2 Digital Loop Filter (DLF) 3
1.1.3 Digital-Controlled Oscillator (DCO) 4
1.1.4 Divider 5
1.1.5 Summary 6
1.2 Motivation 7
1.3 Overview of this thesis 7
Chapter 2 Proposed ADPLL with Low Power Time-to Digital Converter Design 9
2.1 Principle of the Proposed Architecture 9
2.1.1 Background 9
2.1.2 Gated-Ring Oscillator based Time-to-Digital Converter 11
2.1.3 Proposed Low Power Time-to-Digital Converter 12
2.2 Linear Model Analysis of Proposed ADPLL 14
2.2.1 Coarse-tune mode 14
2.2.2 Fine-tune mode 15
2.2.3 Stability Analysis 16
2.2.4 Hold range and Lock range 18
2.2.5 Phase Noise and Jitter 20
2.2.6 Design Flow and Behavior System Simulation 24
2.3 Circuit Implementations 28
2.3.1 Time-to-Digital Converter 28
2.3.2 Digital Controlled Oscillator 35
2.3.3 Digital Loop Filter 38
2.3.4 Summary 40
Chapter 3 Experimental Results 41
3.1 Test Setup 41
3.2 Experimental Results 43
3.3 Summary 49
Chapter 4 Conclusions 53
REFERENCE 55
dc.language.isoen
dc.subject時間數位轉換器zh_TW
dc.subject全數位鎖相迴路zh_TW
dc.subject低功率zh_TW
dc.subjectLow Poweren
dc.subjectTDCen
dc.subjectAll digital phase locked loopen
dc.title應用於Zigbee之低功率全數位鎖相迴路設計zh_TW
dc.titleDesign of All-Digital Phase-Locked Loop with Low Power Time-to-Digital Converter for Zigbee Applicationsen
dc.typeThesis
dc.date.schoolyear101-1
dc.description.degree碩士
dc.contributor.oralexamcommittee劉深淵,林宗賢,郭泰豪,黃柏鈞
dc.subject.keyword全數位鎖相迴路,低功率,時間數位轉換器,zh_TW
dc.subject.keywordAll digital phase locked loop,Low Power,TDC,en
dc.relation.page60
dc.rights.note未授權
dc.date.accepted2012-11-27
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
2.11 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved