Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 毒理學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15674
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭明良
dc.contributor.authorTsang-Chih Kuoen
dc.contributor.author郭倉志zh_TW
dc.date.accessioned2021-06-07T17:49:50Z-
dc.date.copyright2013-03-04
dc.date.issued2013
dc.date.submitted2013-01-28
dc.identifier.citation1. Fidler, I.J. 2003. The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nat Rev Cancer 3:453-458.
2. Chambers, A.F., Groom, A.C., and MacDonald, I.C. 2002. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2:563-572.
3. Weiss, L. 2000. Metastasis of cancer: a conceptual history from antiquity to the 1990s. Cancer Metastasis Rev 19:I-XI, 193-383.
4. Fidler, I.J. 2002. The organ microenvironment and cancer metastasis. Differentiation 70:498-505.
5. Davis, S., Aldrich, T.H., Jones, P.F., Acheson, A., Compton, D.L., Jain, V., Ryan, T.E., Bruno, J., Radziejewski, C., Maisonpierre, P.C., et al. 1996. Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 87:1161-1169.
6. Maisonpierre, P.C., Suri, C., Jones, P.F., Bartunkova, S., Wiegand, S.J., Radziejewski, C., Compton, D., McClain, J., Aldrich, T.H., Papadopoulos, N., et al. 1997. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277:55-60.
7. Valenzuela, D.M., Griffiths, J.A., Rojas, J., Aldrich, T.H., Jones, P.F., Zhou, H., McClain, J., Copeland, N.G., Gilbert, D.J., Jenkins, N.A., et al. 1999. Angiopoietins 3 and 4: diverging gene counterparts in mice and humans. Proc Natl Acad Sci U S A 96:1904-1909.
8. Folkman, J. 2007. Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 6:273-286.
9. Hato, T., Tabata, M., and Oike, Y. 2008. The role of angiopoietin-like proteins in angiogenesis and metabolism. Trends Cardiovasc Med 18:6-14.
10. Galaup, A., Cazes, A., Le Jan, S., Philippe, J., Connault, E., Le Coz, E., Mekid, H., Mir, L.M., Opolon, P., Corvol, P., et al. 2006. Angiopoietin-like 4 prevents metastasis through inhibition of vascular permeability and tumor cell motility and invasiveness. Proc Natl Acad Sci U S A 103:18721-18726.
11. Oike, Y., Akao, M., Kubota, Y., and Suda, T. 2005. Angiopoietin-like proteins: potential new targets for metabolic syndrome therapy. Trends Mol Med 11:473-479.
12. Kersten, S. 2005. Regulation of lipid metabolism via angiopoietin-like proteins. Biochem Soc Trans 33:1059-1062.
13. Zhang, C.C., Kaba, M., Ge, G., Xie, K., Tong, W., Hug, C., and Lodish, H.F. 2006. Angiopoietin-like proteins stimulate ex vivo expansion of hematopoietic stem cells. Nat Med 12:240-245.
14. Tabata, M., Kadomatsu, T., Fukuhara, S., Miyata, K., Ito, Y., Endo, M., Urano, T., Zhu, H.J., Tsukano, H., Tazume, H., et al. 2009. Angiopoietin-like protein 2 promotes chronic adipose tissue inflammation and obesity-related systemic insulin resistance. Cell Metab 10:178-188.
15. Dhanabal, M., Jeffers, M., LaRochelle, W.J., and Lichenstein, H.S. 2005. Angioarrestin: a unique angiopoietin-related protein with anti-angiogenic properties. Biochem Biophys Res Commun 333:308-315.
16. Smagur, A., Szary, J., and Szala, S. 2005. Recombinant angioarrestin secreted from mouse melanoma cells inhibits growth of primary tumours. Acta Biochim Pol 52:875-879.
17. Dhanabal, M., LaRochelle, W.J., Jeffers, M., Herrmann, J., Rastelli, L., McDonald, W.F., Chillakuru, R.A., Yang, M., Boldog, F.L., Padigaru, M., et al. 2002. Angioarrestin: an antiangiogenic protein with tumor-inhibiting properties. Cancer Res 62:3834-3841.
18. Polyak, K., and Weinberg, R.A. 2009. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 9:265-273.
19. Siegel, P.M., Shu, W., Cardiff, R.D., Muller, W.J., and Massague, J. 2003. Transforming growth factor beta signaling impairs Neu-induced mammary tumorigenesis while promoting pulmonary metastasis. Proc Natl Acad Sci U S A 100:8430-8435.
20. Nelson, W.J., and Nusse, R. 2004. Convergence of Wnt, beta-catenin, and cadherin pathways. Science 303:1483-1487.
21. Zavadil, J., Cermak, L., Soto-Nieves, N., and Bottinger, E.P. 2004. Integration of TGF-beta/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition. EMBO J 23:1155-1165.
22. Karhadkar, S.S., Bova, G.S., Abdallah, N., Dhara, S., Gardner, D., Maitra, A., Isaacs, J.T., Berman, D.M., and Beachy, P.A. 2004. Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature 431:707-712.
23. Carver, E.A., Jiang, R., Lan, Y., Oram, K.F., and Gridley, T. 2001. The mouse snail gene encodes a key regulator of the epithelial-mesenchymal transition. Mol Cell Biol 21:8184-8188.
24. Savagner, P., Yamada, K.M., and Thiery, J.P. 1997. The zinc-finger protein slug causes desmosome dissociation, an initial and necessary step for growth factor-induced epithelial-mesenchymal transition. J Cell Biol 137:1403-1419.
25. Yang, J., Mani, S.A., Donaher, J.L., Ramaswamy, S., Itzykson, R.A., Come, C., Savagner, P., Gitelman, I., Richardson, A., and Weinberg, R.A. 2004. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117:927-939.
26. Korpal, M., Lee, E.S., Hu, G., and Kang, Y. 2008. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem 283:14910-14914.
27. Korpal, M., and Kang, Y. 2008. The emerging role of miR-200 family of microRNAs in epithelial-mesenchymal transition and cancer metastasis. RNA Biol 5:115-119.
28. Shih, J.Y., Tsai, M.F., Chang, T.H., Chang, Y.L., Yuan, A., Yu, C.J., Lin, S.B., Liou, G.Y., Lee, M.L., Chen, J.J., et al. 2005. Transcription repressor slug promotes carcinoma invasion and predicts outcome of patients with lung adenocarcinoma. Clin Cancer Res 11:8070-8078.
29. Elloul, S., Elstrand, M.B., Nesland, J.M., Trope, C.G., Kvalheim, G., Goldberg, I., Reich, R., and Davidson, B. 2005. Snail, Slug, and Smad-interacting protein 1 as novel parameters of disease aggressiveness in metastatic ovarian and breast carcinoma. Cancer 103:1631-1643.
30. Kurrey, N.K., K, A., and Bapat, S.A. 2005. Snail and Slug are major determinants of ovarian cancer invasiveness at the transcription level. Gynecol Oncol 97:155-165.
31. Chen, M., Chen, L.M., and Chai, K.X. 2006. Androgen regulation of prostasin gene expression is mediated by sterol-regulatory element-binding proteins and SLUG. Prostate 66:911-920.
32. Shioiri, M., Shida, T., Koda, K., Oda, K., Seike, K., Nishimura, M., Takano, S., and Miyazaki, M. 2006. Slug expression is an independent prognostic parameter for poor survival in colorectal carcinoma patients. Br J Cancer 94:1816-1822.
33. Chang, T.H., Tsai, M.F., Su, K.Y., Wu, S.G., Huang, C.P., Yu, S.L., Yu, Y.L., Lan, C.C., Yang, C.H., Lin, S.B., et al. 2010. Slug Confers Resistance to the Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor. Am J Respir Crit Care Med.
34. Chiou, S.H., Wang, M.L., Chou, Y.T., Chen, C.J., Hong, C.F., Hsieh, W.J., Chang, H.T., Chen, Y.S., Lin, T.W., Hsu, H.S., et al. 2010. Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial-mesenchymal transdifferentiation. Cancer Res 70:10433-10444.
35. Bhat-Nakshatri, P., Appaiah, H., Ballas, C., Pick-Franke, P., Goulet, R., Jr., Badve, S., Srour, E.F., and Nakshatri, H. 2010. SLUG/SNAI2 and tumor necrosis factor generate breast cells with CD44+/CD24- phenotype. BMC Cancer 10:411.
36. Larue, L., and Bellacosa, A. 2005. Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositol 3' kinase/AKT pathways. Oncogene 24:7443-7454.
37. Ambros, V. 2004. The functions of animal microRNAs. Nature 431:350-355.
38. Bartel, D.P. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281-297.
39. Winter, J., Jung, S., Keller, S., Gregory, R.I., and Diederichs, S. 2009. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11:228-234.
40. Calin, G.A., Sevignani, C., Dumitru, C.D., Hyslop, T., Noch, E., Yendamuri, S., Shimizu, M., Rattan, S., Bullrich, F., Negrini, M., et al. 2004. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 101:2999-3004.
41. Huang, Q., Gumireddy, K., Schrier, M., le Sage, C., Nagel, R., Nair, S., Egan, D.A., Li, A., Huang, G., Klein-Szanto, A.J., et al. 2008. The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol 10:202-210.
42. Ma, L., Teruya-Feldstein, J., and Weinberg, R.A. 2007. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449:682-688.
43. Zhu, S., Wu, H., Wu, F., Nie, D., Sheng, S., and Mo, Y.Y. 2008. MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res 18:350-359.
44. Tavazoie, S.F., Alarcon, C., Oskarsson, T., Padua, D., Wang, Q., Bos, P.D., Gerald, W.L., and Massague, J. 2008. Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451:147-152.
45. Esquela-Kerscher, A., and Slack, F.J. 2006. Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 6:259-269.
46. Chu, Y.W., Yang, P.C., Yang, S.C., Shyu, Y.C., Hendrix, M.J., Wu, R., and Wu, C.W. 1997. Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line. Am J Respir Cell Mol Biol 17:353-360.
47. Varkonyi-Gasic, E., and Hellens, R.P. 2011. Quantitative stem-loop RT-PCR for detection of microRNAs. Methods Mol Biol 744:145-157.
48. Hu, B., Jarzynka, M.J., Guo, P., Imanishi, Y., Schlaepfer, D.D., and Cheng, S.Y. 2006. Angiopoietin 2 induces glioma cell invasion by stimulating matrix metalloprotease 2 expression through the alphavbeta1 integrin and focal adhesion kinase signaling pathway. Cancer Res 66:775-783.
49. Onn, A., Isobe, T., Itasaka, S., Wu, W., O'Reilly, M.S., Ki Hong, W., Fidler, I.J., and Herbst, R.S. 2003. Development of an orthotopic model to study the biology and therapy of primary human lung cancer in nude mice. Clin Cancer Res 9:5532-5539.
50. Yu, Y.P., Landsittel, D., Jing, L., Nelson, J., Ren, B., Liu, L., McDonald, C., Thomas, R., Dhir, R., Finkelstein, S., et al. 2004. Gene expression alterations in prostate cancer predicting tumor aggression and preceding development of malignancy. J Clin Oncol 22:2790-2799.
51. Lapointe, J., Li, C., Higgins, J.P., van de Rijn, M., Bair, E., Montgomery, K., Ferrari, M., Egevad, L., Rayford, W., Bergerheim, U., et al. 2004. Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc Natl Acad Sci U S A 101:811-816.
52. Wang, S.P., Wang, W.L., Chang, Y.L., Wu, C.T., Chao, Y.C., Kao, S.H., Yuan, A., Lin, C.W., Yang, S.C., Chan, W.K., et al. 2009. p53 controls cancer cell invasion by inducing the MDM2-mediated degradation of Slug. Nat Cell Biol 11:694-704.
53. Martin, T.A., Goyal, A., Watkins, G., and Jiang, W.G. 2005. Expression of the transcription factors snail, slug, and twist and their clinical significance in human breast cancer. Ann Surg Oncol 12:488-496.
54. Uchikado, Y., Natsugoe, S., Okumura, H., Setoyama, T., Matsumoto, M., Ishigami, S., and Aikou, T. 2005. Slug Expression in the E-cadherin preserved tumors is related to prognosis in patients with esophageal squamous cell carcinoma. Clin Cancer Res 11:1174-1180.
55. Burk, U., Schubert, J., Wellner, U., Schmalhofer, O., Vincan, E., Spaderna, S., and Brabletz, T. 2008. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep 9:582-589.
56. Ma, L., Young, J., Prabhala, H., Pan, E., Mestdagh, P., Muth, D., Teruya-Feldstein, J., Reinhardt, F., Onder, T.T., Valastyan, S., et al. 2010. miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol 12:247-256.
57. Li, Y., Sun, L., Xu, H., Fang, Z., Yao, W., Guo, W., Rao, J., and Zha, X. 2008. Angiopoietin-like protein 3 modulates barrier properties of human glomerular endothelial cells through a possible signaling pathway involving phosphatidylinositol-3 kinase/protein kinase B and integrin alphaVbeta3. Acta Biochim Biophys Sin (Shanghai) 40:459-465.
58. Zhu, P., Tan, M.J., Huang, R.L., Tan, C.K., Chong, H.C., Pal, M., Lam, C.R., Boukamp, P., Pan, J.Y., Tan, S.H., et al. 2011. Angiopoietin-like 4 protein elevates the prosurvival intracellular O2(-):H2O2 ratio and confers anoikis resistance to tumors. Cancer Cell 19:401-415.
59. Camenisch, G., Pisabarro, M.T., Sherman, D., Kowalski, J., Nagel, M., Hass, P., Xie, M.H., Gurney, A., Bodary, S., Liang, X.H., et al. 2002. ANGPTL3 stimulates endothelial cell adhesion and migration via integrin alpha vbeta 3 and induces blood vessel formation in vivo. J Biol Chem 277:17281-17290.
60. Huang, R.L., Teo, Z., Chong, H.C., Zhu, P., Tan, M.J., Tan, C.K., Lam, C.R., Sng, M.K., Leong, D.T., Tan, S.M., et al. 2011. ANGPTL4 modulates vascular junction integrity by integrin signaling and disruption of intercellular VE-cadherin and claudin-5 clusters. Blood 118:3990-4002.
61. Goh, Y.Y., Pal, M., Chong, H.C., Zhu, P., Tan, M.J., Punugu, L., Lam, C.R., Yau, Y.H., Tan, C.K., Huang, R.L., et al. 2010. Angiopoietin-like 4 interacts with integrins beta1 and beta5 to modulate keratinocyte migration. Am J Pathol 177:2791-2803.
62. Luque, A., Gomez, M., Puzon, W., Takada, Y., Sanchez-Madrid, F., and Cabanas, C. 1996. Activated conformations of very late activation integrins detected by a group of antibodies (HUTS) specific for a novel regulatory region (355-425) of the common beta 1 chain. J Biol Chem 271:11067-11075.
63. Yang, C., Zeisberg, M., Lively, J.C., Nyberg, P., Afdhal, N., and Kalluri, R. 2003. Integrin alpha1beta1 and alpha2beta1 are the key regulators of hepatocarcinoma cell invasion across the fibrotic matrix microenvironment. Cancer Res 63:8312-8317.
64. Baronas-Lowell, D., Lauer-Fields, J.L., Borgia, J.A., Sferrazza, G.F., Al-Ghoul, M., Minond, D., and Fields, G.B. 2004. Differential modulation of human melanoma cell metalloproteinase expression by alpha2beta1 integrin and CD44 triple-helical ligands derived from type IV collagen. J Biol Chem 279:43503-43513.
65. Elshaw, S.R., Sisley, K., Cross, N., Murray, A.K., MacNeil, S.M., Wagner, M., Nichols, C.E., and Rennie, I.G. 2001. A comparison of ocular melanocyte and uveal melanoma cell invasion and the implication of alpha1beta1, alpha4beta1 and alpha6beta1 integrins. Br J Ophthalmol 85:732-738.
66. Ibaragi, S., Shimo, T., Hassan, N.M., Isowa, S., Kurio, N., Mandai, H., Kodama, S., and Sasaki, A. 2011. Induction of MMP-13 expression in bone-metastasizing cancer cells by type I collagen through integrin alpha1beta1 and alpha2beta1-p38 MAPK signaling. Anticancer Res 31:1307-1313.
67. Vuoristo, M., Vihinen, P., Vlaykova, T., Nylund, C., Heino, J., and Pyrhonen, S. 2007. Increased gene expression levels of collagen receptor integrins are associated with decreased survival parameters in patients with advanced melanoma. Melanoma Res 17:215-223.
68. Jack, G.D., Zhang, L., and Friedman, A.D. 2009. M-CSF elevates c-Fos and phospho-C/EBPalpha(S21) via ERK whereas G-CSF stimulates SHP2 phosphorylation in marrow progenitors to contribute to myeloid lineage specification. Blood 114:2172-2180.
69. Tan, N.Y., and Khachigian, L.M. 2009. Sp1 phosphorylation and its regulation of gene transcription. Mol Cell Biol 29:2483-2488.
70. Uchikado, Y., Okumura, H., Ishigami, S., Setoyama, T., Matsumoto, M., Owaki, T., Kita, Y., and Natsugoe, S. 2011. Increased Slug and decreased E-cadherin expression is related to poor prognosis in patients with gastric cancer. Gastric Cancer 14:41-49.
71. Storci, G., Sansone, P., Mari, S., D'Uva, G., Tavolari, S., Guarnieri, T., Taffurelli, M., Ceccarelli, C., Santini, D., Chieco, P., et al. 2010. TNFalpha up-regulates SLUG via the NF-kappaB/HIF1alpha axis, which imparts breast cancer cells with a stem cell-like phenotype. J Cell Physiol 225:682-691.
72. Park, S.M., Gaur, A.B., Lengyel, E., and Peter, M.E. 2008. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 22:894-907.
73. Lee, M.R., Kim, J.S., and Kim, K.S. 2010. miR-124a is important for migratory cell fate transition during gastrulation of human embryonic stem cells. Stem Cells 28:1550-1559.
74. Zhang, Z., Zhang, B., Li, W., Fu, L., Zhu, Z., and Dong, J.T. 2011. Epigenetic Silencing of miR-203 Upregulates SNAI2 and Contributes to the Invasiveness of Malignant Breast Cancer Cells. Genes Cancer 2:782-791.
75. Chou, Y.T., Lin, H.H., Lien, Y.C., Wang, Y.H., Hong, C.F., Kao, Y.R., Lin, S.C., Chang, Y.C., Lin, S.Y., Chen, S.J., et al. 2010. EGFR promotes lung tumorigenesis by activating miR-7 through a Ras/ERK/Myc pathway that targets the Ets2 transcriptional repressor ERF. Cancer Res 70:8822-8831.
76. Mitra, S.K., Hanson, D.A., and Schlaepfer, D.D. 2005. Focal adhesion kinase: in command and control of cell motility. Nat Rev Mol Cell Biol 6:56-68.
77. Liao, Y.C., Shih, Y.W., Chao, C.H., Lee, X.Y., and Chiang, T.A. 2009. Involvement of the ERK signaling pathway in fisetin reduces invasion and migration in the human lung cancer cell line A549. J Agric Food Chem 57:8933-8941.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15674-
dc.description.abstract癌症轉移是主要造成癌症病人死亡的主因。找出抑制腫瘤轉移之分子並了解其分子機制,可做為病理診斷上的新方法且有益於發展有效的抗癌藥物。血管生成相似素1 (ANGPTL1)為血管生成相似素(ANGPTL)的家庭成員之ㄧ,已經被報導可以抑制內皮細胞增生、遷移、管腔形成和粘附。越來越多證據指出ANGPTL的家庭成員除了可針對內皮細胞去調控血管新生之外,也被報導可以影響腫瘤細胞。然而,ANGPTL1對於腫瘤細胞本身的影響尚不清楚。在我們的研究中發現腫瘤組織中ANGPTL1表現量的多寡和癌細胞浸襲、淋巴轉移及癌症病患的預後有高度相關性。在細胞模式和動物實驗中發現ANGPTL1透過降低人蝸牛同源物2 (Slug) 的表現,顯著的抑制癌細胞的遷移、浸襲和轉移能力。進一步探討ANGPTL1如何調控Slug則發現,ANGPTL1抑制Slug的蛋白表現,不是經由改變Slug的mRNA表現及Slug蛋白的半衰期。ANGPTL1是透過增加微小核苷酸-630 (miR-630)去抑制Slug的表現。我們也證明了ANGPTL1藉由和整合素α1β1 (integrin α1β1)的結合並抑制其下游FAK/ERK訊息傳遞途徑去調控轉錄因子Sp-1所主導的miR-630−Slug的表現,進而干擾癌細胞的移動和轉移。因此,ANGPTL1可做為未來治療癌症轉移之一有潛力的蛋白藥物。zh_TW
dc.description.abstractMetastasis is the most important contributor to mortality in cancer patients. Identification of novel tumor metastasis suppressors and elucidation of the molecular mechanisms can provide new insights into the pathogenesis and development of effective anticancer drugs. Angiopoietin-like protein 1 (ANGPTL1), a member of the angiopoietin-like protein family, has been reported as an anti-angiogenic molecule that inhibits proliferation, migration, tube formation, and adhesion of endothelial cells. Growing evidence suggests that certain ANGPTL proteins not only target endothelial cells but also affect tumor cell behaviors. Whether ANGPTL1 can influence the malignant properties of cancer cells remains unclear. In this study, we show that ANGPTL1 expression inversely correlates with invasion, lymph node metastasis, and poor clinical outcomes in cancer patients. We also found that ANGPTL1 significantly suppresses the migratory, invasive, and metastatic capabilities of cancer cells through downregulation of the zinc-finger protein Slug. Further evidence has shown that ANGPTL1-mediated Slug protein downregulation is not attributed to decreased mRNA levels or facilitated protein degradation. Meanwhile, we have determined that ANGPTL1-mediated suppression of the Slug protein is due to the induction of miR-630 transcripts in the Sp-1–dependent ERK pathway. Furthermore, we show that ANGPTL1 interacts with integrin α1β1 and represses its downstream signaling, FAK/ERK to reduce cancer cell motility and invasiveness. These findings indicate that ANGPTL1 inhibits cancer cell motility and metastasis by inducing the mesenchymal-epithelial transition via the integrin α1β1−FAK−ERK−Sp-1−miR-630−Slug signal cascade. Therefore, ANGPTL1 may act as a potential powerful therapeutic protein drug for cancer treatment.en
dc.description.provenanceMade available in DSpace on 2021-06-07T17:49:50Z (GMT). No. of bitstreams: 1
ntu-102-F95447013-1.pdf: 5000585 bytes, checksum: 2df2ab1c2ebf3a86bfb3d4b1ceb47344 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents摘要.....................1
Abstract.................2
List of Figures..........4
List of Tables...........5
Chapter1. Introduction...6
1.1 Tumor metastasis.....7
1.2 Angiopoietins and angiopoietin-like proteins (ANGPTLs).9
1.3 Epithelial-to-mesenchymal transition (EMT) and Slug...12
1.4 MicroRNAs (miRNAs) and tumor metastasis...14
1.5 Motivation and purpose...16
Chapter2. Materials and Methods...17
Chapter3. Results...29
3.1 ANGPTL1 expression inversely correlates with poor prognosis of cancer patients...30
3.2 ANGPTL1 inhibits cancer cell migration, invasion, and metastasis...31
3.3 ANGPTL1 induces mesenchymal-epithelial transition by down-regulating Slug...32
3 4 ANGPTL1 represses Slug expression by inducing expression of miR-630...34
3.5 ANGPTL1 interacts with integrin α1β1 and represses the downstream signaling and Slug expression...36
3.6 ANGPTL1 induces miR-630 transcription through repression of the ERK/Sp-1 pathway...38
Chapter4. Discussion...40
Figures and figure legends...44
Tables...78
References...84
Appendix...92
dc.language.isoen
dc.subject轉移zh_TW
dc.subject浸襲zh_TW
dc.subject人蝸牛同源物2zh_TW
dc.subject間質到上皮轉化zh_TW
dc.subject血管生成相似素1zh_TW
dc.subjectmetastasisen
dc.subjectSlugen
dc.subjectmesenchymal-epithelial transitionen
dc.subjectANGPTL1en
dc.subjectinvasionen
dc.title探討血管生成相似素1於癌細胞浸襲及轉移過程中之角色zh_TW
dc.titleThe Role of Angiopoietin-like 1 Protein (ANGPTL1) in Cancer Cell Invasion and Metastasisen
dc.typeThesis
dc.date.schoolyear101-1
dc.description.degree博士
dc.contributor.oralexamcommittee王朝鐘,吳國瑞,洪文俊,蕭宏昇
dc.subject.keyword血管生成相似素1,間質到上皮轉化,人蝸牛同源物2,浸襲,轉移,zh_TW
dc.subject.keywordANGPTL1,mesenchymal-epithelial transition,Slug,,invasion,metastasis,en
dc.relation.page92
dc.rights.note未授權
dc.date.accepted2013-01-28
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept毒理學研究所zh_TW
顯示於系所單位:毒理學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
4.88 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved