請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15712完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林致廷 | |
| dc.contributor.author | Che-Wei Huang | en |
| dc.contributor.author | 黃哲偉 | zh_TW |
| dc.date.accessioned | 2021-06-07T17:50:33Z | - |
| dc.date.copyright | 2013-04-26 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-12-05 | |
| dc.identifier.citation | [1] Department of Health, Executive Yuan, R.O.C (Taiwan)
[2] Wolfgang Arden, et al.,” More than moore white paper,” ITRS, 2011 [3] C. Chee-Yee and S. P. Kumar, 'Sensor networks: evolution, opportunities, and challenges,' Proceedings of the IEEE, vol. 91, pp. 1247-1256, 2003. [4] L. Ruiz-Garcia, L. Lunadei, P. Barreiro, and J. Ignacio Robla, 'A Review of Wireless Sensor Technologies and Applications in Agriculture and Food Industry: State of the Art and Current Trends,' Sensors, vol. 9, pp. 4728-4750, Jun 2009. [5] J. M. Bustillo, R. T. Howe, and R. S. Muller, 'Surface micromachining for microelectromechanical systems,' Proceedings of the IEEE, vol. 86, pp. 1552-1574, 1998. [6] M.-C. Liu, C.-L. Dai, C.-H. Chan, and C.-C. Wu, 'Manufacture of a Polyaniline Nanofiber Ammonia Sensor Integrated with a Readout Circuit Using the CMOS-MEMS Technique,' Sensors, vol. 9, pp. 869-880, Feb 2009. [7] Z. Chen and C. Lu, 'Humidity sensors: A review of materials and mechanisms,' Sensor Letters, vol. 3, pp. 274-295, Dec 2005. [8] S. T. McGovern, G. M. Spinks, and G. G. Wallace, 'Micro-humidity sensors based on a processable polyaniline blend,' Sensors and Actuators B-Chemical, vol. 107, pp. 657-665, Jun 29 2005. [9] V. Matko and J. Koprivnikar, 'Quartz sensor for water absorption measurement in glass-fiber resins,' Ieee Transactions on Instrumentation and Measurement, vol. 47, pp. 1159-1162, Oct 1998. [10] E. Traversa, 'CERAMIC SENSORS FOR HUMIDITY DETECTION - THE STATE-OF-THE-ART AND FUTURE-DEVELOPMENTS,' Sensors and Actuators B-Chemical, vol. 23, pp. 135-156, Feb 1995. [11] A. M. Kummer, A. Hierlemann, and H. Baltes, 'Tuning sensitivity and selectivity of complementary metal oxide semiconductor-based capacitive chemical microsensors,' Analytical Chemistry, vol. 76, pp. 2470-2477, May 1 2004. [12] B. Adhikari and S. Majumdar, 'Polymers in sensor applications,' Progress in Polymer Science, vol. 29, pp. 699-766, Jul 2004. [13] Y. S. Chen, Y. Li, and M. J. Yang, 'A fast response resistive thin film humidity sensor based on poly(4-vinylpyridine) and poly(glycidyl methacrylate),' Journal of Applied Polymer Science, vol. 105, pp. 3470-3475, Sep 15 2007. [14] C.-T. Lin and C.-W. Huang, 'Low-Power and High-Sensitivity Humidity Sensor Using Fe-Al-Polyaniline Blends,' Ieee Sensors Journal, vol. 10, pp. 1142-1146, Jun 2010. [15] S. E. Steen, D. LaTulipe, A. W. Topol, D. J. Frank, K. Belote, and D. Posillico, 'Overlay as the key to drive wafer scale 3D integration,' Microelectronic Engineering, vol. 84, pp. 1412-1415, May-Aug 2007. [16] V. Dixit, S. C. K. Misra, and B. S. Sharma, 'Carbon monoxide sensitivity of vacuum deposited polyaniline semiconducting thin films,' Sensors and Actuators B-Chemical, vol. 104, pp. 90-93, Jan 3 2005. [17] S. C. K. Misra, P. Mathur, M. Yadav, M. K. Tiwari, S. C. Garg, and P. Tripathi, 'Preparation and characterization of vacuum deposited semiconducting nanocrystalline polymeric thin film sensors for detection of HCl,' Polymer, vol. 45, pp. 8623-8628, Nov 25 2004. [18] S. Jain, S. Chakane, A. B. Samui, V. N. Krishnamurthy, and S. V. Bhoraskar, 'Humidity sensing with weak acid-doped polyaniline and its composites,' Sensors and Actuators B-Chemical, vol. 96, pp. 124-129, Nov 15 2003. [19] P. K. Chan, and J. Cui, 'Design of Chopper-Stabilized Amplifiers With Reduced Offset for Sensor Applications,' Ieee Sensors Journal, vol. 8, pp. 1968-1980, Nov-Dec 2008. [20] H.-H. Tsai, C.-F. Lin, Y.-Z. Juang, I. L. Wang, Y.-C. Lin, R.-L. Wang, et al., 'Multiple type biosensors fabricated using the CMOS BioMEMS platform,' Sensors and Actuators B-Chemical, vol. 144, pp. 407-412, Feb 17 2010. [21] W.-P. Chen, Z.-G. Zhao, X.-W. Liu, Z.-X. Zhang, and C.-G. Suo, 'A Capacitive Humidity Sensor Based on Multi-Wall Carbon Nanotubes (MWCNTs),' Sensors, vol. 9, pp. 7431-7444, Sep 2009. [22] R. P. Beasley, 'HEPATITIS-B VIRUS - THE MAJOR ETIOLOGY OF HEPATOCELLULAR-CARCINOMA,' Cancer, vol. 61, pp. 1942-1956, May 15 1988. [23] World Health Organization. Geneva, Switzerland: World Health Organization; Hepatitis B. (Fact sheet no. 204), 2008. [24] World Health Organization. Hepatitis B vaccines. Weekly Epidemiol Rec 2004, 79, 255-63. [25] C. W. Shepard, E. P. Simard, L. Finelli, A. E. Flore, and B. P. Bell, 'Hepatitis B virus infection: Epidemiology and vaccination,' Epidemiologic Reviews, vol. 28, pp. 112-125, 2006 2006. [26] G. H. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, and A. Majumdar, 'Bioassay of prostate-specific antigen (PSA) using microcantilevers,' Nature Biotechnology, vol. 19, pp. 856-860, Sep 2001. [27] G. Shekhawat, S. H. Tark, and V. P. Dravid, 'MOSFET-embedded microcantilevers for measuring deflection in biomolecular sensors,' Science, vol. 311, pp. 1592-1595, Mar 17 2006. [28] M. Alvarez and L. M. Lechuga, 'Microcantilever-based platforms as biosensing tools,' Analyst, vol. 135, pp. 827-836, 2010 2010. [29] J. H. Lee, K. S. Hwang, J. Park, K. H. Yoon, D. S. Yoon, and T. S. Kim, 'Immunoassay of prostate-specific antigen (PSA) using resonant frequency shift of piezoelectric nanomechanical microcantilever,' Biosensors & Bioelectronics, vol. 20, pp. 2157-2162, Apr 15 2005. [30] A. K. Gupta, P. R. Nair, D. Akin, M. R. Ladisch, S. Broyles, M. A. Alam, et al., 'Anomalous resonance in a nanomechanical biosensor,' Proceedings of the National Academy of Sciences of the United States of America, vol. 103, pp. 13362-13367, Sep 5 2006. [31] B. H. Cha, S.-M. Lee, J. C. Park, K. S. Hwang, S. K. Kim, Y.-S. Lee, et al., 'Detection of Hepatitis B Virus (HBV) DNA at femtomolar concentrations using a silica nanoparticle-enhanced microcantilever sensor,' Biosensors & Bioelectronics, vol. 25, pp. 130-135, Sep 15 2009. [32] K. Misiakos, I. Raptis, A. Gerardino, H. Contopanagos, and M. Kitsara, 'A monolithic photonic microcantilever device for in situ monitoring of volatile compounds,' Lab on a Chip, vol. 9, pp. 1261-1266, 2009 2009. [33] A. Hierlemann and H. Baltes, 'CMOS-based chemical microsensors,' Analyst, vol. 128, pp. 15-28, 2003 2003. [34] H.-H. Tsai, C.-F. Lin, Y.-Z. Juang, I. L. Wang, Y.-C. Lin, R.-L. Wang, et al., 'Multiple type biosensors fabricated using the CMOS BioMEMS platform,' Sensors and Actuators B-Chemical, vol. 144, pp. 407-412, Feb 17 2010. [35] J. Byungchul, C. Peiyan, A. Chevalier, A. Ellington, and A. Hassibi, 'A CMOS fluorescent-based biosensor microarray,' in Solid-State Circuits Conference - Digest of Technical Papers, 2009. ISSCC 2009. IEEE International, 2009, pp. 436-437,437a. [36] A. Manickam, A. Chevalier, M. McDermott, A. D. Ellington, and A. Hassibi, 'A CMOS electrochemical impedance spectroscopy biosensor array for label-free biomolecular detection,' in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2010 IEEE International, 2010, pp. 130-131. [37] C.-H. Chen, R.-Z. Hwang, L.-S. Huang, S.-M. Lin, H.-C. Chen, Y.-C. Yang, et al., 'A Wireless Bio-MEMS Sensor for C-Reactive Protein Detection Based on Nanomechanics,' Ieee Transactions on Biomedical Engineering, vol. 56, pp. 462-470, Feb 2009. [38] H.-W. Chiu, M.-L. Lin, C.-W. Lin, I. H. Ho, W.-T. Lin, P.-H. Fang, et al., 'Pain Control on Demand Based on Pulsed Radio-Frequency Stimulation of the Dorsal Root Ganglion Using a Batteryless Implantable CMOS SoC,' Ieee Transactions on Biomedical Circuits and Systems, vol. 4, pp. 350-359, Dec 2010. [39] E. Forsen, S. G. Nilsson, P. Carlberg, G. Abadal, F. Perez-Murano, J. Esteve, et al., 'Fabrication of cantilever based mass sensors integrated with CMOS using direct write laser lithography on resist,' Nanotechnology, vol. 15, pp. S628-S633, Oct 2004. [40] J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, et al., 'Translating biomolecular recognition into nanomechanics,' Science, vol. 288, pp. 316-318, Apr 14 2000. [41] A. Boisen and T. Thundat, 'Design and fabrication of cantilever array sensors,' Materials Today, vol. 12, pp. 32-38, September 2009. [42] S. H. Yeh, C. Y. Tsai, J. H. Kao, C. J. Liu, T. J. Kuo, M. W. Lin, et al., 'Quantification and genotyping of hepatitis B virus in a single reaction by real-time PCR and melting curve analysis,' Journal of Hepatology, vol. 41, pp. 659-666, Oct 2004. [43] Y. Zhou, Z. Wang, C. Wang, W. Ruan, and L. Liu, 'Design, fabrication and characterization of a two-step released silicon dioxide piezoresistive microcantilever immunosensor,' Journal of Micromechanics and Microengineering, vol. 19, Jun 2009. [44] X. Zhang, K. S. Chen, R. Ghodssi, A. A. Ayón, and S. M. Spearing, 'Residual stress and fracture in thick tetraethylorthosilicate (TEOS) and silane-based PECVD oxide films,' Sensors and Actuators A: Physical, vol. 91, pp. 373-380, 7/15/ 2001. [45] M. T. K. Hou and R. S. Chen, 'Effect of width on the stress-induced bending of micromachined bilayer cantilevers,' Journal of Micromechanics and Microengineering, vol. 13, pp. 141-148, Jan 2003. [46] G. F. Zheng, F. Patolsky, Y. Cui, W. U. Wang, and C. M. Lieber, 'Multiplexed electrical detection of cancer markers with nanowire sensor arrays,' Nature Biotechnology, vol. 23, pp. 1294-1301, Oct 2005. [47] Y. Cui, Q. Q. Wei, H. K. Park, and C. M. Lieber, 'Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,' Science, vol. 293, pp. 1289-1292, Aug 17 2001. [48] J. Hahm and C. M. Lieber, 'Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors,' Nano Letters, vol. 4, pp. 51-54, Jan 2004. [49] F. Patolsky, G. Zheng, O. Hayden, M. Lakadamyalit, X. Zhuang, and M. L. Charles, 'Electrical detection of single viruses,' Proceedings of the National Academy of Sciences of the United States of America, vol. 101, pp. 14017-14022, 2004. [50] F. Patolsky, B. P. Timko, G. Yu, Y. Fang, A. B. Greytak, G. Zheng, et al., 'Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays,' Science, vol. 313, pp. 1100-1104, Aug 25 2006. [51] E. Stern, J. F. Klemic, D. A. Routenberg, P. N. Wyrembak, D. B. Turner-Evans, A. D. Hamilton, et al., 'Label-free immunodetection with CMOS-compatible semiconducting nanowires,' Nature, vol. 445, pp. 519-522, Feb 1 2007. [52] Z. Li, Y. Chen, X. Li, T. I. Kamins, K. Nauka, and R. S. Williams, 'Sequence-specific label-free DNA sensors based on silicon nanowires,' Nano Letters, vol. 4, pp. 245-247, Feb 2004. [53] Z. Gao, A. Agarwal, A. D. Trigg, N. Singh, C. Fang, C. H. Tung, et al., 'Silicon nanowire arrays for label-free detection of DNA,' Anal Chem, vol. 79, pp. 3291-7, May 1 2007. [54] L. Risch, L. Dreekornfeld, J. Hartwich, F. Hofmann, J. Kretz, and M. Stadele, “Multi gate transistors and memory cells for future CMOS generation,” in Proc. Tech. Dig. IEEE Silicon Nanoelectron. Workshop, pp. 1–2, 2004. [55] H. C. Lin, M. H. Lee, C. J. Su, T. Y. Huang, C. C. Lee, and Y. S. Yang, 'A simple and low-cost method to fabricate TFTs with poly-Si nanowire channel,' Ieee Electron Device Letters, vol. 26, pp. 643-645, Sep 2005. [56] H.-C. Lin, M.-H. Lee, C.-J. Su, and S.-W. Shen, 'Fabrication and characterization of nanowire transistors with solid-phase crystallized poly-Si channels,' Ieee Transactions on Electron Devices, vol. 53, pp. 2471-2477, Oct 2006. [57] C.-Y. Hsiao, C.-H. Lin, C.-H. Hung, C.-J. Su, Y.-R. Lo, C.-C. Lee, et al., 'Novel poly-silicon nanowire field effect transistor for biosensing application,' Biosensors & Bioelectronics, vol. 24, pp. 1223-1229, Jan 1 2009. [58] C.-H. Lin, C.-Y. Hsiao, C.-H. Hung, Y.-R. Lo, C.-C. Lee, C.-J. Su, et al., 'Ultrasensitive detection of dopamine using a polysilicon nanowire field-effect transistor,' Chemical Communications, pp. 5749-5751, 2008 2008. [59] Y. Tsuda, Y. Sakoda, S. Sakabe, T. Mochizuki, Y. Namba, and H. Kida, 'Development of an immunochromatographic kit for rapid diagnosis of h5 avian influenza virus infection,' Microbiology and Immunology, vol. 51, pp. 903-907, 2007 2007. [60] C. Min-Cheng, C. Hou-Yu, L. Chia-Yi, T. Chuan-Mei, H. Chung-Fan, H. Jim-Tong, et al., 'A novel smart nanowire biosensor with hybrid sensor/memory/CMOS technology,' in Electron Devices Meeting (IEDM), 2010 IEEE International, 2010, pp. 36.2.1-36.2.4. [61] S. H. Yeh, C. Y. Tsai, J. H. Kao, C. J. Liu, T. J. Kuo, M. W. Lin, et al., 'Quantification and genotyping of hepatitis B virus in a single reaction by real-time PCR and melting curve analysis,' Journal of Hepatology, vol. 41, pp. 659-666, Oct 2004. [62] A. Falahati, S. W. Sharkey, D. Christensen, M. McCoy, E. A. Miller, M. A. Murakami, et al., 'Implementation of serum cardiac troponin I as marker for detection of acute myocardial infarction,' American Heart Journal, vol. 137, pp. 332-337, Feb 1999. [63] J. Mair, C. Larue, P. Mair, D. Balogh, C. Calzolari, and B. Puschendorf, 'USE OF CARDIAC TROPONIN-I TO DIAGNOSE PERIOPERATIVE MYOCARDIAL-INFARCTION IN CORONARY-ARTERY BYPASS-GRAFTING,' Clinical Chemistry, vol. 40, pp. 2066-2070, Nov 1994. [64] Z. Li, B. Rajendran, T. I. Kamins, X. Li, Y. Chen, and R. S. Williams, 'Silicon nanowires for sequence-specific DNA sensing: device fabrication and simulation,' Applied Physics a-Materials Science & Processing, vol. 80, pp. 1257-1263, Mar 2005. [65] P. R. Nair and M. A. Alam, 'Design considerations of silicon nanowire biosensors,' Ieee Transactions on Electron Devices, vol. 54, pp. 3400-3408, Dec 2007. [66] J. Li, Y. Zhang, S. To, L. You, and Y. Sun, 'Effect of Nanowire Number, Diameter, and Doping Density on Nano-FET Biosensor Sensitivity,' Acs Nano, vol. 5, pp. 6661-6668, Aug 2011. [67] J.-H. Ahn, J.-Y. Kim, K. Choi, D.-I. Moon, C.-H. Kim, M.-L. Seol, et al., 'Nanowire FET Biosensors on a Bulk Silicon Substrate,' Ieee Transactions on Electron Devices, vol. 59, pp. 2243-2249, Aug 2012. [68] P. K. Chan and J. Cui, 'Design of Chopper-Stabilized Amplifiers With Reduced Offset for Sensor Applications,' Ieee Sensors Journal, vol. 8, pp. 1968-1980, Nov-Dec 2008. [69] C.-W. Huang, Y.-J. Huang, S.-S. Lu, and C.-T. Lin, 'A Fully Integrated Humidity Sensor System-on-Chip Fabricated by Micro-Stamping Technology,' Sensors, vol. 12, pp. 11592-11600, Sep 2012. [70] Y. L. Bunimovich, Y. S. Shin, W.-S. Yeo, M. Amori, G. Kwong, and J. R. Heath, 'Quantitative real-time measurements of DNA hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution,' Journal of the American Chemical Society, vol. 128, pp. 16323-16331, Dec 20 2006. [71] E. Peronnet, L. Becquart, J. Martinez, J. P. Charrier, and C. Jolivet-Reynaud, 'Isoelectric point determination of cardiac troponin I forms present in plasma from patients with myocardial infarction,' Clin Chim Acta, vol. 377, pp. 243-7, Feb 2007. [72] H. I. Yang, S. H. Yeh, P. J. Chen, U. H. Iloeje, C. L. Jen, J. Su, et al., 'Associations between hepatitis B virus genotype and mutants and the risk of hepatocellular carcinoma,' J Natl Cancer Inst, vol. 100, pp. 1134-43, Aug 20 2008. [73] C. M. Hunt, J. M. McGill, M. I. Allen, and L. D. Condreay, 'Clinical relevance of hepatitis B viral mutations,' Hepatology, vol. 31, pp. 1037-44, May 2000. [74] Y. Cheng, K.-S. Chen, N. L. Meyer, J. Yuan, L. S. Hirst, P. B. Chase, et al., 'Functionalized SnO2 nanobelt field-effect transistor sensors for label-free detection of cardiac troponin,' Biosensors and Bioelectronics, vol. 26, pp. 4538-4544, 7/15/ 2011. [75] I. Lee, X. Luo, J. Huang, X. T. Cui, and M. Yun, 'Detection of Cardiac Biomarkers Using Single Polyaniline Nanowire-Based Conductometric Biosensors,' Biosensors, vol. 2, pp. 205-220, 2012. [76] T. Kong, R. Su, B. Zhang, Q. Zhang, and G. Cheng, 'CMOS-compatible, label-free silicon-nanowire biosensors to detect cardiac troponin I for acute myocardial infarction diagnosis,' Biosensors and Bioelectronics, vol. 34, pp. 267-272, 4/15/ 2012. [77] C. Heeschen, B. U. Goldmann, R. H. Moeller, and C. W. Hamm, 'Analytical performance and clinical application of a new rapid bedside assay for the detection of serum cardiac troponin I,' Clin Chem, vol. 44, pp. 1925-30, Sep 1998. [78] Sheehan, P. E., and Whitman, L. J.,“ Detection limits for nanoscale biosensors,” Nano Lett., 5, pp.803-807, 2005. [79] Ruhai Tian, Suresh Regonda, Jinming Gao, Yaling Liu and Walter Hu,“ Ultrasensitive protein detection using lithographically defined Si multi-nanowire field effect transistors,” Lab on a chip, 11, pp.1952-1961, 2011. [80] Todd M Squires, Rober J Messinger and Scott R Manalis,” Making it stick: convection, reaction and diffusion in surface-based viosensors,” Nature biotechnology, 26, 4, pp.417-426, 2008. [81] Gergely L. Lukacs, Peter Haggie, Olivier Seksek, D. Lechardeur, Neal Freedman, and A. S. Verkman,” Size-dependent DNA Mobility in Cytoplasm and Nucleus,” Journal of biological chemistry, 275, 3, pp. 1625–1629, 2000. [82] M. Godin, V. Tabard-Cossa, Y. Miyahara, T. Monga, P. J. Williams, L. Y. Beaulieu, et al., 'Cantilever-based sensing: the origin of surface stress and optimization strategies,' Nanotechnology, vol. 21, Feb 19 2010. [83] M. Yang, X. Zhang, K. Vafai, and C. S. Ozkan, 'High sensitivity piezoresistive cantilever design and optimization for analyte-receptor binding,' Journal of Micromechanics and Microengineering, vol. 13, pp. 864-872, Nov 2003. [84] G. A. Gehring, M. D. Cooke, I. S. Gregory, W. J. Karl, and R. Watts, 'Cantilever unified theory and optimization for sensors and actuators,' Smart Materials & Structures, vol. 9, pp. 918-931, Dec 2000. [85] A. Kruusing, 'Analysis and optimization of loaded cantilever beam microactuators,' Smart Materials & Structures, vol. 9, pp. 186-196, Apr 2000. [86] X. M. Yu, J. Thaysen, O. Hansen, and A. Boisen, 'Optimization of sensitivity and noise in piezoresistive cantilevers,' Journal of Applied Physics, vol. 92, pp. 6296-6301, Nov 15 2002. [87] J. Thaysen, A. D. Yalcinkaya, P. Vettiger, and A. Menon, 'Polymer-based stress sensor with integrated readout,' Journal of Physics D-Applied Physics, vol. 35, pp. 2698-2703, Nov 7 2002. [88] M. Li, H. X. Tang, and M. L. Roukes, 'Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications,' Nature Nanotechnology, vol. 2, pp. 114-120, Feb 2007. [89] A. W. McFarland and J. S. Colton, 'Chemical sensing with micromolded plastic microcantilevers,' Journal of Microelectromechanical Systems, vol. 14, pp. 1375-1385, Dec 2005. [90] A. W. McFarland, M. A. Poggi, L. A. Bottomley, and J. S. Colton, 'Production and characterization of polymer microcantilevers,' Review of Scientific Instruments, vol. 75, pp. 2756-2758, Aug 2004. [91] S. Zheng, J. H. Choi, S. M. Lee, K. S. Hwang, S. K. Kim, and T. S. Kim, 'Analysis of DNA hybridization regarding the conformation of molecular layer with piezoelectric microcantilevers,' Lab on a Chip, vol. 11, pp. 63-69, 2011 2011. [92] M. Watari, J. Galbraith, H.-P. Lang, M. Sousa, M. Hegner, C. Gerber, et al., 'Investigating the molecular mechanisms of in-plane mechanochemistry on cantilever arrays,' Journal of the American Chemical Society, vol. 129, pp. 601-609, Jan 24 2007. [93] Z. Li, B. Rajendran, T. I. Kamins, X. Li, Y. Chen, and R. S. Williams, 'Silicon nanowires for sequence-specific DNA sensing: device fabrication and simulation,' Applied Physics A, vol. 80, pp. 1257-1263, 2005/03/01 2005. [94] E. Stern, R. Wagner, F. J. Sigworth, R. Breaker, T. M. Fahmy, and M. A. Reed, 'Importance of the Debye Screening Length on Nanowire Field Effect Transistor Sensors,' Nano Letters, vol. 7, pp. 3405-3409, 2007/11/01 2007. [95] X. P. A. Gao, G. Zheng, and C. M. Lieber, 'Subthreshold Regime has the Optimal Sensitivity for Nanowire FET Biosensors,' Nano Letters, vol. 10, pp. 547-552, 2010/02/10 2009. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15712 | - |
| dc.description.abstract | CMOS 感測系統單晶片提供重點照護與環境監控低成本、即時偵測並即刻對訊號做處理與可攜帶性之可能性。我們與本研究中利用台積電0.35μm標準製程技術,整合化學、生物、力學與電的原理共研製三種感測系統單晶片。第一種是以聚苯胺為濕度感測材料的系統單晶片,其利用類3D架構,於有限的晶片面積限制下,創造出較大的感測面積,因此,在室溫下具有極短的反應時間(5sec)與極佳的靈敏度(30 mV/%),並且於啟動無線傳輸模組狀況下,具備低功率消耗之特點(750 μW)。第二種則是壓阻式微懸臂樑生物分子感測系統單晶片,此晶片於標準半導體製程後透過後段製程蝕刻處理,可形成微懸臂結構於單晶片上,根據實驗結果,此種系統晶片對B型肝炎病毒特定序列DNA具有極佳的選擇性(可辨識1bp mismatch)與靈敏度(1pM)。第三種為多晶矽奈米線生物分子感測系統單晶片,於標準半導體製程後,透過乾與濕蝕刻處理後,可將多晶矽奈米線裸露作為感測之用。根據實驗結果,此感測系統晶片對B型肝炎病毒DNA之靈敏度可達10fM,對心肌梗塞標誌蛋白質cTnI之靈敏度可達3.2pM,並具備可辨識1bp mismatch HBV DNA序列之能力。此三種感測系統單晶片在未來有極高的潛力可做為重點照護之用。它們的效能可媲美甚至是超越現有商業產品或是技術。 | zh_TW |
| dc.description.abstract | CMOS based sensor system-on-chip (SSoC) offers opportunities for point-of-care testing (POCT) and environmental monitoring with low-cost, real-time detection following with data processing and portability. We present here three types SSoCs which combine chemical, biological, mechanical and electrical mechanisms using Taiwan Semiconductor Manufacturing Company’s (TSMC) 0.35 μm standard CMOS fabrication process. First, a polyaniline based humidity SSoC is formed in a pseudo 3D architecture with low power consumption, i.e.,750 μW without RF operation, experiment results had shown that the humidity SSoC has a fast response time of about 5 seconds and high sensitivity of about 30 mV/% at room temperature. Second, piezoresistive type microcantilever based bio-SSoC was achieved by post processes after the standard CMOS circuit fabrication. The experimental result revealed that this bio-SSoC has good selectivity between one base-pair mismatched DNA and all matched DNA. This microcantilever based bio-SSoC demonstrated the sensing limit of 1 pM in the label-free Hepatitis B virus (HBV) DNA sequence detection. Third, it is worth noting, poly-Si nanowire based bio-SSoC is realized in commercial process followed by post-process steps for the first time. Measured results show HBV DNA sequence detection limit is about 10 fM, cardiac troponin I (cTnI) about 3.2 pM and has ability to distinguish 1bp mismatch HBV target DNA. These three kinds CMOS based SSoCs have the high potential to be used in POCT applications in the future. The sensing performances are better than or compatible to the current methods and commercial products. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T17:50:33Z (GMT). No. of bitstreams: 1 ntu-101-D97943030-1.pdf: 8029249 bytes, checksum: 3e4c53b79271323b0a0520cc8a127a3b (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 1 Introduction ……………………………………………………………………..1
2 Fabrication and Characterization of Humidity Sensor System-on-Chip.........4 2.1 Introduction ……………………………………………………………….4 2.2 Experimental Section ...…………………………………………………...6 2.2.1 Material and Sensing Mechanism ...………………………….....6 2.2.2 Circuit System Architecture …...………………………………..8 2.3 Fabrication of the Pseudo 3D Heterogeneous Humidity SSoC ...………..10 2.4 Experimental Protocol of Humidity SSoC Characterization …………….12 2.5 Results and Discussion ...………………………………………………...13 2.6 Conclusions ……………………………………………………………...17 3 Fabrication and Characterization of Microcantilever Based DNA Detection Sensor System-on-Chip ………………………………………………………..19 3.1 Introduction ……………………………………………………………...19 3.2 Materials and Methods …………………………………………………..21 3.2.1 Device Design and Fabrication ………………………………..21 3.2.2 Design of Readout Circuits ……………………………………25 3.2.3 System Diagram of the Integrated SoC ………………………..27 3.2.4 Material Preparations and Surface Immobilized Protocol …….29 3.2.5 Experimental Protocol ………………………………………....30 3.3 Results and Discussion ………………………………………………......31 3.3.1 Verification of Surface Immobilization ………………………..31 3.3.2 DNA Sensing Response in Dry-out Condition ………………...33 3.3.3 DNA Sensing Response of Integrated SoC ……………………37 3.4 Conclusions ……………………………………………………………...39 4 Fabrication and Characterization of Polysilicon Nanowire Based Bio-molecules Detection Sensor System-on-Chip ……………………………41 4.1 Introduction ……………………………………………………………41 4.2 Materials and Methods ………………………………………………...44 4.2.1 Fabrication and Design of Poly-Si NW Based Biosensor ……..44 4.2.2 Architecture and Design of On-chip Circuit …………………...47 4.2.3 Surface Modification and Immobilization Process of Poly-Si NW ………………………………………………….49 4.3 Results and Discussion…………………………………………………52 4.3.1 Sensing Mechanism of Poly-Si NW Based Transducer ……….52 4.3.2 AFE Output Response from DNA-DNA Hybridization Phenomenon on Poly-Si NW …………………………………..55 4.3.3 AFE Output Response from Protein-protein Interaction on Poly-Si NW ………………………………………………………….59 4.5 Conclusions ……………………………………………………………61 5 Microcantilever Based DNA Detection SSoC VS. Poly-Si NW Based Bio-molecules Detection SSoC……………………………………………........63 5.1 Introduction ……………………………………………………………63 5.2 Difference in Fabrication Process and Reproducibility between Microcantilever and Poly-Si Based Bio-SSoC ………………………..68 5.3 Sensitivity and Selectivity Test for HBV DNA Sequences Detection ...71 5.4 Conclusions ……………………………………………………………74 6 Conclusions ……………………………………………………………………..75 List of Tables Table 4.1 Comparison of the fabrication processes, materials, analytes and LOD of various NW based biosensors and current clinical method……………….62 List of Figures Fig. 1.1 The age structure of the population in Taiwan from 1991 to 2010 [1]……….3 Fig. 1.2 The concept of more than Moore [2]…………………………………………3 Fig. 2.1 The schematic of the developed sensing film transferred onto CMOS chip: (a) PDMS is poured on a polymethylmethacrylate (PMMA) structure; (b) PDMS is cured and peeled off the PMMA structure; (c) The PDMS is cut for suitable size; (d) The cut PDMS is immersed in the synthesized polyaniline blends; (e) and (f) Polyaniline blends is stamped on interdigitated electrodes which are on the top of the analog circuit to form humidity sensor system-on-chip……………………………………………………………….8 Fig. 2.2. The schematic of analog front-end (AFE) readout circuit………………….10 Fig. 2.3. The block diagram of the developed humidity sensor system-on-chip (SSoC)……………………………………………………………………....10 Fig. 2.4. (A) The schematic of the developed humidity sensor system-on-chip (SSoC). The contact pads and interdigitated electrodes are at the top metal layer. And the analog/digital circuits are underneath the interdigitated electrodes; (B) The cross-section schematic of the developed humidity SSoC. The circuit elements, such as metals, dielectrics, and transistors, are under the micro-stamped sensing material…………………………………………….12 Fig. 2.5. The picture of testing board module including the SSoC at the center……..13 Fig. 2.6. Chip photo and performance table of humidity sensing SoC………………14 Fig. 2.7. The response time test result. The initial relative humidity (RH) of experiment is about 36%. Then injecting the water vapor (ON state), the relative humidity becomes 64%.After about 600 sec, to remove the vapor (OFF state) the voltage signal falls to its initial value rapidly in room temperature………………………………………………………………….16 Fig. 2.8. The sensitivity of the developed humidity SSoC. In this figure, data shows the mean ± standard deviation of the experimental measurement. Since the result after digital signal process is the same as the AFE output, it should be noted that this result shows the relationship between AFE output voltage and RH…………………………………………………………………………..17 Fig. 3.1.(A) The schematic cross section of the developed wireless CMOS HBV DNA SoC. The material of each layer are: 1. probe DNA with thiol group on the 5’ end; 2. target DNA; 3. gold layer; 4. metal 1 (TiN/Al/TiN&Ti); 5. ILD-BPTEOS; 6. N+ Poly2 piezo-resistor. (B) The SEM image of released microcantilever structure……………………………………………………24 Fig. 3.2.The simplified architecture of the developed oscillator-based self-calibrated readout circuit. The mixer is used to down-converting the operation frequency……………………………………………………………………27 Fig. 3.3.The system block diagram of the developed wireless CMOS HBV DNA SoC………………………………………………………………………….28 Fig 3.4. The optical image and the performance summary of the implemented SoC..29 Fig. 3.5. The fluorescent intensity image after surface immobilization. The intensity of matched DNA is higher than all-mismatched DNA and probe DNA. This verifies the successfully immobilization of probe DNAs……………..33 Fig. 3.6. Temporal response of current variation for sensitivity test with different concentrations of all-matched target DNA (Type I)………………………...36 Fig. 3.7. The experimental result of sensitivity test with different concentrations of all-matched target DNA (Type I)…………………………………………...36 Fig. 3.8. The experimental result measured from the wireless HBV DNA SoC. The data was wirelessly retrieved from the SoC. (A) The normalized frequency response for different target DNA sequences. The frequency change of matched DNA is obviously larger than other mismatched DNAs. This demonstrates the selectivity of the developed SoC. (B) The experimental data for the sensitivity test of the developed SoC. The detectable range is 1 pM to 10 nM………………………………………………………………...38 Fig. 3.9. The comparison between the direct current measurement of microcantilever devices and the frequency measurement of the integrated SoC. This demonstrates the 10 times amplification achieved by the interface circuit design……………………………………………………...39 Fig. 4.1. (a) The flow chat of Post etching processes. (b) Cross-sectional and (c) top views of the exposed polys-Si NW. (d) Optical microscope photograph of poly-Si NW based transducer……………………………………………….46 Fig. 4.2. Schematic diagram of the Wheatstone bridge architecture and the system block diagram of the bio-SSoC……………………………………………..48 Fig. 4.3. (a) The plastic reservoir was mounted on the PCB to confine the sample solution. Then the modification and immobilization flow were operated in the reservoir to functionalize the poly-Si NW surface for (b) HBV DNA and (c) cTnI protein detection…………………………………………………...52 Fig. 4.4. Sensing mechanism of (a) N-type poly-Si NW, and (b) N-type poly-Si NW based transducer to detect biomolecules which have negative net charge….54 Fig. 4.5. HBV target DNA sensitivity test of (a) w/o and (b) w/ post etching process bio-SSoC. (c) HBV target DNA selectivity test of w/ post etching process bio-SSoC. (d) The temporal response of cTnI protein sensitivity test. (I): PBS, the baseline; (II , 3.2 pM) and (IV, 0.32 nM) are antibody-antigen interaction periods with different concentrations of cTnI antigen; (III) and (V) are final sensing results after washout step respectively……………………………..60 Fig. 4.6. Photograph of developed poly-Si NW based bio-SSoC and important parameters…………………………………………………………………..62 Fig. 5.1. Fabrication process of (left) poly-Si NW and (right) microcantilever based bio-SSoC……………………………………………………………………70 Fig. 5.2. Chip photos of (a) microcantilever and (b) poly-Si NW based bio-SSoC….71 Fig. 5.3. The comparison results of sensitivity (a) and selectivity (b) test for HBV DNA sequences detection of poly-Si NW and microcantilever based bio-SSoCs…………………………………………………………………...73 | |
| dc.language.iso | en | |
| dc.subject | 多晶矽 | zh_TW |
| dc.subject | 系統單晶片 | zh_TW |
| dc.subject | 微懸臂樑 | zh_TW |
| dc.subject | 聚苯胺 | zh_TW |
| dc.subject | SoC | en |
| dc.subject | polyaniline | en |
| dc.subject | poly-Si | en |
| dc.subject | microcantilever | en |
| dc.title | CMOS 感測系統單晶片之研製 | zh_TW |
| dc.title | CMOS Based Sensor System-on-Chip | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 李世光,呂學士,林啟萬,劉怡劭,陳旻政 | |
| dc.subject.keyword | 聚苯胺,多晶矽,微懸臂樑,系統單晶片, | zh_TW |
| dc.subject.keyword | polyaniline,poly-Si,microcantilever,SoC, | en |
| dc.relation.page | 92 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2012-12-05 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 7.84 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
