Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15654
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 周中哲(Chung-Che Chou) | |
dc.contributor.author | Lai Yun-Chuan | en |
dc.contributor.author | 賴耘川 | zh_TW |
dc.date.accessioned | 2021-06-07T17:49:28Z | - |
dc.date.copyright | 2020-08-06 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-08-05 | |
dc.identifier.citation | AISC. (2016a) Prequalified connections for special and intermediate steel moment frames for seismic applications. ANSI/AISC 358. Chicago: AISC. AISC. (2016b) Seismic provisions for structural steel buildings. ANSI/AISC 341. Chicago: AISC. AISC. (2016c) Specification for structural steel buildings. ANSI/AISC 360. Chicago: AISC. ASCE (2013) Seismic Evaluation and Retrofit of Existing Building Structures. ASCE/SEI 41-13. Reston, VA: American Society of Civil Engineers. ASCE. (2017) Seismic evaluation and retrofit of existing buildings. Reston. ASCE/SEI 41-13. Reston, VA: American Society of Civil Engineers. NIST-ATC. (2017) Guidelines for Nonlinear Structural Analysis for Design of Buildings: Part IIa – Steel Moment Frames. NIST GCR 17-917-46v2. ASTM. (2015) Standard specification for structural steel shapes. ASTM A992/A992M-11. West Conshohocken, PA: ASTM. AWS. (2006) Structural welding code-steel. D1.1:2000, FL. J. Newell, and C.-M. Uang. (2008) Cyclic behavior of steel wide-flange columns subjected to large drift. J. Struct. Eng. 134 (8): 1334–1342. G. Ozkula, J. Harris, and C. M. Uang (2017) Observations from cyclic tests on deep, wide-flange beam-columns. Engineering Journal-American Institute of Steel Construction. 54(1), 45-59. G. Ozkula, J. Harris, and C. M. Uang (2017) Classifying Cyclic Buckling Modes of Steel Wide-Flange Columns under Cyclic Loading. Structures Congress (pp. 155-167). ASCE. G. Ozkula, J. Harris, and C. M. Uang (2017). Cyclic backbone curves for steel wide‐flange columns: A numerical study. ce/papers. 1(2-3), 3365-3374. A. Elkady, and D. G. Lignos. (2015) Analytical investigation of the cyclic behavior and plastic hinge formation in deep wide-flange steel beamcolumns. Bull. Earthquake Eng. 13 (4): 1097–1118. A. Elkady, and D. G. Lignos. (2017) Full-scale cyclic testing of deep slender wide-flange steel beam-columns under unidirectional and bidirectional lateral drift demands. Proc., 16th World Conf. on Earthquake Engineering (16WCEE). Santiago, Chile: International Association of Earthquake Engineering. A. Elkady, and D. G. Lignos. (2018a) Full-scale testing of deep wideflange steel columns under multiaxis cyclic loading: Loading sequence, boundary effects, and lateral stability bracing force demands. J. Struct. Eng. 144 (2): 04017189. A. Elkady , and D. G. Lignos. (2018b) Improved seismic design and nonlinear modeling recommendations for wide-flange steel columns. J. Struct. Eng. 144 (9): 04018162. A. Elkady , S. Ghimire, and D. G. Lignos. (2018) Fragility curves for wideflange steel columns and implications on building-specific earthquakeinduced loss assessment. Earthquake Spectra 34 (3): 1405–1429. D. G. Lignos , A. R. Hartloper, A. Elkady, G. G. Deierlein, and R. Hamburger. (2019) Proposed updates to the ASCE 41 nonlinear modeling parameters for wide-flange steel columns in support of performancebased seismic engineering. J. Struct. Eng. 145 (9): 04019083. D. G. Lignos, J. Cravero, and A. Elkady. 2016. Experimental investigation of the hysteretic behavior of wide-flange steel columns under high axial load and lateral drift demands. Proc., 11th Pacific Structural Steel Conf. Shanghai, China: China Steel Construction Society. J. Fogarty, and S. El-Tawil (2015) Collapse resistance of steel columns under combined axial and lateral loading. J. Struct. Eng. 10.1061 /(ASCE)ST.1943-541X.0001350, 04015091. T.-Y. Wu, S. El-Tawil, and J. McCormick. (2018) Highly ductile limits for deep steel columns. J. Struct. Eng. 144 (4): 04018016. M. Nakashima, K. Ogawa, K. Inoue (2002) Generic frame model for simulation of earthquake responses of steel moment frames. Earthquake Engineering and Structural Dynamics. 31, 671–692. B. Chi, and C. M. Uang, (2002) Cyclic response and design recommendations of reduced beam section moment connections with deep columns. J. Struct. Eng. 128(4), 464–473. X. Zhang, JM Ricles (2006) Experimental evaluation of reduced beam section connections to deep columns. J Struct Eng 132(3):346–357. C-H Lee, S-W Jeon, J-H Kim, and C-M Uang, (2005) Effects of panel zone strength and beam web connection method on seismic performance of reduced beam section steel moment connections. J Struct Eng, ASCE 2005; 131(12):1854–65. T. H. Lin, C. C. Chou, G. W. Chen (2019). A seven-story steel braced frame under far-field and near-fault earthquakes: loading protocol and seismic test of high-strength steel H-shaped columns. International Conference in Commemoration of 20th Anniversary of the 1999 Chi-Chi Earthquake.Taipei, Taiwan, September 15-19, 2019. C. C. Chou, T. H. Lin, Y. C. Lai, H. C. Xiong, C. M. Uang, S. El-Tawil, J. P. McCormick, G. Mosqueda (2019). US-TAIWAN collaborative research on steel column through cyclic testing of two story subassemblages. International Conference in Commemoration of 20th Anniversary of the 1999 Chi-Chi Earthquake.Taipei, Taiwan, September 15-19, 2019. 陳冠維,「高強度箱型鋼柱之耐震試驗與背骨曲線發展」,碩士論文,國立台灣大學土木工程系,民國108年 內政部營建署,「鋼結構極限設計法規範及解說」,2010年修正。 中華民國鋼結構協會技術委員會,「技術備忘錄 第 002 號:H 梁扇形孔細部設計與施工」,2011年。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15654 | - |
dc.description.abstract | 本研究探討H型鋼柱(H Shape Column)於不同邊界條件下(Fixed-Flexible、Fixed-Fixed)之耐震行為,主要試驗參數包括邊界條件及寬厚比,共計有五組試體。H型鋼柱斷面變換了腹板寬厚比分別為37與49,且皆滿足AISC 341-16高韌性構件(Highly Ductile Members)之寬厚比規定。試體類型分別為兩層樓子構架試體(Fixed-Flexible)與單柱試體(Fixed-Fixed),並使用SN490B系列鋼材(標稱降伏強度325~445 MPa),以固定軸力下(20%Py)進行AISC 341 (2016)標準反覆載重歷時試驗。試驗結果顯示本研究Fixed-Flexible邊界條件其塑性行為略優於Fixed-Fixed邊界條件;並發現即使真實抗彎構架系統滿足美國鋼結構建築耐震規範AISC 341-16對於強柱弱梁的規定,柱依然有產生塑鉸的風險。 本研究將試驗結果與NIST (2017)、ASCE 41(2013 2017)及Ozkula et al.(2017c) 所提出之背骨曲線進行比較,發現各規範背骨曲線皆無法反應真實的彈性勁度 ,因此提出建議的修正公式進行修正。而對於Fixed-Fixed邊界條件之試體,彈性勁度 又以NIST(2017)與ASCE 41(2017)預測最為準確;對於最大彎矩及最大轉角又以NIST(2017)預測最為準確。 | zh_TW |
dc.description.abstract | The effects of boundary conditions and local web slenderness ratios on the H-shaped steel columns (HC) hysteretic behavior were experimentally investigated. This study discusses the findings from 5 half-scale steel column tests subjected to the AISC specified cyclic loading and constant axial load (20% Py). The specimens with local web slenderness ratios 37 and 49 satisfied AISC 341 requirements for highly or moderately ductile elements. To reflect realistic boundary conditions, two-story steel subassemblage frames with a single column and steel beams at two floors were tested to evaluate the cyclic behavior of steel columns, and compared with double-curvature member testing afterwards. Although the test results specify the influence of boundary conditions on the damage progression of steel columns, there is not much difference in the ductility of specimens with different boundary conditions. Moreover, the tests reveal that the column in moment-resisting frame has high risk of yielding even if it satisfies AISC 341 strong-column weak-beam requirements. This study compares the test results with the backbone curves proposed by NIST (2017), ASCE 41 (2013 2017) and Ozkula et al. (2017c). It shows that the backbone curves proposed by each study will overestimate the elastic stiffness due to the different type of boundary conditions. To address these issues, the modified elastic stiffness was proposed. For the specimens with Fixed-Fixed boundary conditions, the NIST (2017) and ASCE 41 (2017) predictions of the elastic stiffness are the most accurate. Furthermore, the NIST (2017) predictions are plenty accurate for the maximum flexural strength and the maximum rotation. | en |
dc.description.provenance | Made available in DSpace on 2021-06-07T17:49:28Z (GMT). No. of bitstreams: 1 U0001-0308202016323100.pdf: 14304224 bytes, checksum: 387307d5f277932508c1325500c796f5 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 口試委員會審定書 i 誌謝 ii 摘要 iii ABSTRACT iv 目錄 v 表目錄 viii 圖目錄 ix 照片目錄 xiv 第 1 章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究動機與目的 4 1.4 研究方法 5 1.5 論文架構 5 第 2 章 試體設計與規劃 6 2.1 斷面規劃 6 2.1.1 寬厚比規定 6 2.1.2 挫屈模態 7 2.1.3 斷面銲接方法 9 2.2 兩層樓子構架設計 10 2.2.1 檢核構件強度 10 2.2.2 RBS(Reduced Beam Section) 削切設計 13 2.2.3 梁柱交會區之韌性設計 14 2.2.4 檢核強柱弱梁比 15 2.2.5 梁柱接頭與梁柱交會區施作細節 15 2.3 試體製作與安裝 16 2.3.1 兩層樓子構架試體 17 2.3.2 兩層樓子構架試體再製與單柱試體 17 2.4 試體之各斷面力量計算 18 2.4.1 兩層樓子構架試體 18 2.4.2 單柱試體 20 2.5 測試系統 20 2.6 量測規劃 21 2.7 試驗控制與載重歷時 23 2.7.1 兩層樓子構架試體 23 2.7.2 單柱試體 24 第 3 章 實驗結果分析與討論 25 3.1 實驗觀察 25 3.1.1 HC-37-S 25 3.1.2 HC-37-S(R) 26 3.1.3 HC-49-S 28 3.1.4 HC-37-I 29 3.1.5 HC-49-I 30 3.2 試體整體反應分析與比較 31 3.2.1 制動器反應與遲滯曲線 31 3.2.2 試體彎矩分佈與反曲點變化 35 3.2.3 變形曲線與曲率 37 3.2.4 軸向變形比較 38 3.2.5 面外變形比較 39 3.2.6 扭轉變形比較 39 3.3 韌性 40 3.3.1 韌性計算 41 3.3.2 韌性比較 41 3.4 試體破壞討論 42 3.5 試體局部反應分析與比較 45 3.5.1 局部挫屈反應 45 3.5.2 試體應變量比較 47 第 4 章 試體反應與規範預測值比較 51 4.1 前言 51 4.2 背骨曲線之建構 51 4.2.1 ASCE 41 (2013) 51 4.2.2 ASCE 41 (2017) 52 4.2.3 NIST (2017) 54 4.2.4 Ozkula et al. (2017c) 55 4.3 背骨曲線分析與試驗結果比較 56 4.4 背骨曲線之彈性勁度修正 58 4.4.1 彈性勁度修正 58 4.4.2 彈性規範勁度與試驗結果比較 63 第 5 章 結論與建議 65 5.1 結論 65 5.2 建議 67 參考文獻 69 附錄A 兩層樓子構架試體計算書 191 附錄B 試體設計圖 197 | |
dc.language.iso | zh-TW | |
dc.title | H型鋼柱耐震行為: 兩層樓子構架與固接柱之試驗 | zh_TW |
dc.title | H-Shaped Steel Columns under Cyclic Loading: Two-Story Subassemblage and Member Test | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 汪家銘(Chia-Ming Wang),蔡克銓(Keh-Chyuan Tsai),吳東諭(Tung-Yu Wu),陳誠直(Cheng-Chih Chen) | |
dc.subject.keyword | H型鋼柱,兩層樓子構架試驗,梁柱構件反曲點,邊界條件,強柱弱梁比, | zh_TW |
dc.subject.keyword | H-shaped steel columns,Two-Story Subassemblage Frame Test,Column Inflection Point,Boundary conditions,Strong-Column Weak-Beam, | en |
dc.relation.page | 210 | |
dc.identifier.doi | 10.6342/NTU202002290 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2020-08-05 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
Appears in Collections: | 土木工程學系 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
U0001-0308202016323100.pdf Restricted Access | 13.97 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.