請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15703
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 許如君(Ju-Chun Hsu) | |
dc.contributor.author | Chiao-Pu Cheng | en |
dc.contributor.author | 鄭喬浦 | zh_TW |
dc.date.accessioned | 2021-06-07T17:50:24Z | - |
dc.date.copyright | 2013-01-16 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-12-24 | |
dc.identifier.citation | 參考文獻
方敏男、章加寶。1984。台灣中部地區瓜實蠅發生消長與為害調查。植保會刊26: 241-248。 李錫山。1972。瓜實蠅之生態研究。植保會刊 14: 175-182。 劉玉章、蕭添印。1984。瓜實蠅之大量飼育 I. 幼蟲飼育技術。興大昆蟲學報 17: 1-13。 劉玉章、蕭添印。1985。瓜實蠅之大量飼育 II. 卵之大量生產技術。昆蟲學會會報18: 37-47。 劉玉章、蕭添印。1986。瓜實蠅之大量飼育 III. 成蟲及蛹之大量生產技術。昆蟲學會會報 19: 45-55。 費雯綺、王喻其、陳富翔、林曉民、李貽華編。2010。植物保護手冊。行政院農委會農業藥物毒物試驗所編印。臺中 319頁。 Baker JE, Fabrick JA, Zhu KY. 1998. Characterization of esterases in malathion-resistant and susceptible strains of the pteromalid parasitoid Anisopteromalus calandrae. Insect Biochem Mol Biol 28: 1039-1050. Bansode PC, Campbell WV. 1979. Evaluation of north Carolina field strains of the red flour beetle for resistance to malathion and other organophosphorus compounds. J Econ Entomol 72: 331-313. Baxter GD, Barker SC. 1998. Acetylcholinesterase cDNA of the cattle tick, Boophilus microplus: characterisation and role in organophosphate resistance. Insect Biochem Mol Biol 28: 581-589. Bourguet D, Raymond M, Fournier D, Malcolm CA, Toutant JP, Arpagaus M. 1996. Existence of two acetylcholinesterases in the mosquito Culex pipiens (Diptera: Culicidae). J Neurochem 67: 2115-2123. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72: 248-254. Brown TM, Payne GT. 1988. Experimental selection for insecticide resistance. J Econ Entomol 81: 49-56. Busvine JR. 1980. Recommended methods for the detection and measurement of resistance of agricultural pests to pesticides: Methods for tephritid fruit flies- FAO Method No. 20 FAO Plant Protect Bull 27: 40-43. Cahill M, Byrne FJ, Denholm I, Devonshire AL, Gorman KJ. 1995. Pyrethroid and organophosphate resistance in the tobacco whitefly Bemisia tabaci. Bull Entomol Res 84: 181-187. Campbell PM, Newcomb RD, Russell RJ, Oakeshott JG. 1998. Two different amino acid substitutions in the ali-esterase, E3, confer alternative types of organophosphorus insecticide resistance in the sheep blowfly, Lucilia cuprina. Insect Biochem Mol Biol 28: 139-150. Charpentier A, Fournier D. 2001. Levels of total acetylcholinesterase in Drosophila melanogaster in relation to insecticide resistance. Pestic Biochem Physiol 70: 100-107. Chen ZZ, Newcomb R, Forbes E, McKenzie J, Batterham P. 2001. The acetylcholinesterase gene and organophosphorus resistance in the Australian sheep blowfly, Lucilia cuprina, Insect Biochem Mol Biol 31: 805-816. Claudianos C, Russell RJ, and Oakeshott JG. 1999. The same amino acid substitution in orthologous esterases confers organophosphate resistance on the housefly and a blowfly. Insect Biochem Mol Biol 29: 675-686. Corbett JR. 1974. Insecticides inhibiting acetylcholinesterase. pp. 107-164. In: Corbett JR, ed. The Biochemical Mode of Action of Pesticides. Academic Press, London & New York. Costa LG. 2008. Toxic effects of pesticides. pp 883-930. In: Klaassen CD, ed. Casarett and Doull’s Toxicology: The Basic Science of Poisons, 7th ed. McGraw Hill Medical: New York. Devonshire AL, Field LM. 1991. Gene amplification and insecticide resistance. Annu Rev Entomol 36: 1-23. Devonshire AL, Moores GD. 1983. Different forms of insensitive acetylcholinesterase in insecticide - resistant house flies (Musca domestica). Pestic Biochem Physiol 21: 336-340. Dyte CE, Rowlands DG. 1968. Metabolism and synergism of malathion in resistant and susceptible strains of Tribolium Castaneum (Herbst) (Coleoptera Tenebrionidae). J Stored Products Res 4: 157-173. Eldefrawi AT. 1985. Acetylcholinesterases and anticholinesterases. In:Kerkut GA, Gilbert LI (eds.). Comprehensive Insect Physiology, Biochemistry and Pharmacology, vol. 12. Pergamon Press, New York. 115-130. Ellman GL, Courtney KD, Andress V, Featherstone RM. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7: 88-95. Eto M. 1974. Organophosphorus Pesticides: Organic and Biological Chemistry. CRC, Cleveland, OH pp. 387. Fernley HN and Walker PG. 1965. Kinetic behavior of calf-intestinal alkaline phosphatase with 4-methylumbelliferyl phosphate. Biochem J 97: 95-103. Fournier D, Bride JM, Karch F, Berge JB. 1988. Acetylcholinesterase from Drosophila melanogaster identification of two subunits encoded by the same gene. FEBS Lett 238: 333-337. Fournier D, Mutero A. 1994. Modification of acetylcholinesterase as a mechanism of resistance to insecticides. Comp Biochem Physiol 108: 19-31. Fournier D, Mutero A, Pralavorio, Bride J-M. 1993. Drosophila acetylcholinesterase: Mechanisms of resistance to organophosphates. Chem Biol Interact 87: 233-238. Gao JR, Yoon KS, Frisbie RK, Coles GC, Clark JM. 2006. Esterase-mediated malathion resistance in the human head louse, Pediculus capitis (Anoplura: Pediculidae). Pestic Biochem Physiol 85: 28-37. Georghiou G P. 1990. Overview of insecticide resistance. ACS Symp Ser 421: 18-41. Grauso M, Culetto E, Combes D, Fedon Y, Toutant J-P, Arpagaus M. 1998. Existence of four acetylcholinesterase genes in the nematodes Caenorhabditis elegans and Caenorhabditis briggsae. FEBS Lett 424: 279-284. Guedes RNC, Kambhampati S, Doer BA, Zhu KY. 1997. Biochemical mechanisms of organophosphate resistance in Rhyzopertha dominica (Coleoptera: Bostrichidae) populations from the United States and Brazil. Bull Entomol Res 87: 581-586. Hall LM, Spierer P. 1986. The Ace locus of Drosophila melanogaster: structural gene for acetylcholinesterase with an unusual 5’ leader. EMBO J 5: 2949-2954. Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41: 95-98. He YP, Ma EB, Zhu KY. 2004. Characterizations of general esterases in relation to malathion susceptibility in two field populations of the oriental migratory locust, Locusta migratoria manilensis (Meyen). Pestic Biochem Physiol 78: 103-113. Hemingway J. 1982. The biochemical nature of malathion resistance in Anopheles stephensi from Pakistan. Pestic Biochem Physiol 17: 149-155. Hemingway J, Hawkes NJ, McCarroll L, Ranson H. 2004. The molecular basis of insecticide resistance in mosquitoes. Insect Biochem Mol Biol 34: 653-665. Hemingway J, Karunaratne SHPP. 1998. Mosquito carboxylesterases: A review of the molecular biology and biochemistry of a major insecticide resistance mechanism. Med Vet Entomol 12: 1-12. Hsu JC, Feng HT. 2002. Susceptibility of melon fly (Bactrocera cucurbitae) and oriental fruit fly (B. dorsalis) to insecticides in Taiwan. Plant Prot Bull 44: 303-314. Hsu JC, Feng HT, Wu WJ. 2004a. Resistance and synergistic effects of insecticides in Bactrocera dorsalis (Diptera: Tephritidae) in Taiwan. J Econ Entomol 97: 1682-1688. Hsu JC, Haymer DS, Wu WJ, Feng HT. 2006. Mutations in the acetylcholinesterase gene of Bactrocera dorsalis associated with resistance to organophosphorus insecticides. Insect Biochem Mol Biol 36: 396-402. Hsu JC, Wu WJ, Feng HT. 2004b. Biochemical mechanisms of malathion resistance in oriental fruit fly (Bactrocera dorsalis). Plant Protec Bull 46: 255-266. Hsu JC, Wu WJ, Haymer DS, Feng HT. 2008. Alterations of the acetylcholinesterase enzyme in the oriental fruit fly Bactrocera dorsalis are correlated with resistance to the organophosphate insecticide fenitrothion. Insect Biochem Mol Biol 38: 146-154. Javed N, Viner R, Williamson MS, Field L, Devonshire AL, Moores GD. 2003. Characterization of acetylcholinesterases, and their genes, from the hemipteran species Myzus persicae (Sulzer), Aphis gossypii (Glover), Bemisia tabaci (Gennadius) and Trialeurodes vaporariorum (Westwood). Insect Mol Biol 12: 613-620. Johnson CD, Russell RL. 1983. Multiple molecular forms of acetylcholinesterase in the nematode Caenorhabditis elegans. J Neurochem 41: 30-46. Kakani EG, Ioannides IM, Margaritopoulos JT, Seraphides NA, Skouras PJ, Tsitsipis JA, Mathiopoulos KD. 2008. A small deletion in the olive fly acetylcholinesterase gene associated with high levels of organophosphate resistance. Insect Biochem Mol Biol 38: 781-787. Karunker I, Benting J, Lueke B, Ponge T, Nauen R et al., 2008. Over-expression of cytochrome P450 CYP6CM1 is associated with high resistance to imidacloprid in the B and Q biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae). Insect Biochem Mol Biol 38: 634-644. Karunaratne SHPP, Vaughan A, Paton MG, Hemingway J. 1998. Amplification of a serine esterase is involved in insecticide resistance in Sri Lankan Culex tritaeniorhynchus. Insect Mol Biol 7: 307-315. Karunaratne SHPP, Damayanthi BT, Fareena MHJ, Imbuldeniya V, Hemingway J. 2007. Insecticide resistance in the tropical bedbug Cimex hemipterus. Pestic Biochem Physiol 88: 102-107. Keiser I. 1989. Insecticide resistance status. pp. 337-344. In: Robinson AS, Hopper G, ed. Fruit flies: Their biology, natural enemies, and control, vol. 3B, Elsevier Science, Publishers, Amsterdam. Keiser I, Kobayashi RM, Schneider EL, Tomikawa I. 1973. Laboratory assessment of 73 insecticides against te oriental fruit fly, melon fly, and Mediterranean fruit fly. J Econ Entomol 66: 837-839. Krimbas CB, Tsakas S. 1970. The genetics of Dacus oleae. V. Changes of esterase polymorphism in a natural population following insecticide control-selection or drift? Evolution 25: 454-460. Koren B, Yawetz A, Perry AS. 1984. Biochemical properties characterizing the development of tolerance to malathion in Ceratitis capitata Wiedemann (Diptera: Tephritidae). J Econ Entomol 77: 864-867. Lee D-W, Kim S-S, Shin SW, Kim WT, Boo KS. 2006. Molecular characterization of two acetylcholinesterase genes from the oriental tobacco budworm, Helicoverpa assulta (Guenee). BBA-Gen Subjects 2: 125-133. LeOra Software. 1987. Polo-PC: a user’s guide to probit or logit analysis. LeOra Software, Berkeley, CA. Levitin E, Cohen E. 1988. The involvement of acetylcholinesterase in resistance of the California red scale shape Aonidiella aurantii to organophosphorus pesticides. Entomol Exp Appl 88: 115-121. Li F, Han ZJ. 2002. Two different genes encoding acetylcholinesterase existing in cotton aphid (Aphis gossypii). Genome 45: 1134-1141. Magana C, Hernandez-Crespo P, Brun-Barale A, Couso-Ferrer F, Bride JM, Castanera P, Feyereisen R, Ortego F. 2008 Mechanisms of resistance to malathion in the medfly Ceratitis capitata. Insect Biochem Mol Biol 38: 756-762. Magana C, Hernandez-Crespo P, Ortego F, Castanera P. 2007. Resistance to malathion in field populations of Ceratitis capitata. J Econ Entomol 100: 1836-1843. Maitra S, Dombrowski SM, Basu M, Raustol O, Waters LC, Ganguly R. 2000. Factors on the third chromosome affect the level of Cyp6a2 and Cyp6a8 expression in Drosophila melanogaster. Gene (Amsterdam) 248: 147-156. Malcolm CA, Boddington RG. 1989. Malathion resistance conferred by a carboxylesterase in Anopheles culicifacies Giles (Species B) (Diptera: Culicidae). Bull Entomol R 79: 193-199. Malcolm CA, Bourguet D, Ascolillo A, Rooker SJ, Garvey CF, Hall LMC, Pasteur N, Raymond M. 1998. A sex-linked ace gene, not linked to insensitive acetylcholinesterase-mediated insecticide resistance in Culex pipiens. Insect Mol Biol 7: 107-120. Matsumura F. 1985. Acetylcholinesterases: organophosphorus and carbamate insecticides. pp. 161-177. In: F. Matsumura, ed. Toxicology of Insecticides. Plenum Press, New York. Meister Publishing Company. Meister Pro Crop Protection Handbook. 2003. Volume 89. pp. 273-282. Metcalf RL, Fukuto TR, Wilkinson C, Fahmy MH, Elaziz AA, Metcalf ER. 1966. Mode of action of carbamate synergists. J Agric Food Chem 14 : 555-562. Moores GD, Devonshire AL, Gunning RV. 1998. Piperonyl butoxide - specific synergist or multi-metabolic inhibitor? 9th Internat Congr Pestic Chem: the Food-Environment Challenge, The Royal Society and IUPAC, London, Vol 1, 4D-004. Morton RA, Holwerda BC. 1985. The oxidative-metabolism of malathion and malaoxon in resistant and susceptible strains of Drosophila melanogaster. Pestic Biochem Phys 24: 19-31. Morton RA, Singh RS. 1982. The association between malathion resistance and acetylcholinesterase in Drosophila melanogaster. Biochem Genet 20: 179-198. Mutero A, Pralavorio M, Bride JM, Fournier D. 1994. Resistance-associated point mutation in insecticide-insensitive acetylcholinesterase, Proc Natl Acad Sci U.S.A. 91: 5922-5926. Oakeshott JG, Alan L. Devonshire AL, Claudianos C, Sutherland TD, Horne I, et al., 2005. Comparing the organophosphorus and carbamate insecticide resistance mutations in cholin - and carboxyl - esterases. Chem Biol Interact 157: 269-275. O’Brien RD. 1960. Toxic Phosphorus Esters. Chemistry, Metabolism, and Biological Effects. Academic Press, NewYork. 332-358. O’Brien RD, 1976. Acetylcholinesterase and its inhibition. In: Insecticide Biochemistry and Physiology. Ed. By Wilkinson CF, Heyden Press, Chichester, 271-296. Orphanidis PS, Kalmoukos B, Betzios B and Kapetanakis E. 1980. Development of resistance in Ceratitis capitata Wied. in laboratory under intermittent pressure of organophosphorous and chlorinated insecticides. Annales del’ Institute Phytopathologique Benaki (N.S.) 12: 198-207. Pan Y, Guo H, Gao X. 2009. Carboxylesterase activity, cDNA sequence, and gene expression in malathion susceptible and resistant strains of the cotton aphid, Aphis gossypii. Comp Biochem Physiol B: Biochem Mol Biol 152: 266-270. Perez-Mendoza J, Fabrick JA, Zhu KY, Baker JE. 2000. Alterations in esterases are associated with malathion resistance in Habrobracon hebetor (Hymenoptera: Braconidae) J Econ Entomol 93: 31-37. Petersen TN, Brunak S, Heijne GV, Nielsen H. 2011. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8: 785-786. Reigart JR, Roberts JR. 1999. Organophosphate Insecticides. Recognition and Management of Pesticide Poisonings, 5th ed.; U.S Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances, Office of Pesticide Programs, U.S. Government Printing Office: Washington, DC. pp 34-47. Reregistration Eligibility Decision (RED) for Malathion. 2009. EPA 738-R-06-030; U.S Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances, Office of Pesticide Programs, U.S. Government Printing Office: Washington, DC. Roberts TR. 1998, Metabolic Pathways of Agrochemicals-Part 2: Insecticides and Fungicides. The Royal Society of Chemistry: Cambridge, UK. pp 360-367. Saleem MA, Ahmad M, Ahmad M, Aslam M, Sayyed AH. 2008. Resistance to selected organochlorin, organophosphate, carbamate and pyrethroid, in Spodoptera litura (Lepidoptera: Noctuidae) from Pakistan. J Econ Entomol 101: 1667-1675. Selvi S, Edah MA, Nazni WA, Lee HL, Azahari AH. 2007. Characterization on malathion and permethrin resistance by bioassays and the variation of esterase activity with the life stages of the mosquito Culex quinquefasciatus. Trop Biomed 24: 63-75. Sigrist CJA, Cerutti L, Castro ED, Langendijk-Genevaux PS, Bulliard V et al., 2010. PROSITE, a protein domain database for functional characterization and annotation. Nuleic Acids Res 38: 161-166. Skouras PJ, Margaritopoulos JT, Seraphides NA, Oannides IM, Kakani EG, Mathiopoulos KD, Tsitsipis JA. 2007. Organophosphate resistance in olive fruit fly Bactrocera oleae populations in Greece and Cyprus. Pest Manag Sci 63: 42-48. Smissaert HR, 1964. Cholinesterase inhibition in spider mites susceptible and resistant to organophosphate. Science 143: 407-409. Stumpf N, Nauen R. 2001. Cross-Resistance, Inheritance, and Biochemistry of Mitochondrial Electron Transport Inhibitor-Acaricide Resistance in Tetranychus urticae (Acari: Tetranychidae). J Econ Entomol 94: 1577-1583. Subramanyam BH, Harein PK, Cutkomp LK. 1989. Organophosphate resistance in adults of red four beetle (Coleoptera: Tenebrionidae) and sawtoothed grain beetle (Coleoptera: Cucujidae) infesting barley stored on farms in Minnesota. J Econ Entomol 82: 989-995. Taiwan agricultural research institute. 1972. The attract test of oriental fruit fly. In: Department of agriculture and forestry Taiwan provincial government ed. Plant protection of tested reported 61: 173 (in Chinese). Tao LM, Yang JZ, Zhuang PJ, Tang ZH. 2006. Effect of a mixture of iprobenfos and malathion on the development of malathion resistance in the mosquito Culex pipiens pallens Coq. Pest Manag Sci 62: 86-89. Taskin V, Kence M, Gocmen B. 2004. Determination of malathion and diazinon resistance by sequencing the MdαE7 gene from Guatemala, Colombia, Manhattan, and Thailand housefly (Musca domestica) strains. Russ J Genet 40: 377-380. Tomlin CDS. 2006 The Pesticide Manual, A World Compendium. 14th ed.; British Crop Protection Council: Alton, Hampshire, UK. pp 642-643. Tomita T, Hidoh O, Kono Y. 2000. Absence of protein polymorphism attributable to insecticide-insensitivity of acetylcholinesterase in the green rice leafhopper Nephotettix cincticeps. Insect Biochem Mol Biol 30: 325-333. Toutant JP, 1989. Insect acetylcholinesterase: catalytic properties, tissue distribution and molecular forms. Prog Neurobiol 32: 423-446. Van Asperen K. 1962. A study of housefly esterases by means of a sensitive colorimetric method. J Insect Phsiol 8: 401-414. Villatte F, Ziliani P, Marcel V, Menozzi P, Fournier D. 2000. A high number of mutations in insect acetylcholinesterase may provide insecticide resistance. Pestic Biochem Physiol 67: 95-102. Vontas JG, Cosmidis N, Loukas M, Tsakas S, Hejazi MJ, Ayoutanti A, Hemingway J. 2001. Altered acetylcholinesterase confers organophosphate resistance in the olive fruit fly Bactrocera oleae. Pestic Biochem Physiol 71: 124-132. Vontas JG, Hejazi MJ, Hawkes NJ, Cosmidis N, Loukas M, Hemingway J. 2002. Resistance-associated point mutations of organophosphate insensitive acetylcholinesterase in the olive fruit fly Bactrocera oleae. Insect Mol Biol 11: 329-336. Vontas JG, Hernandez-Crespo P, Margaritopoulos JT, Ortego F, Feng HT et al., 2011. Insecticide resistance in Tephritid flies. Pestic Biochem Physiol 100: 199-205. Voss G, Matsumura F. 1964. Resistance to organophosphorus compounds in the two-spotted spider mite: two different mechanisms of resistance. Nature 202: 319-320. Walsh SB, Dolden TA, Moores GD, Kristensen M, Lewis T, Devonshire AL, Williamson MS. 2001. Identification and characterization of mutation in the housefly (Musca domestica) acetylcholinesterase involved in insecticide resistance. Biochem J 359: 175-181. Weill M, Lutfalla G, Mogensen K, Chandre F, Berthomieu A, Berticat C, Pasteur N, Philips A, Fort P, Raymond M. 2003. Comparative genomics: insecticide resistance in mosquito vectors. Nature 423: 136-137. Weill M, Malcolm F, Chandre F, Mogensen K, Berthomieu A, Marquine M, Raymond M. 2004. The unique mutation in ace-1 giving high insecticide resistance is easily detectable in mosquito vectors. Insect Mol Biol 13: 1-7. Welling W, Devries A. W, Voerman S. 1974. Oxidative cleavage of a carboxyester bond as a mechanism of resistance to malaoxon in houseflies. Pestic Biochem Physiol 4: 31-43. Whyard S, Downe AER, Walker VK. 1994. Isolation of an esterase conferring insecticide resistance in the mosquito Culex tarsalis. Insect Biochem Mol Biol 24: 819-827. Wood RJ, Harris DJ. 1989. Artificial natural selection, in: A.S. Robinson, G. Hopper (Eds.), Fruit Flies: Their Biology Natural Enemies, and Control, vol. 3B, Elsevier Science, Publishers, Amsterdam. pp. 19-31. Yang ML, Zhang JZ, Zhu KY, Xuan T, Liu XJ et al., 2008. Increased activity and reduced sensitivity of acetylcholinesterase associated with malathion resistance in a field population of the oriental migratory locust, Locusta migratoria manilensis (Meyen). Pestic Biochem Physiol 91: 32-38. Yang ML, Zhang JZ, Zhu KY, Xuan T, Liu XJ, Guo Y P, Ma EB. 2009. Mechanisms of organophosphate resistance in a field population of oriental migratory locust, Locusta migratoria manilensis (Meyen). Arch Insect Biochem Physiol 71: 3-15. Yu SJ, Nguyen SN, Abo-Elghar GE. 2003. Biochemical characteristics of insecticide resistance in the fall armyworm, Spodoptera frugiperda (J.E. Smith). Pestic Biochem Physiol 77: 1-11. Zhang JZ, Zhang JQ, Yang ML, Jia QD, Guo YP et al., 2011. Genomics-based approaches to screening carboxylesterase-like genes potentially involved in malathion resistance in oriental migratory locust (Locusta migratoria manilensis). Pest Manag Sci 67: 183-190. Zhu KY, Lee SH, Clark JM. 1996. A point mutation of acetylcholinesterase associated with azinphosmethyl resistance and reduced fitness in Colorado potato beetle. Pestic Biochem Physiol 55: 100-108. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15703 | - |
dc.description.abstract | 瓜實蠅 (Bactrocera cucurbitae) 屬於雙翅目果實蠅科,被認為是台灣重要經濟害蟲之一。馬拉松 (malathion) 為一種有機磷類化合物,在台灣自 1957 年開始被推薦用來防治田間瓜實蠅族群,但在 2002 年研究發現台灣野生瓜實蠅族群對馬拉松已經產生抗藥性。為了瞭解瓜實蠅對馬拉松的抗藥性機制,本實驗擬建立起瓜實蠅對馬拉松之抗性族群,以可造成瓜實蠅族群 50-80 % 死亡率的馬拉松藥劑逐代篩選 2011 年採自屏東九如的瓜實蠅野生族群,此族群 F1子代對馬拉松的半數致死劑量為 613 ng/fly。經馬拉松藥劑篩選 5 代之後,發現對馬拉松抗性成長 3 倍,且相較於實驗室品系具 20.9 倍抗藥性。瓜實蠅對馬拉松之抗性成長速率為 1.89,高於東方果實蠅的 0.63。交互抗性實驗顯示馬拉松抗性族群對乃力松、芬殺松、第滅寧以及芬普尼皆具有低度到高度的交互抗性。本實驗藉由協力實驗、測試馬拉松抗性有關的酵素如酯酶 (esterases) 及多功能氧化酶 (mixed function oxidases) 的活性、標的酵素乙醯膽鹼酯酶活性以及乙醯膽鹼酯酶基因序列來比較瓜實蠅馬拉松抗性品系及實驗室品系之間的差異,探討瓜實蠅對馬拉松的抗藥性機制。協力實驗顯示協力劑 piperonyl butoxide (PBO) 及 triphenyl phosphate (TPP) 對瓜實蠅馬拉松抗性品系分別具 1.3 倍及 2.1 倍的協力效果。代謝酵素活性測試顯示馬拉松抗性品系之酯酶相較於實驗室品系,對 α-naphthyl acetate 及 β-naphthyl acetate具較高之 1.6-1.9 倍活性。但多功能氧化酶對7-ethoxycoumarin 則無顯著之活性差異。此外,馬拉松抗性品系的標的酵素乙醯膽鹼酯酶顯示出較低的活性及對氧化馬拉松及乙基巴拉松較不敏感。瓜實蠅的乙醯膽鹼酯酶基因之轉譯框架區具 2031 個鹼基,在部分實驗室品系及馬拉松抗性蟲的乙醯膽鹼酯酶基因序列上在發現前端具兩個胺基酸的缺失,此外也在胺基酸 421 的位置發現具有丙胺酸 (Alanine) 取代甘胺酸 (Glycine) 的情況產生。我們的結果顯示,增加的酯酶活性及乙醯膽鹼酯酶對馬拉松的不敏感性為瓜實蠅對馬拉松產生抗藥性的可能原因。 | zh_TW |
dc.description.abstract | The melon fly, Bactrocera cucurbitae (Conquillett) (Diptera: Tephritidae) is considered one of the most economically damaging pests in Taiwan. Malathion is an organophosphorus compound and has been the recommended insecticide for melon fly control since 1957. In 2002, malathion resistance was found in wild melon fly populations in Taiwan. In order to understand the mechanisms of malathion resistance in the melon fly, we established our resistant strain in this study using malathion dosages that caused 50-80 percent mortality in melon fly populations collected from Pintung in 2011, the F1 generation’s LD50 value is 613 ng/fly to malathion. The resistance increased by 3-times after 5 generations of selection, resulting in 20.9-times more resistance than the laboratory strain. The resistance development rate was 1.89 higher than the values of B. dorsalis (0.63). Cross resistance experiments indicate malathion-resistant strain has low to high level cross resistance to naled, fenthion, deltamethrin and fipronil. The mechanism basis of resistance to malathion in the melon fly (resistant and laboratory) strains were examined by synergist tests, comparing the activities of metabolic enzymes known to be involved in malathion resistance, such as esterases (ESTs) and mix function oxidases (MFOs), the target enzyme acetylcholinesterase activity and ace gene molecular assay. Synergism tests indicated that piperonyl butoxide (PBO) showed 1.3-fold synergistic ratio and 2.1-fold triphenyl phosphate (TPP) on the malathion-resistant strain. Metabolic enzymes activity showed that the malathion-resistant strain exhibited higher activity, 1.6-1.9 fold in esterase (by α-naphthyl acetate and β-naphthyl acetate as the substrates), compared to the laboratory strain. However, no significant differences were found on the MFOs activity (by 7-ethoxycoumarin as the substrates) between two strains. Moreover, the target enzyme acetylcholinesterase (AChE) from the resistant strain showed reduced AChE activity and more insensitivity to inhibition of malaoxon and ethyl-paraoxon. The opening reading frame of B. cucurbitae ace gene has 2031 base pairs, two amino acid deletion and one point mutation G421A were found in ace gene of some laboratory and resistant individuals. Our results indicated that increased ESTs efficiency and AChE insensitivity to malathion were possible mechanisms involved in malathion resistance. | en |
dc.description.provenance | Made available in DSpace on 2021-06-07T17:50:24Z (GMT). No. of bitstreams: 1 ntu-101-R99632003-1.pdf: 2764541 bytes, checksum: b1feca0938180333a378a98945242d2e (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 誌謝.......... ii
中文摘要 iii 英文摘要 v 目錄.......................................................................................................... vii 表目錄... ix 圖目錄.. xi 前言........................................................................................................... 1 往昔研究 4 有機磷類的抗藥性 4 乙醯膽鹼酯酶 5 乙醯膽鹼酯酶對藥劑的不敏感性 6 果實蠅對有機磷的抗藥性 6 果實蠅對有機磷的抗性機制 7 馬拉松 8 昆蟲對馬拉松的抗藥性研究 9 台灣瓜實蠅田間用藥歷史 ..11 台灣田間瓜實蠅族群對馬拉松之抗性 12 材料與方法 13 藥品 13 瓜實蠅品系的培養與建立 15 瓜實蠅實驗室品系………………………………....……………………15 台灣野生瓜實蠅品系採集與飼養………………………………………15 瓜實蠅 USDA品系……………………………………………………..15 馬拉松局部滴定測試……………………………………………………16 馬拉松抗性品系的建立…………………………………………………16 交互抗性實驗…………………………………………………………………..17 協力實驗 17 乙醯膽鹼酯酶 17 各地區單隻瓜實蠅個體之乙醯膽鹼酯酶粗萃取…....…………………17 瓜實蠅乙醯膽鹼酯酶粗萃取……………………………………………18 乙醯膽鹼酯酶蛋白定量…………………………………………………18 乙醯膽鹼酯酶活性測試…………………………………………………18 乙醯膽鹼酯酶酵素動力學實驗…………………………………………19 乙醯膽鹼酯酶抑制實驗…………………………………………………19 各地區瓜實蠅乙醯膽鹼酯酶抑制實驗…………....……………………20 酯酶 20 酯酶的粗萃取….......................................................……………………20 α-naphthol及β-naphthol的標準曲線...…………...……………21 酯酶活性測試……………………………………………………………21 酯酶酵素動力學實驗……………………………………………………22 多功能氧化酶 22 多功能氧化酶蛋白粗萃取….....................................……………………22 7-hydroxycoumarin的標準曲線……………………...……………23 多功能氧化酶活性測試…………….……………………………………23 乙醯膽鹼酯酶基因 (ace gene) 定序 24 乙醯膽鹼酯酶胺基酸序列比對 26 乙醯膽鹼酯酶限制酶切實驗………….……...……………..............................26 乙醯膽鹼酯酶抑制實驗……………….……...……………..............................27 統計分析方法………………………………………………………………......27 結果...........................................................................................................28 建立抗性品系及協力實驗 28 交互抗性 28 台灣各地區野生瓜實蠅乙醯膽鹼酯酶不敏感性檢測 29 馬拉松抗性及實驗室品系乙醯膽鹼酯酶之活性及不敏感性探討…………..29 馬拉松抗性及實驗室品系乙醯膽鹼酯酶之活性及不敏感性檢測..................29 代謝酵素 30 酯酶……………..…………………………..……………...……………30 多功能氧化酶…...………….………….…………………………………31 乙醯膽鹼酯酶核苷酸序列解序 31 乙醯膽鹼酯酶限制酶切實驗 32 乙醯膽鹼酯酶抑制實驗 32 討論........................................................................................................... 33 表.......................................................................................................... 39 圖............................................................................................................ 51 參考文獻 59 | |
dc.language.iso | zh-TW | |
dc.title | 瓜實蠅對馬拉松的抗性研究 | zh_TW |
dc.title | Study on malathion resistance in Bactrocera cucurbitae | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 馮海東(Hai-Tung Feng),戴淑美(Shu-Mei Dai),林鶯熹(Ying-Hsi Lin) | |
dc.subject.keyword | 瓜實蠅,馬拉松,協力劑,代謝酵素,乙醯膽鹼酯酶, | zh_TW |
dc.subject.keyword | Bactrocera cucurbitae,malathion,synergists,metabolic enzyme,acetylcholinesterase, | en |
dc.relation.page | 71 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2012-12-25 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 昆蟲學研究所 | zh_TW |
顯示於系所單位: | 昆蟲學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 2.7 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。