Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15659
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳基旺-
dc.contributor.authorChen-Wei Huangen
dc.contributor.author黃振瑋zh_TW
dc.date.accessioned2021-06-07T17:49:34Z-
dc.date.copyright2013-03-04-
dc.date.issued2013-
dc.date.submitted2013-01-31-
dc.identifier.citation1.5 References
1. Cummings, J. L. and Zhong, K. Treatments for behavioural disorders in
neurodegenerative diseases: drug development strategies. Nat. Rev. drug discov.
2006, 5, 64-74.
2. Campbell, A. Inflammation, Neurodegenerative diseases, and environmental
exposures. Ann. N.Y. Acad. Sci. 2004, 1035, 117-132.
3. Coppede`, F.; Mancuso, M.; Siciliano, G.; Migliore, L.; Murri, L. Genes and the
Environment in neurodegeneration. Biosci. Rep. 2006, 26, 341-367.
4. Coppede`, F. and Migliore, L. Environmental-induced oxidative stress in
neurodegenerative disorders and aging. Mutat. Res. 2009, 674, 73-84.
5. Andersen, J. K. Oxidative stress in neurodegeneration: cause or consequence. Nat.
Rev. Neurosci. 2004, 5, S18-S25.
6. Ross, C. A. and Poirier, M. A. Protein aggregation and neurodegenerative disease.
Nat. Med. 2004, 10, S10-S17.
7. Soto, C. and Estrada, L. D. Protein misfolding and neurodegeneration. Arch Neurol.
2008, 65, 184-189.
8. Bartolini, M. and Andrisano, V. Strategies for the inhibition of protein aggregation
in human diseases. ChemBioChem 2010, 11, 1018-1035.
9. Alzheimer’s disease international. World Alzheimer report 2009.
10. Bartus, R. T.; Dean III, R. L.; Beer, B.; Lippa, A. S. The Cholinergic hypothesis of
geriatric memory dysfunction. Science 1982, 217, 408-414.
11. Hardy, J. A. and Higgins, G. A. Alzheimer's Disease: The Amyloid cascade
hypothesis. Science 1992, 256, 184-185.
12. Lovell, M. A.; Robertson, J. D.; Teesdale, W. J.; Campbell, J. L.; Markesbery, W. R.
Copper, iron and zinc in Alzheimer’s disease senile plaques. J. Neurol. Sci. 1998, 158, 47-52.
13. Allsop, D.; Mayes, J.; Moore, S.; Masad, A.; Tabner, B. J. Metal-dependent
generation of reactive oxygen species from amyloidal proteins implicated in
neurodegenerative disease. Biochem. Soc. Trans. 2008, 36, 1293-1298.
14. Bush, A. I.; Pettingell, W. H.; Multhaup, G.; Paradis, M. d.; Vonsattel, J. P.; Gusella,
J. F.; Beyreuther, K.; Masters, C. L.; Tanz, R. E. Rapid induction of Alzheimer Aβ
amyloidal formation by zinc. Science 1994, 265, 1464-1467.
15. Reinke, A. A.; Gestwicki, J. E. Structure–activity relationships of amyloidal
beta-aggregation inhibitors based on curcumin: influence of linker length and
flexibility. Chem. Biol. Drug Des. 2007, 70, 206-215.
16. Porat, Y.; Abramowitz, A.; Gazit, E. Inhibition of amyloidal fibril formation by
polyphenols: structural similarity and aromatic interactions as a common inhibition
mechanism Chem. Biol. Drug Des. 2006, 67, 27-37.
17. Necula, M.; Kayed, R.; Milton, S.; Glabe, C. G. Small Molecule Inhibitors of
Aggregation Indicate That Amyloid Oligomerization and Fibrillization Pathways
Are Independent and Distinct. J. Biol. Chem. 2007, 282, 10311-10324.
18. Dolai, S.; Shi, W.; Corbo, C.; Sun, C.; Averick, S.; Obeysekera, D.; Farid, M.;
Alonso, A.; Banerjee, P.; Raja, K. “Clicked” sugar-curcumin conjugate: modulator
of amyloidal-β and tau peptide aggregation at ultralow concentration. ACS Chem.
Neurosci. 2011, 2, 694-699.
19. Levine III, H. Quantification of β-sheet amyloidal fibril structures with thioflavin T.
Meth. Enzymol. 1999, 309, 274.
20. Lorenzo, A.; Yankner, B. A.; β-Amyloid neurotoxicity requires fibril formation and
is inhibited by Congo red. Proc. Natl. Acad. Sci. USA. 1994, 91, 12243-12247.
21. Klunk, W. E.; Debnath, M. L.; Koros, A. M. C.; Pettegrew, J. W. Chrysamine-G, a
lipophilic analogue of Congo red, inhibits Aβ-induced toxicity in PC12 cells. LIFE
SCI. 1998, 63, 1807-1814.
22. Simons, L. J.; Caprathe, B. W.; Callahan, M.; Graham, J. M.; Kimura, T.; Lai, Y. J.;
LeVine III, H.; Lipinski, W.; Sakkab, A. T.; Tasaki, Y.; Walker, L. C.; Yasunaga, T.;
Ye, Y. Y.; Zhuang, N.; Augelli-Szafran, C. E.; The synthesis and structure-activity
relationship of substituted N-phenyl anthranilic acid analogs as amyloidal
aggregation inhibitors. Bioorg. Med. Chem. Lett. 2009, 19, 654-657.
23. Mathis, C. A.; Wang, Y. M.; Holt, D. P.; Huang, G. F.; Debnath, M. L.; Klunk, W.
E. Synthesis and Evaluation of 11C-labeled 6-substituted 2-arylbenzothiazoles as
amyloidal imaging agents. J. Med. Chem. 2003, 46, 2740-2754.
24. Chen, J.; Armstrong, A. H.; Koehler, A. N.; Hecht, M. H. Small molecule
microarrays enable the discovery of compounds that bind the Alzheimer’s Aβ
peptide and reduce its cytotoxicity. J. Am. Chem. Soc. 2010, 132, 17015-17022.
25. Cavalli, A.; Bolognesi, M. L.; Minarini, A.; Rosini, M.; Tumiatti, V.; Recanatini, M.;
Melchiorre, C. Multi-target-directed Ligands to combat neurodegenerative Diseases.
J. Med. Chem. 2008, 51, 347-372.
26. Leo’n, R.; Garcia, A. G.; Marco-Contelles, J. Recent advances in the
Multitarget-directed ligands approach for the treatment of Alzheimer’s disease. Med.
Res. Rev. 2011, 31, 1-51
27. Dedeoglu, A.; Cormier, K.; Payton, S.; Tseitlin, K. A.; Kremsky, J. N.; Lai, L.;
Xiaohua Li, X. H.; Moir, R. D.; Tanzi, R. E.; Bush, A. I.; Kowall, N. W.; Jack T.
Rogers, J. T.; Huang, X. D. Preliminary studies of a novel bifunctional metal chelator targeting Alzheimer’s amyloidogenesis. Exp. Gerontol. 2004, 39, 1641-1649.
28. Zhang, Y.; Chen, L. Y.; Yin, W. X.; Yin, J.; Zhang, S. B.; Liu, C. L.; The chelation
targeting metal-Aβ40 aggregates may lead to formation of Aβ40 oligomers. Dalton
Trans. 2011, 40, 4830-4833.
29. Sharma, A. K.; Pavlova, S. T.; Kim, J. W.; Finkelstein, D.; Hawco, N. J.; Rath, N. P.;
Kim, J. S.; Mirica, L. M. Bifunctional compounds for controlling metal-mediated
aggregation of the Aβ42 peptide. J. Am. Chem. Soc. 2012, 134, 6625-6636.
30. Hindo, S. S.; Mancino, A. M.; Braymer, J. J.; Liu, Y. H.; Vivekanandan, S.;
Ramamoorthy, A.; Lim, M. H. Small molecule modulators of copper-induced Aβ
aggregation. J. Am. Chem. Soc. 2009, 131, 16663-16665.
31. Choi J. S.; Braymer, J. J.; Nanga, R. P. R.; Ramamoorthy, A.; Lim, M. H. Design of
small molecules that target metal-Aβ species and regulate metal-induced Aβ
aggregation and neurotoxicity. Proc. Natl. Acad. Sci. USA 2010, 107, 21990-21995.
32. Choi J. S.; Braymer, J. J.; Park, S. K.; Mustafa, S.; Chae, J. H.; Lim, M. H.
Synthesis and characterization of IMPY derivatives that regulate metal-induced
amyloidal-β aggregation. Metallomics, 2011, 3, 284-291.
33. Hyman, B. T. Amyloid-dependent and Amyloid-independent stages of Alzheimer
disease amyloidal-dependent and amyloidal-independent stages of Alzheimer
disease. Arch. Neurol. 2011, 68, 1062-1064.
34. Inestrosa, N. C.; Alvarez, A.; Pe’rez, C. A.; Moreno, R. D.; Vicente, M.; Linker, C.; Casanueva, O. I.; Soto, C.; Garrido, J.; Acetylcholinesterase accelerates assembly of amyloidal-β peptides into Alzheimer’s fibrils: possible role of the peripheral site of the enzyme. Neuron, 1996, 16, 881-891.
35. Watkins, P. B.; Zimmerman, H. J.; Knapp, M. J.; Gracon, S. I.; Lewis, K. W.
Hepatotoxic effects of tacrine administration in patients with Alzheimer’s disease.
JAMA, J. Am. Med. Assoc. 1994, 271, 992-998.
36. Bartolini, M.; Bertucci, C.; Cavrini, V.; Andrisano, V. Beta-Amyloid aggregation
induced by human acetylcholinesterase: inhibition studies. Biochem. Pharmacol.
2003, 65, 407-416.
37. Bolognesi, M. L.; Cavalli, A.; Valgimigli, L.; Bartolini, M.; Rosini, M.; Andrisano,
V.; Recanatini, M.; Melchiorre, C. Multi-target-directed drug design strategy: From
a dual binding site acetylcholinesterase inhibitor to a trifunctional compound against
Alzheimer’s disease. J. Med. Chem. 2007, 50, 6446-6449.
38. Minarini, A.; Milelli, A.; Tumiatti, V.; Rosini, M.; Simoni, E.; Bolognesi, M. L.;
Andrisano, V.; Bartolini, M.; Motori, E.; Angeloni, C.; Hrelia, S. Cystamine-tacrine
dimer: A new multi-target-directed ligand as potential therapeutic agent for
Alzheimer’s disease treatment. Neuropharmacology, 2012, 62, 997-1003.
39. Camps, P.; Formosa, X.; Galdeano, C.; Munoz-Torrero, D.; Ramı’rez, L.; Gomez,
E.; Isambert, N.; Lavilla, R.; Badia, A.; Clos, M. V.; Bartolini, M.; Mancini, F.;
Andrisano, V.; Arce, M. P.; Rodrı’guez-Franco, M. I. ; Huertas, O.; Dafni, T.;
Luque, F. J. Pyrano[3,2-c]quinoline-6-Chlorotacrine hybrids as a novel family of
acetylcholinesterase and β-amyloidal-directed anti-Alzheimer compounds. J. Med.
Chem. 2009, 52, 5365-5379.
40. Fernandez-Bachiller, M. I.; Perez, C.; Gonzalez-Munoz, G. C.; Conde, S.; Lopez, M.
G.; Villarroya, M.; Garcı’a, A. G.; Rodrı’guez-Franco, M. I. Novel
Tacrine-8-Hydroxyquinoline hybrids as multifunctional agents for the treatment of Alzheimer’s Disease, with neuroprotective, cholinergic, antioxidant, and
copper-complexing properties. J. Med. Chem. 2010, 53, 4927-4937.
41. Huang, L.; Su, T.; Shan, W. J.; Luo, Z. H.; Sun, Y.; He, F.; Li, X. S. Inhibition of
cholinesterase activity and amyloidal aggregation by berberine-phenylbenzoheterocyclic
and tacrine-phenylbenzoheterocyclic hybrids. Bioorg. Med. Chem.
2012, 20, 3038-3048.
42. Pi, R. B.; Mao, X. X.; Chao, X. J.; Cheng, Z. Y.; Liu, M. F.; Duan, X. L.; Ye, M. Z.;
Chen, X. H.; Mei, Z. R.; Liu, P. Q.; Li, W. M. Han, Y. F. Tacrine-6-Ferulic Acid, a
novel multifunctional dimer, inhibits amyloidal-β-mediated Alzheimer’s disease
associated pathogenesis in vitro and in vivo. PLos One. 2012, 7, e31921.
43. Galdeano, C.; Viayna, E.; Sola, I.; Formosa, X.; Camps, P.; Badia, A.; Clos, M. V.;
Relat, J.; Ratia, M.; Bartolini, M.; Mancini, F.; Andrisano, V.; Salmona, M.;
Minguillon, C.; Gonzalez-Munoz, G. C.; Rodriguez-Franco, M. I.; Bidon-Chanal,
A.; Luque, F. J.; Munoz-Torrero, D. Huprine-Tacrine heterodimers as
anti-amyloidogenic compounds of potential interest against Alzheimer’s and Prion
diseases. J. Med. Chem. 2012, 55, 661-669.
44. Rizzo, S.; Bisi, A.; Bartolini, M.; Mancini, F.; Belluti, F.; Gobbi, S.; Andrisano, V.;
Rampa, A. Multi-target strategy to address Alzheimer’s disease: Design, synthesis
and biological evaluation of new tacrine-based dimmers. Eur. J. Med. Chem. 2011,
46, 4336-4343.
45. Zheng, W.; Li, J.; Qiu, Z.; Xia, Z.; Li, W.; Yu, L. N.; Chen, H. L.; Chen, J. X.; Chen,
Y.; Hu, Z.; Zhou, W.; Shao, B. Y.; Cui, Y. Y.; Xie, Q.; Chen, H. Z. Novel
bis-(−)-nor-meptazinol derivatives act as dual binding site AChE inhibitors with
metal-complexing property. Toxicol. Appl. Pharmacol. 2012, 264, 65-72.
46. (a) Cavalli, A.; Bolognesi, M. L.; Capsoni, S.; Andrisano, V.; Bartolini, M.;
Margotti, E.; Cattaneo, A.; Recanatini, M.; Melchiorre, C. A small molecule
targeting the multifactorial nature of Alzheimer’s disease. Angew. Chem. Int. Ed.
2007, 46, 3689-3692; (b) Bolognesi, M. L.; Banzi, R.; Bartolini, M.; Cavalli, A.;
Tarozzi, A.; Andrisano, V.; Minarini, A.; Rosini, M.; Tumiatti, V.; Bergamini,C.;
Fato, R.; Lenaz, G.; Hrelia, P.; Cattaneo, A.; Recanatini, M.; Melchiorre, C. Novel
class of quinone-bearing polyamines as Multi-target-directed ligands to combat
Alzheimer’s disease. J. Med. Chem. 2007, 50, 4882-4897.
47. Montalcini, R. L. The nerve growth factor 35 years later. Science 1987, 237,
1154-1162.
48. Tuszynski, M. H.; Thal, L.; Pay, M.; Salmon, D. P.; U, H. S.; Roy Bakay, R.; Patel,
P.; Blesch, A.; Vahlsing, H. L.; Ho, G.; Tong, G.; Potkin, S. G.; Fallon, J.; Hansen,
L.; Mufson, E.J.; Kordower, J. H.; Gall, G.; Conner, J. A phase 1 clinical trial of
nerve growth factor gene therapy for Alzheimer disease. Nat. Med. 2005, 11,
551-555.
49. Porzner, M.; Muller, T.; Seufferlein, T. SR57746A/xaliproden, a non-peptide
neurotrophic compound: prospects and constraints for the treatment of nervous
system diseases. Expert Opin. Investig. Drugs 2009, 18, 1765-1772.
50. Hirata, K.; Yamaguchi, H.; Takamura, Y.; Takagi, A.; Fukushima, T.; Iwakami, N.;
Saitoh, A.; Nakagawa, M.; Yamada, T. A novel neurotrophic agent, T-817MA
[1-{3-[2-(1-Benzothiophen-5-yl) Ethoxy] Propyl}-3-azetidinol Maleate], attenuates
amyloidal-β-induced neurotoxicity and promotes neurite outgrowth in rat cultured
central nervous system neurons. J. Pharm. Exp. Ther. 2005, 314, 252-259.
51. Avramovich-Tirosh, Y.; Amit, T.; Bar-Am, O.; Zheng, H.; Fridki, M.; Youdim, M. B.
H. Therapeutic targets and potential of the novel brain-permeable multifunctional
iron chelator-monoamine oxidase inhibitor drug, M-30, for the treatment of
Alzheimer’s disease. J. Neurochem. 2007, 100, 490-502.
52. Weinreb, O.; Mandel, S.; Bar-Am, O.; Yogev-Falach, M.; Avramovich-Tirosh, Y.;
Amit, T.; Youdim, M. B. H. Multifunctional Neuroprotective Derivatives of
Rasagiline as Anti-Alzheimer’s Disease Drugs. Neurotherapeutics 2009, 6, 163-174.
53. Liu, Y. B.; Dargusch, R.; Maher, P.; Schubert, D. A broadly neuroprotective
derivative of curcumin. J. Neurochem. 2008, 105, 1336-1345.
54. Chen, Q.; Prior, M.; Dargusch, R.; Roberts, A.; Riek, R.; Eichmann, C.; Chiruta, C.;
Akaishi, T.; Abe, K.; Maher, P.; Schubert, D. A Novel neurotrophic drug for
cognitive enhancement and Alzheimer’s disease. PLoS ONE 2011, 6, e27865.
2.6 References:
1. Borg, J.; Toazara, J.; Hietter, H.; Henry, M.; Schmitt, G.; Luu, B. Neurotrophic
effect of naturally occurring long-chain fatty alcohols on cultured CNS neurons.
FEBS Lett. 1987, 213, 406-410.
2. Luu, B.; Aguilar, J. G. D.; Girlanda-Junges, C. Cyclohexenonic long-chain fatty
alcohols as neuronal growth stimulators. Molecules 2000, 5, 1439-1460.
3. Keyling-Bilger, F.; Schmitt, G.; Beck, A.; Luu, B. Synthesis of optically active
diastereomers of a nonproteic neurotrophic mimetic. Tetrahedron 1996, 52,
14891-14904.
4. Coowar, D.; Bouissac, J.; Hanbali, M.; Paschaki, M.; Mohier, E.; Luu, B. Effects of
indole fatty alcohols on the differentiation of neural stem cell derived neurospheres. J. Med. Chem. 2004, 47, 6270-6282.
5. Mazen Hanbali, M.; Bagnard, D.; Luu, B. Solid-phase synthesis of quinol fatty
alcohols, design of N/O-substituted quinol fatty alcohols and comparative activities
on axonal growth. Bioorg. Med. Chem. Lett. 2006, 16, 3917-3920.
6. Hauss, F.; Liu, J. W.; Michelucci, A.; Coowar, D.; Morga, E.; Heuschling, P.; Luu, B.
Dual bioactivity of resveratrol fatty alcohols: differentiation of neural stem cells and
modulation of neuroinflammation. Bioorg. Med. Chem. Lett. 2007, 17, 4218-4222.
7. Aoki, S.; Matusi, K.; Wei, H.; Murakami, N.; Kobayashi, M. Structure-activity
relationship of neuritogenic spongean acetylene alcohols, lembehynes. Tetrahedron
2002, 58, 5417-5422.
8. Yun, H. D.; Chou, T. C.; Dong, G. J.; Tian, Y.; Li, Y. M.; Danishefsky, S. J.; Total
synthesis as a resource in drug discovery: the first in vivo evaluation of panaxytriol
and its derivatives. J. Org. Chem. 2005, 70, 10375-10380.
9. Schmidt, F.; Champy, P.; Se’on-Me’niel, B.; Franck, X.; Raisman-Vozari, R.;
Figade`re, B. Chemicals possessing a neurotrophin-like activity on dopaminergic
neurons in primary culture. PLoS ONE 2009, 4, e6215.
10. Schmidt, F.; Douaron, G. L.; Champy, P.; Amar, M.; Seon-Meniel, B.;
Raisman-Vozari, R.; Figadere, B. Tryptamine-derived alkaloids from Annonaceae
exerting neurotrophin-like properties on primary dopaminergic neurons. Bioorg.
Med. Chem. 2010, 18, 5103-5113.
11. Borg, J. The neurotrophic factor, n-hexacosanol, reduces the neuronal damage
induced by the neurotoxin, kainic acid. J. Neurosci. Res. 1991, 29, 2952-2967.
12. Hyman, B. T. Amyloid-dependent and amyloid-independent stages of Alzheimer
disease. Arch. Neurol. 2011, 68, 1062-1064.
13. Cherny, R. A.; Atwood, C. S.; Xilinas, M. E.; Gray, D. N.; Jones, W. D.; McLean,C. A.; Barnham, K. J.; Volitakis, I.; W. Fraser, F. W.; Kim, Y. S.; Huang, X. D.;
Goldstein, L. E.; Moir, R. D.; Lim, J. T.; Beyreuther, K.; Zheng, H.; Tanzi, R. E.;
Masters, C. L.; Bush, A. I. Treatment with a copper-zinc chelator markedly and rapidly Inhibits β-amyloid accumulation in Alzheimer's disease transgenic mice.
Neuron 2001, 30, 665-676.
14. Tateishi, J.; Kuroda, S.; SMto, A.; Otsuki, S. Experimental myelo-optic neuropathy
induced by Clioquinol. Acta neuropathol. 1973, 24, 304-320.
15. Benvenisti-Zarom, L.; Chen, J.; Regan, R. F. The oxidative neurotoxicity of
clioquinol. Neuropharmacology 2005, 49, 687-694.
16. Asakura, K.; Ueda, A.; Kawamura, N.; Ueda, M.; Mihara, T.; Mutoh, T.; Clioquinol
inhibits NGF-induced Trk autophosphorylation and neurite outgrowth in PC12 cells.
Brain Res. 2009, 1301, 110-115.
17. Sampson, E. L.; Jenagaratnam, L.; McShane, R. Metal protein attenuating
compounds for the treatment of Alzheimer’s disease. Cochrane Database Syst. Rev.
2008, 1, 1-13.
18. Adlard, P. A.; Cherny, R. A.; Finkelstein, D. I.; Gautier, E.; Robb, E.; Cortes, M.;
Volitakis, I.; Liu, X.; Smith, J. P.; Perez, K.; Laughton, K.; Li, Q. X.; Charman, S. A.;
Nicolazzo, J. A.; Wilkins, S.; 1,3 Karolina Deleva, K.; 1 Toni Lynch, T.; Gaik Kok,
G.; Ritchie, C. W.; Tanzi, R. E.; Cappai, R.; Masters, C. L.; Barnham, K. J.; Bush, A.
I. Rapid restoration of cognition in Alzheimer’s transgenic mice with 8-hydroxy
quinoline analogs is associated with decreased interstitial Aβ. Neuron 2008, 59,
43-55.
19. Talekar, R. S. Design, Synthesis and Biological Evaluation of Quinoline Analogues.
PhD thesis, Natinal Taiwan University, 2006.
20. Zhang, H.; Wang, Q. L.; Jiang, Y. B. 8-Methoxyquinoline based turn-on metal
fluoroionophores. Tetrahedron Lett. 2007, 48, 3959-3962
21. Prodi, L.; Montalti, M.; Zaccheroni, N.; Bradshaw, J. S.; Izatt, R. M.; Savageb, P. B.
Characterization of 5-chloro-8-methoxyquinoline appended diaza-18-crown-6 as a
chemosensor for cadmium. Tetrahedron Lett. 2001, 42, 2941-2944.
22. Chang, P. T.; Talekar, R. S.; Kung, F. L.; Chern, T. R.; Lai, S. Y.; Yu, C. W.;
Deore, R. R.; Huang, C. W.; Lin, J. H.; Chen, C. S.; Liu, J. R.; Chen, G. S. & Chern,
J. W. manuscript in preparation.
23. Caris, C.; Baret, P.; Pierre, J. L. Serratrice, G. Synthesis and NMR Study of
Two Lipophilic Iron(Ill) Sequestering Agents Based on 8-Hydroxyquinoline;
H-bonding and Conformational Changes. Tetrahedron 1996, 52, 4659-4672.
24. 8-Hydroxy quinoline derivatives. WO2004007461
25. Meanwell, N. A. Synopsis of some recent tactical application of bioisosteres in drug
design. J. Med. Chem. 2011, 54, 2529-2591.
26. Chang, P. T.; Kung, F. L.; Talekar, R. S.; Chen, C. S.; Lai, S. Y.; Lee, H. Y.; Chern, J.
W. An improved screening model to identify inhibitors targeting zinc-enhanced
amyloid aggregation. Anal. Chem. 2009, 81, 6944-6951.
27. Su, Y.; Sun, C. M.; Chuang, H. H.; Chang, P. T. Studies on the cytotoxic
mechanisms of ginkgetin in a human ovarian adenocarcinoma cell line.
Naunyn-Schmiedebergs Arch Pharmacol. 2000, 362, 82-90.
28. Fiedler, H. Notiz uber die Verwendung von polyphosphorsaure bei der reaktion nach
DOBNER-v. MILLER. J. fur Praktische Chemie 1961, 13, 86.
29. Gershon, H.; Mcneil, M. W. 5- and 7-substituted 2-methyl-8-quinolinols J.
Heterocyclic Chem. 1972, 9, 659-667.
30. Ruetgerswerke. Chem. Abstr. 1972, 77, #151993.
31. Vaidya, M. G.; Cannon, J. G. Derivatives of 8-hydroxy-2-quinolineacrylic acid. II. J.
Med. Chem. 1962, 5, 389-397.
32. Nickel, P.; Fink, E. 2-, 3- and 4-Mono-, di- und trimethylderivate von 6-
(4-Diathylamino-l-methylbutylamino)-5,8-dimethoxychinolin. Liebigs Ann. Chem.
1976, 367-382.
33. Warner, V. D.; Must, J. D.; Turesky, S. S.; Soloway, B. Synthesis and in vitro
evaluation of 8-hydroxyquinolines as dental plaque inhibitors. J. Pharm. Sci. 1975,
64, 1563-1566.
34. Rauckman, B. S.; Tidwell, M. Y.; Johnson, J. V.; Roth, B.
2,4-Diamino-5-benzylpyrimidines and analogues as antibacterial agents. 10.
2,4-Diamino-5-(6-quinolylmethy1)- and -[(tetrahydro-6-quinoly1)methyl]
pyrimidine derivatives. Further specificity studies. J. Med. Chem. 1989, 32,
1927-1935.
35. Biichi, J.; Aebi, A.; Deflorinl, A.; Hurni, H. Synthese und pharmakologische
Wirkung einiger thiosemicarbazone von 8-hydroxychinolin-derivaten. Helv. Chim.
Acta 1956, 39, 1676-1680.
36. Kitamura, C.; Maeda, N.; Kamada, N.; Ouchi, M.; Yoneda, A. Synthesis of
2-(substituted methyl)quinolin-8-ols and their complexation with Sn(II). J. Chem.
Soc., Perkin Trans. 1, 2000, 5, 781-785.
3.6 References
1. Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Experimental and
computational approaches to estimate solubility and permeability in drug discovery
and development settings. Adv. Drug Deliver. Rev. 1997, 23, 3-25.
2. Oprea T. I.; Davis, A.M.; Teague, S.J.; Leeson, P. D. Is there a difference between
leads and drugs? A historical perspective. J. Chem. Inf. Model. 2001, 41,
1308-1315.
3. Leeson, P. D. and Springthorpe, B. The influence of drug-like concepts on decision
making in medicinal chemistry. Nat. Rev. Drug. Discov. 2007, 6, 881-890.
4. Meanwell, N. A. Improving drug candidates by design: A focus on physicochemical
properties as a means of improving compound disposition and safety. Chem. Res.
Toxicol. 2011, 24, 1420-1456.
5. Price, D. A.; Blagg, J.; Jones, L.; Greene, N.; Wager, T.; Physicochemical drug
properties associated with in vivo toxicological outcomes: a review. Expert Opin.
Drug Metab. Toxicol. 2009, 5, 921-931.
6. Walters, W. P. Going further than Lipinski’s rule in drug design. Expert Opin. Drug
Discov. 2012, 7, 99-107.
7. Wager, T. T., Chandrasekaran, R. Y., Hou, X., Troutman, M. D., Verhoest, P. R.,
Villalobos, A., and Will, Y. Defining desirable central nervous system drug space
through alignment of molecular properties, in vitro ADME, and safety attributes.
ACS Chem. Neurosci. 2010, 1, 420-434.
8. Pardridge, W. M. Alzheimer’s disease drug development and the problem of the
blood-brain barrier. Alzheimers Dement. 2009, 5, 427-432.
9. Kerns, E. H; Li, D. Drug-like properties: concepts, structure design and methods
from ADME to toxicity optimization. Wiley 2008.
10. http://www.molsoft.com/mprop/mprop.cgi
11. Veber, D. F.; Johnson, S. R.; Cheng, H. Y.; Smith, B. R.; Ward, K. W.; Kopple, K. D.
Molecular properties that influence the oral bioavailability of drug candidates. J.
Med. Chem. 2002, 45, 2615-2623.
12. Schmidt, F.; Douaron, G. L.; Champy, P.; Amar, M.; Seon-Meniel, B.;
Raisman-Vozari, R.; Figadere, B. Tryptamine-derived alkaloids from Annonaceae
exerting neurotrophin-like properties on primary dopaminergic neurons. Bioorg.
Med. Chem. 2010, 18, 5103-5113.
13. Pajouhesh, H. and Lenz, G. R. Medicinal chemical properties of successful central
Nervous System Drugs. NeuroRx. 2005, 2, 541-553.
14. Lakatos, A.; Zsigo, E.; Hollender, D.; Nagy, N. V.; Fulop, D.; Simon, D.; Bozso, Z.;
Kiss, T.; Two pyridine derivatives as potential Cu(II) and Zn(II) chelators in therapy
for Alzheimer’s disease. Dalton Trans., 2010, 39, 1302-1315.
15. Zheng, H. L.; Weiner, L. M.; Bar-Am, O.; Epsztejn, S.; Cabantchik, Z. I.;
Warshawsky, A.; Youdimb, M. B. H.; Fridkin, M. Design, synthesis, and evaluation
of novel bifunctional iron-chelators as potential agents for neuroprotection in
Alzheimer’s, Parkinson’s, and other neurodegenerative diseases. Bioorg. Med. Chem.
2005, 13, 773-783.
16. Avramovich-Tirosh, Y.; Amit, T.; Bar-Am, O.; Zheng, H. L. Fridkin, M.; Youdim, M.
B. H. Therapeutic targets and potential of the novel brain-permeable multifunctional
iron chelator–monoamine oxidase inhibitor drug, M-30, for the treatment of
Alzheimer’s disease. J. Neurochem. 2007, 100, 490-502.
17. Amit, T.; Avramovich-Tirosh, Y.; Youdim, M. B. H.; Mandel, S. Targeting multiple
Alzheimer’s disease etiologies with multimodal neuroprotective and
neurorestorative iron chelators. FASEB J. 2008, 22, 1296-1305.
178
18. 8-Hydroxy quinoline derivatives. WO2004007461
19. Aisen, P. S.; Gauthier, S.; Vellas, B.; Briand, R.; Saumier, D.; Laurin, J.; Garceau, D.
Alzhemed: A Potential Treatment for Alzheimers Disease. Curr. Alz. Res. 2007, 4,
473-478.
20. Su, Y.; Sun, C. M.; Chuang, H. H.; Chang, P. T. Studies on the cytotoxic
mechanisms of ginkgetin in a human ovarian adenocarcinoma cell line.
Naunyn-Schmiedebergs Arch Pharmacol. 2000, 362, 82-90.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15659-
dc.description.abstract本論文設計構想是以天然物小葉水蓑衣中所分離出的正二十六烷醇及具有螯合金屬離子能力而達到溶解類澱粉斑塊功能的氯碘羥喹作為先導化合物並融合二者成為8-羥基喹啉-2-烷基醇衍生物作為目標化合物。以2-胺基酚在酸性條件下進行環化合成8-羥基喹啉,並以苄基化對羥基進行保護。接著在二位連接烷基醇及移除保護基便得到目標化合物5。同時以之前實驗室化合物J2326 的研究為基礎,設計及合成一系列8-烷氧基喹啉-2-烷基醇衍生物。其生物活性測試結果證實確可減少類澱粉蛋白的聚集、誘發神經軸突生長以及促進神經細胞增生。除此之外,目標化合物對細胞無毒性以及在類澱粉蛋白所誘發神經退化的老鼠實驗中可改善其記憶。綜合以上所述,以化合物23o、23p、27i 及33i 最具有潛力並可作為未來進一步研究所需之試劑。
由於8-烷氧基喹啉-2-烷基醇衍生物溶解度普遍不佳且與鋅離子的作用力比8-羥基喹啉-2-烷基醇弱,本論文嘗試於喹啉環上2 位導入含氮原子的神經滋養功能基團替代長鏈烷基醇來改善性質。將喹啉環二位的甲基進行氧化成醛後再進行還原性胺化及可得到目標化合物。雖然其結果顯示僅有少數化合物在減少類澱粉蛋白聚集以及活化神經滋養效果與J2326 相仿,但其溶解度確實大幅改善並可提供更大的彈性以利未來的優化。總結來說,本論文開發出新穎羥烷基取代八羥基/烷氧基喹啉衍生物做為多效性神經滋養試劑的策略將來或許可應用於治療因蛋白質缺陷及堆積所造成的退化性神經疾病如阿茲海默症,帕金森氏症,杭丁頓舞蹈症及肌萎縮性側索硬化症。
zh_TW
dc.description.abstract8-Hydroxyquinolin-2-ylalkyl alcohol derivatives were designed by merging two leads, hexacosanol which was isolated from natural plant Hygrophilia erecta Hochr
(Acanthaceae) and clioquinol which possessed metal chelation ability to dissolve fAβ as target compounds in this dissertation. 2-Aminophenol was cyclized under acidic
condition to afford 8-hydroxyquinoline and the hydroxyl group was protected by benzylation. Subsequently, alkyl alcohol was introduced to C2 position and removal of
protecting group to obtain target compound 5. Meanwhile, on the basis of previous study of J2326, a series of 8alkoxyquinolin-2-ylalkyl alcohol derivatives were
designed and synthesized. The biological evaluation demonstrated that these compounds definitely reduce formation of Aβ aggregates, induce neurite outgrowth and
stimulate neuron proliferation. Further, target compounds are nontoxic to the cells and improve the memory of fAβ-lesioned mice with neuron degeneration. In summary,
compounds 23o, 23p, 27i and 33i are the most promising and serve as potential agents for further investigation in the future.
Since poor solubility and weaker interaction with zinc ions of 8-alkoxyquinolin-2-ylalkyl alcohol derivatives were observed in comparison with 8-hydroxyquinolin-2-ylalkyl alcohol derivatives, neurotrophic functional moieties with nitrogen atom were introduced onto C2-position of quinoline ring to replace alkyl alcohols for the purpose of improving the properties. Methyl group on C2-position of quinoline ring was oxidized to aldehyde and subsequently reductive amination to afford target compounds. Although very few compounds are comparable to J2326 in anti-fAβ and activation of neurotrophic activities, solubility was definitely improved to provide more flexibility for compound optimization in the future. In conclusion, the strategy in the development of novel hydroxyalkyl substituted 8hydroxyl/alkoxyquinolines as multifunctional neurotrophic agents might be applied to other neurodegenerative diseases treatments with aberrant proteins aggregation such as Alzheimer, Parkinson, Huntington diseases and Amyotrophic lateral sclerosis.
en
dc.description.provenanceMade available in DSpace on 2021-06-07T17:49:34Z (GMT). No. of bitstreams: 1
ntu-102-F95423025-1.pdf: 14504620 bytes, checksum: 52cb3df50ccc6a222e6a898ae0cb664a (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents中文摘要...................................................i
Abstract..................................................ii
List of Schemes...........................................v
List of Tables..................................vi
List of Figures..................................vii
List of Abbreviation...................................viii
Chapter 1 Introduction
1.1 Background of neurodegenerative diseases..............1
1.2 Epidemiology and healthcare of AD................2
1.3 Drug development strategies for anti-Alzheimer’s therapy............................3
1.4 Summary.......................................16
1.5 References………………………………………………………………...17
Chapter 2 Design and Synthesis of Quinolin-2-ylalkyl Alcohols
2.1 Introduction and Design.................................................................................25
2.2 Synthetic results.............................................................................................29
2.3 Biological activities and discussion...............................................................35
2.4 Summary…....................................................................................................49
2.5 Experimental section……………………………………………………….50
2.6 References…………………………………………………………………139
Chapter 3 Solubility Improvement for Optimization of Quinolin-2-ylalkyl Alcohols
3.1 Introduction and Design...............................................................................144
3.2 Synthetic results...........................................................................................148
3.3 Biological activities and discussion.............................................................150
3.4 Summary......................................................................................................155
3.5 Experimental section….……………………………………………….....….156
3.6 References…….…………………………………………….……………….176
Conclusions......................................179
-
dc.language.isoen-
dc.subject喹zh_TW
dc.subject啉zh_TW
dc.subject阿茲海默症zh_TW
dc.subjectquinolineen
dc.title設計合成具有多重功效之羥烷基取代八羥基/烷氧基喹啉衍生物作為治療阿茲海默症之活性評估zh_TW
dc.titleDesign, Synthesis and Biological Evaluation of Hydroxyalkyl Substituted 8-Hydroxyl/Alkoxyquinolines with Multifunctional Activities against Alzheimer’s Diseaseen
dc.typeThesis-
dc.date.schoolyear101-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee王光昭,尤啟冬,顧記華,陳香惠,孔繁璐-
dc.subject.keyword喹,啉,阿茲海默症,zh_TW
dc.subject.keywordquinoline,en
dc.relation.page180-
dc.rights.note未授權-
dc.date.accepted2013-01-31-
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥學研究所zh_TW
顯示於系所單位:藥學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
14.16 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved