請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15632完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王勝仕(Sheng-Shih Wang) | |
| dc.contributor.author | Jhih- Hao Yang | en |
| dc.contributor.author | 楊智皓 | zh_TW |
| dc.date.accessioned | 2021-06-07T17:49:08Z | - |
| dc.date.copyright | 2020-08-10 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-04 | |
| dc.identifier.citation | 1. Kumar, R. and B.R. Singh, Introduction to Protein Folding, in Protein Toxins in Modeling Biochemistry. 2016, Springer. p. 5-28. 2. Schleeger, M., et al., Amyloids: From molecular structure to mechanical properties. Polymer, 2013. 54(10): p. 2473-2488. 3. Sunde, M., et al., Common core structure of amyloid fibrils by synchrotron X-ray diffraction. Journal of molecular biology, 1997. 273(3): p. 729-739. 4. Makin, O.S. and L.C.J.T.F.j. Serpell, Structures for amyloid fibrils. The FEBS journal, 2005. 272(23): p. 5950-5961. 5. Jansens, K.J., et al., Rational design of amyloid‐like fibrillary structures for tailoring food protein techno‐functionality and their potential health implications. Comprehensive Reviews in Food Science and Food Safety, 2019. 18(1): p. 84-105. 6. Lassé, M., J.A. Gerrard, and F.G. Pearce, Aggregation and fibrillogenesis of proteins not associated with disease: a few case studies, in Protein Aggregation and Fibrillogenesis in Cerebral and Systemic Amyloid Disease. 2012, Springer. p. 253-270. 7. Adamcik, J. and R. Mezzenga, Proteins Fibrils from a Polymer Physics Perspective. Macromolecules, 2011. 45(3): p. 1137-1150. 8. Kristinsson, H.G., B.A.J.C.r.i.f.s. Rasco, and nutrition, Fish protein hydrolysates: production, biochemical, and functional properties. Critical reviews in food science and nutrition, 2000. 40(1): p. 43-81. 9. Zou, Y., et al., Effect of dextran glycation on nanofibril assembly of soya β‐conglycinin at pH 2.0 and the pH stability of nanofibrils. International Journal of Food Science Technology, 2016. 51(10): p. 2260-2269. 10. Liu, G. and Q.J.B. Zhong, Dispersible and thermal stable nanofibrils derived from glycated whey protein. Biomacromolecules, 2013. 14(7): p. 2146-2153. 11. Tang, C.-H. and C.-S. Wang, Formation and Characterization of Amyloid-like Fibrils from Soy β-Conglycinin and Glycinin. Journal of Agricultural and Food Chemistry, 2010. 58(20): p. 11058-11066. 12. Meza, B.E., R.A. Verdini, and A.C. Rubiolo, Viscoelastic behaviour of heat-treated whey protein concentrate suspensions. Food Hydrocolloids, 2009. 23(3): p. 661-666. 13. Loveday, S., et al., β-Lactoglobulin nanofibrils: Effect of temperature on fibril formation kinetics, fibril morphology and the rheological properties of fibril dispersions. Food Hydrocolloids, 2012. 27(1): p. 242-249. 14. Zhang, Y.-H., et al., Effects of additional fibrils on structural and rheological properties of rice bran albumin solution and gel. European Food Research and Technology, 2014. 239(6): p. 971-978. 15. Wan, Z., X. Yang, and L.M.J.L. Sagis, Contribution of long fibrils and peptides to surface and foaming behavior of soy protein fibril system. Langmuir, 2016. 32(32): p. 8092-8101. 16. Serfert, Y., et al., Characterisation and use of β-lactoglobulin fibrils for microencapsulation of lipophilic ingredients and oxidative stability thereof. Journal of Food Engineering, 2014. 143: p. 53-61. 17. Ng, S.-K., et al., Development of a palm olein oil-in-water (o/w) emulsion stabilized by a whey protein isolate nanofibrils-alginate complex. LWT-Food Science and Technology 2017. 82: p. 311-317. 18. Gonzalez-Jordan, A., T. Nicolai, and L.J.L. Benyahia, Influence of the protein particle morphology and partitioning on the behavior of particle-stabilized water-in-water emulsions. Langmuir, 2016. 32(28): p. 7189-7197. 19. Gao, Z., et al., Edible Pickering emulsion stabilized by protein fibrils. Part 1: Effects of pH and fibrils concentration. LWT-Food Science and Technology, 2017. 76: p. 1-8. 20. Jung, J.-M., D.Z. Gunes, and R.J.L. Mezzenga, Interfacial activity and interfacial shear rheology of native β-lactoglobulin monomers and their heat-induced fibers. Langmuir, 2010. 26(19): p. 15366-15375. 21. Dickinson, E.J.F.H., Biopolymer-based particles as stabilizing agents for emulsions and foams. Food Hydrocolloids, 2017. 68: p. 219-231. 22. Gao, Z., et al., Edible Pickering emulsion stabilized by protein fibrils: Part 2. Effect of dipalmitoyl phosphatidylcholine (DPPC). Food Hydrocolloids, 2017. 71: p. 245-251. 23. Zhang, W. and Q.J.F.C. Zhong, Microemulsions as nanoreactors to produce whey protein nanoparticles with enhanced heat stability by thermal pretreatment. Food Chemistry, 2010. 119(4): p. 1318-1325. 24. Lasse, M., et al., Evaluation of protease resistance and toxicity of amyloid-like food fibrils from whey, soy, kidney bean, and egg white. Food Chem, 2016. 192: p. 491-8. 25. Bao, T., et al., Systematic study on phytochemicals and antioxidant activity of some new and common mulberry cultivars in China. Journal of Functional Foods, 2016. 25: p. 537-547. 26. Chen, W., et al., Protective effect of wild raspberry (Rubus hirsutus Thunb.) extract against acrylamide-induced oxidative damage is potentiated after simulated gastrointestinal digestion. Food Chemistry, 2016. 196: p. 943-952. 27. Li, Y., T. Bao, and W.J.F.C. Chen, Comparison of the protective effect of black and white mulberry against ethyl carbamate-induced cytotoxicity and oxidative damage. Food Chemistry 2018. 243: p. 65-73. 28. Xu, Y., et al., A recyclable protein resource derived from cauliflower by-products: Potential biological activities of protein hydrolysates. Food chemistry, 2017. 221: p. 114-122. 29. Akolade, J.O., H.O.B. Oloyede, and P.C.J.J.o.f.f. Onyenekwe, Encapsulation in chitosan-based polyelectrolyte complexes enhances antidiabetic activity of curcumin. Journal of functional foods, 2017. 35: p. 584-594. 30. Chen, W., et al., Hispidin derived from Phellinus linteus affords protection against acrylamide-induced oxidative stress in Caco-2 cells. Chemico-Biological Interactions, 2014. 219: p. 83-89. 31. Chen, W., et al., Myricitrin protects against peroxynitrite-mediated DNA damage and cytotoxicity in astrocytes. Food Chemistry, 2013. 141(2): p. 927-933. 32. Chen, W., et al., Myricitrin inhibits acrylamide-mediated cytotoxicity in human Caco-2 cells by preventing oxidative stress. BioMed research international, 2013. 2013. 33. Chen, W., et al., Blackberry subjected to in vitro gastrointestinal digestion affords protection against Ethyl Carbamate-induced cytotoxicity. Food Chemistry, 2016. 212: p. 620-627. 34. Ariyarathna, I.R., D.N.J.F.P. Karunaratne, and S. Life, Microencapsulation stabilizes curcumin for efficient delivery in food applications. Food Packaging and Shelf Life, 2016. 10: p. 79-86. 35. Esfanjani, A.F., S.M.J.C. Jafari, and S.B. Biointerfaces, Biopolymer nano-particles and natural nano-carriers for nano-encapsulation of phenolic compounds. Colloids and Surfaces B: Biointerfaces, 2016. 146: p. 532-543. 36. Liang, J., et al., Applications of chitosan nanoparticles to enhance absorption and bioavailability of tea polyphenols: A review. Food Hydrocolloids, 2017. 69: p. 286-292. 37. Robin, A.-L. and D.J.E.g.t.f.a. Sankhla, European legislative framework controlling the use of food additives. Essential guide to food additives, 2013. 44. 38. Shishir, M.R.I., et al., Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters. Trends in Food Science Technology, 2018. 78: p. 34-60. 39. de Souza Simões, L., et al., Micro-and nano bio-based delivery systems for food applications: In vitro behavior. Advances in Colloid and Interface Science, 2017. 243: p. 23-45. 40. Fathi, M., et al., Nanoencapsulation of food ingredients using lipid based delivery systems. Trends in food science technology, 2012. 23(1): p. 13-27. 41. García‐Tejeda, Y.V., et al., Encapsulation of purple maize anthocyanins in phosphorylated starch by spray drying. Cereal Chemistry, 2016. 93(2): p. 130-137. 42. Alvani, K., X. Qi, and R.F.J.S.S. Tester, Use of carbohydrates, including dextrins, for oral delivery. 2011. 63(7): p. 424-431. 43. Tonon, R.V., et al., Physicochemical and morphological characterisation of açai (Euterpe oleraceae Mart.) powder produced with different carrier agents. International Journal of Food Science Technology, 2009. 44(10): p. 1950-1958. 44. Duchêne, D. and A.J.I.j.o.p. Bochot, Thirty years with cyclodextrins. International journal of pharmaceutics, 2016. 514(1): p. 58-72. 45. Kfoury, M., et al., Effect of cyclodextrin complexation on phenylpropanoids’ solubility and antioxidant activity. Beilstein journal of organic chemistry, 2014. 10(1): p. 2322-2331. 46. Ntoutoume, G.M.N., et al., Development of curcumin–cyclodextrin/cellulose nanocrystals complexes: new anticancer drug delivery systems. Bioorganic Medicinal Chemistry Letters, 2016. 26(3): p. 941-945. 47. Wang, W., J. Jung, and Y.J.C.p. Zhao, Chitosan-cellulose nanocrystal microencapsulation to improve encapsulation efficiency and stability of entrapped fruit anthocyanins. Carbohydrate polymers, 2017. 157: p. 1246-1253. 48. Rehman, A., et al., Pectin polymers as wall materials for the nano-encapsulation of bioactive compounds. Trends in Food Science Technology, 2019. 90: p. 35-46. 49. Da Silva, J.L., M.J.F.p. Rao, and t. applications, 11 Pectins: Structure, Functionality, and Uses. Food polysaccharides and their applications, 2006: p. 353. 50. Peng, H., et al., Preparation and Self-Assembly Mechanism of Bovine Serum Albumin–Citrus Peel Pectin Conjugated Hydrogel: A Potential Delivery System for Vitamin C. Journal of agricultural and food chemistry, 2016. 64(39): p. 7377-7384. 51. Roy, M.C., et al., Extraction and characterization of pectin from pomelo peel and its impact on nutritional properties of carrot jam during storage. Journal of Food Processing and Preservation, 2018. 42(1): p. e13411. 52. Miyamoto, A. and K.J.J.o.F.S. Chang, Extraction and physicochemical characterization of pectin from sunflower head residues. Journal of Food Science, 1992. 57(6): p. 1439-1443. 53. Zimet, P. and Y.D.J.F.H. Livney, Beta-lactoglobulin and its nanocomplexes with pectin as vehicles for ω-3 polyunsaturated fatty acids. Food Hydrocolloids, 2009. 23(4): p. 1120-1126. 54. Arroyo-Maya, I.J. and D.J.J.F.r.i. McClements, Biopolymer nanoparticles as potential delivery systems for anthocyanins: Fabrication and properties. Food research international, 2015. 69: p. 1-8. 55. Raei, M., et al., Application of whey protein-pectin nano-complex carriers for loading of lactoferrin. International journal of biological macromolecules, 2017. 105: p. 281-291. 56. Mohammadi, A., et al., Nano-encapsulation of olive leaf phenolic compounds through WPC–pectin complexes and evaluating their release rate. International journal of biological macromolecules, 2016. 82: p. 816-822. 57. Esfanjani, A.F., et al., Nano-encapsulation of saffron extract through double-layered multiple emulsions of pectin and whey protein concentrate. Journal of Food Engineering, 2015. 165: p. 149-155. 58. Assadpour, E., S.-M. Jafari, and Y.J.I.j.o.b.m. Maghsoudlou, Evaluation of folic acid release from spray dried powder particles of pectin-whey protein nano-capsules. International journal of biological macromolecules 2017. 95: p. 238-247. 59. Veneranda, M., et al., Formation and characterization of zein-caseinate-pectin complex nanoparticles for encapsulation of eugenol. Lwt, 2018. 89: p. 596-603. 60. Zhou, M., et al., Low density lipoprotein/pectin complex nanogels as potential oral delivery vehicles for curcumin. Food Hydrocolloids, 2016. 57: p. 20-29. 61. Hu, K., et al., Core–shell biopolymer nanoparticle delivery systems: Synthesis and characterization of curcumin fortified zein–pectin nanoparticles. Food chemistry, 2015. 182: p. 275-281. 62. Cho, H., et al., Formation of electrostatic complexes using sodium caseinate with high‐methoxyl pectin and carboxymethyl cellulose and their application in stabilisation of curcumin. International Journal of Food Science Technology, 2016. 51(7): p. 1655-1665. 63. Alippilakkotte, S., L.J.J.o.D.D.S. Sreejith, and Technology, Pectin mediated synthesis of curcumin loaded poly (lactic acid) nanocapsules for cancer treatment. Journal of Drug Delivery Science and Technology, 2018. 48: p. 66-74. 64. Wang, T., et al., Solid lipid nanoparticles coated with cross-linked polymeric double layer for oral delivery of curcumin. Colloids and Surfaces B: Biointerfaces, 2016. 148: p. 1-11. 65. De Cicco, F., et al., Nanospray technology for an in situ gelling nanoparticulate powder as a wound dressing. International journal of pharmaceutics, 2014. 473(1-2): p. 30-37. 66. Jung, J., et al., Pectin and charge modified pectin hydrogel beads as a colon-targeted drug delivery carrier. Colloids and Surfaces B: Biointerfaces, 2013. 104: p. 116-121. 67. Zhou, W., et al., Storage stability and skin permeation of vitamin C liposomes improved by pectin coating. Colloids and surfaces B: Biointerfaces, 2014. 117: p. 330-337. 68. Belščak-Cvitanović, A., et al., Improving the controlled delivery formulations of caffeine in alginate hydrogel beads combined with pectin, carrageenan, chitosan and psyllium. Food chemistry, 2015. 167: p. 378-386. 69. Dag, D., et al., Physical and chemical characteristics of encapsulated goldenberry (Physalis peruviana L.) juice powder. LWT-Food Science and Technology, 2017. 83: p. 86-94. 70. Li, C., et al., Encapsulation of tomato oleoresin using soy protein isolate-gum aracia conjugates as emulsifier and coating materials. Food Hydrocolloids, 2015. 45: p. 301-308. 71. Gómez-Estaca, J., et al., Improving antioxidant and antimicrobial properties of curcumin by means of encapsulation in gelatin through electrohydrodynamic atomization. Food Hydrocolloids, 2017. 70: p. 313-320. 72. Jarunglumlert, T., K. Nakagawa, and S.J.F.S. Adachi, Influence of aggregate structure of casein on the encapsulation efficiency of β-carotene entrapped via hydrophobic interaction. Food Structure, 2015. 5: p. 42-50. 73. Kim, H.-J., E. Decker, and D.J.L. McClements, Role of postadsorption conformation changes of β-lactoglobulin on its ability to stabilize oil droplets against flocculation during heating at neutral pH. Langmuir, 2002. 18(20): p. 7577-7583. 74. Wüstneck, R., et al., Interfacial dilational behaviour of adsorbed β-lactoglobulin layers at the different fluid interfaces. Colloids and Surfaces B: Biointerfaces, 1999. 15(3-4): p. 263-273. 75. Bouyer, E., et al., Proteins, polysaccharides, and their complexes used as stabilizers for emulsions: alternatives to synthetic surfactants in the pharmaceutical field? International journal of pharmaceutics, 2012. 436(1-2): p. 359-378. 76. Freiberger, E.B., et al., Encapsulation of roasted coffee oil in biocompatible nanoparticles. LWT-Food Science and Technology, 2015. 64(1): p. 381-389. 77. Ye, S., et al., Multilayer nanocapsules of polysaccharide chitosan and alginate through layer-by-layer assembly directly on PS nanoparticles for release. Journal of Biomaterials Science, Polymer Edition, 2005. 16(7): p. 909-923. 78. Pinheiro, A.C., et al., Chitosan/fucoidan multilayer nanocapsules as a vehicle for controlled release of bioactive compounds. Carbohydrate polymers, 2015. 115: p. 1-9. 79. Ansarifar, E., et al., Novel multilayer microcapsules based on soy protein isolate fibrils and high methoxyl pectin: Production, characterization and release modeling. International journal of biological macromolecules, 2017. 97: p. 761-769. 80. Manju, S., K.J.C. Sreenivasan, and S.B. Biointerfaces, Hollow microcapsules built by layer by layer assembly for the encapsulation and sustained release of curcumin. Colloids and Surfaces B: Biointerfaces, 2011. 82(2): p. 588-593. 81. Rivera, M.C., et al., Hollow chitosan/alginate nanocapsules for bioactive compound delivery. International journal of biological macromolecules, 2015. 79: p. 95-102. 82. Xiang, N., Y. Lyu, and G.J.F.H. Narsimhan, Characterization of fish oil in water emulsion produced by layer by layer deposition of soy β-conglycinin and high methoxyl pectin. Food Hydrocolloids, 2016. 52: p. 678-689. 83. Humblet-Hua, K., et al., Encapsulation systems based on ovalbumin fibrils and high methoxyl pectin. Food Hydrocolloids, 2011. 25(4): p. 569-576. 84. Klinkesorn, U., et al., Increasing the Oxidative Stability of Liquid and Dried Tuna Oil-in-Water Emulsions with Electrostatic Layer-by-Layer Deposition Technology. Journal of Agricultural and Food Chemistry, 2005. 53(11): p. 4561-4566. 85. Azarikia, F., et al., Emulsion stability enhancement against environmental stresses using whey protein–tragacanthin complex: Comparison of layer-by-layer and mixing methods. International journal of food properties, 2017. 20(sup2): p. 2084-2095. 86. Aoki, T., E.A. Decker, and D.J.J.F.H. McClements, Influence of environmental stresses on stability of O/W emulsions containing droplets stabilized by multilayered membranes produced by a layer-by-layer electrostatic deposition technique. Food Hydrocolloids, 2005. 19(2): p. 209-220. 87. Waraho, T., et al., Mechanisms of lipid oxidation in food dispersions. Trends in Food Science Technology 2011. 22(1): p. 3-13. 88. Sun, J.J.A.M.R., D-Limonene: safety and clinical applications. Alternative Medicine Review, 2007. 12(3): p. 259. 89. Gebbink, M.F., et al., Amyloids—a functional coat for microorganisms. Nature Reviews Microbiology, 2005. 3(4): p. 333-341. 90. Krebs, M.R., E.H. Bromley, and A.M.J.J.o.s.b. Donald, The binding of thioflavin-T to amyloid fibrils: localisation and implications. Journal of structural biology, 2005. 149(1): p. 30-37. 91. Fernández, J., J.A. Pérez-Álvarez, and J.A.J.F.c. Fernández-López, Thiobarbituric acid test for monitoring lipid oxidation in meat. Food chemistry, 1997. 59(3): p. 345-353. 92. 张瑞伦, 张庆, and 徐.J. 安徽农业科学, HPLC 法测定留兰香油中柠檬烯. 安徽农业科学, 2012. 40(2): p. 743-744. 93. Mehrnia, M.-A., et al., Rheological and release properties of double nano-emulsions containing crocin prepared with Angum gum, Arabic gum and whey protein. Food Hydrocolloids, 2017. 66: p. 259-267. 94. Dimakou, C.P., et al., Effect of processing and storage parameters on the oxidative deterioration of oil-in-water emulsions. Food Biophysics, 2007. 2(1): p. 38. 95. Dash, S., et al., Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm, 2010. 67(3): p. 217-223. 96. Taylor, M. and T.J.J.o.D.S. Richardson, Antioxidant activity of skim milk: effect of heat and resultant sulfhydryl groups. Journal of Dairy Science, 1980. 63(11): p. 1783-1795. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15632 | - |
| dc.description.abstract | 生物活性化合物對於人體有許多健康上的益處,但是它們在化學性質上並不穩定。由於它們快速釋放、低溶解度以及生物利用度差等性質,因此生物活性化合物在應用上會有所限制。將生物活性化合物包覆能夠抵抗環境的變化或是改善其物理化學性質,而能夠保存生物活性化合物。本研究使用乳清分離蛋白類澱粉纖維以及果膠作為載體,並利用逐層靜電沉積法分別包覆檸檬烯以及葵花油,探討檸檬烯的穩定性以及釋放行為和葵花油之氧化安定性。 結果顯示,在高溫80°c、pH 2以及60 r.p.m攪拌下培養一天生成的乳清分離蛋白類澱粉纖維,由TEM可以看出纖維狀的結構。包覆檸檬烯的系統中,從外觀以及creaming index結果中可以發現以逐層靜電沉積法製備的乳狀液且果膠濃度較高的組別有較好的穩定性。從SEM結果來看,相較於其他組別,LbL(1:0.2)組的表面結構較為平滑完整沒有明顯的破裂以及皺褶。檸檬烯釋放結果以及first-order fitting都顯示LbL(1:0.5)控制釋放的效果最為顯著。此外Korsmeyer-Peppas model fitting結果顯示Fibril組為鬆弛釋放,而LbL組以及Complex組都屬於非費克定律。 葵花油氧化安定性實驗結果顯示,不論是Fibril、Complex以及LbL組別抗氧化效果都比Tween 80小分子非離子型乳化劑來的好。其中Fibril組為抗氧化效果最好,而LbL組隨著果膠量的增加硫代巴比妥酸反應物量也有稍微增加的趨勢。結果的原因推測可能是LbL方式製備下隨著果膠的濃度愈高,負電也就愈多,因此會因為靜電作用力吸引亞鐵離子而提高油被氧化的可能。另一方面Fibril是帶正電會排斥亞鐵離子而減少油被氧化的機會。 | zh_TW |
| dc.description.abstract | Bioactive compounds possess many health benefits but are chemically unstable. The application of bioactive compounds is very limited due to their fast release, low solubility, and poor bioavailability. Encapsulation can protect the bioactive compounds from the detrimental effects of environmental stresses and improve physicochemical functionalities. In this study, whey protein isolate amyloid fibril and pectin were used as carriers and layer-by-layer electrostatic deposition method was used to encapsulate limonene and sunflower oil. We explore the stability and release behavior of limonene and the oxidation stability of sunflower oil. The results from TEM image show that whey protein isolate amyloid fibril incubated at 80°C, pH 2, with stirring speed at 60 r.p.m form fibril structure. Based on the appearance and creaming index results of the encapsulating limonene, the higher pectin concentration emulsion prepared by layer-by-layer electrostatic deposition method has better stability. Based on the SEM image, the surface structure of the LbL (1:0.2) is smooth and intact without obvious cracks and wrinkles compared with other groups. The results of both limonene release and first-order fitting show that LbL (1:0.5) has the most significant effect of controlled release. In addition, the Korsmeyer-Peppas model fitting results show that the fibril group exhibits relaxational release while the LbL group and the complex group belong to non-Fick's law. Sunflower oil oxidation stability experiment results show that fibril, complex and LbL groups have better antioxidant effects than Tween 80, the small molecule nonionic emulsifier. Among these groups, fibril has the best antioxidant effect. The amount of pectin increases, the LbL group has a slight increase in the amount of thiobarbituric acid reactive substances. These results suggest that the higher pectin concentration under the LbL method, have more negative charge, which attracts ferrous ions by electrostatic force and increase the possibility of lipid oxidation. On the other hand, the positively charged fibrils repel ferrous ions so that lipid oxidation is reduce. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T17:49:08Z (GMT). No. of bitstreams: 1 U0001-0308202017580600.pdf: 3219570 bytes, checksum: a3810e01a8648c5de8deb7da5f916198 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 誌謝 I 摘要 II ABSTRACT III 目錄 V 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1-1研究動機 1 第二章 文獻回顧 3 2-1蛋白質簡介: 3 2-1-1胺基酸: 4 2-1-2蛋白質結構: 5 2-1-3蛋白質變性(Protein Denaturation) 9 2-2類澱粉纖維 9 2-3蛋白質與類澱粉纖維於材料上之特性 11 2-4包覆(Encapsulation) 13 2-5載體(Carrier agents) 15 2-5-1多醣類載體(Polysaccharide-based Carrier agents) 16 2-5-2蛋白質類載體(Protein-based Carrier agents) 26 2-5-3脂質類載體(Lipid-based Carrier agents) 29 2-6微米、奈米包覆技術 30 2-6-1乳化(Emulsification) 30 2-6-2逐層靜電沉積(Layer by Layer electrostatic deposition)(LbL) 32 2-7乳化不穩定機制 36 2-8脂質氧化(Lipid oxidation) 38 2-9檸檬烯(Limonene) 45 2-10實驗原理介紹 46 2-10-1 Thioflavin T螢光光譜: 46 2-10-2 硫代巴比妥酸(Thiobarbituric acid) 47 第三章 實驗儀器、藥品與實驗步驟 48 3-1實驗裝置: 48 3-2實驗藥品: 49 3-3實驗方法及步驟: 50 3-3-1 乳清分離蛋白類澱粉纖維製備(whey protein isolate fibril) [79] 50 3-3-2 乳狀液(emulsion)製備[79] 50 3-3-3 檸檬烯乳狀液(emulsion)定性之檢測[79]: 52 3-3-4 模擬口腔唾液緩衝溶液配置[79] 54 3-3-5 檸檬烯檢量線製備[92] 54 3-3-6檸檬烯釋放[93] 55 3-3-7硫代巴比妥酸(Thiobarbituric acid)檢量線製備[94] 56 3-3-8葵花油氧化安定性實驗[94] 56 第四章 實驗結果與討論 57 4-1檸檬烯乳狀液(emulsion)的性質鑑定與外觀觀察結果: 57 4-1-1 乳清分離蛋白纖維化結果(WPI fibril): 57 4-1-2 檸檬烯乳狀液(emulsion)外觀、粒徑大小及界面電位: 59 4-1-3 檸檬烯乳狀液(emulsion) creaming index 67 4-2 檸檬烯釋放: 69 4-2-1 檸檬烯檢量線結果: 69 4-2-2 檸檬烯釋放結果: 71 4-2-3檸檬烯釋放數學模式fitting[95] 77 4-3葵花油氧化安定性: 81 4-3-1硫代巴比妥酸(Thiobarbituric acid)檢量線結果: 81 4-3-2葵花油氧化之結果: 83 第五章 結論 88 參考文獻 90 | |
| dc.language.iso | zh-TW | |
| dc.subject | 生物活性化合物 | zh_TW |
| dc.subject | 逐層靜電沉積 | zh_TW |
| dc.subject | 檸檬烯 | zh_TW |
| dc.subject | 乳清分離蛋白類澱粉纖維 | zh_TW |
| dc.subject | 果膠 | zh_TW |
| dc.subject | 包覆 | zh_TW |
| dc.subject | 葵花油 | zh_TW |
| dc.subject | sunflower oil | en |
| dc.subject | limonene | en |
| dc.subject | pectin | en |
| dc.subject | whey protein isolate amyloid fibril | en |
| dc.subject | layer-by-layer electrostatic deposition | en |
| dc.subject | encapsulation | en |
| dc.subject | bioactive compounds | en |
| dc.title | 備製與鑑定以乳清分離蛋白類澱粉纖維及果膠所構成之微膠囊包覆系統 | zh_TW |
| dc.title | Preparation and Characterization of the Microcapsules Encapsulation Systems Based on Whey Protein Isolate Amyloid Fibrils and Pectin | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 賴進此(Jin-Cih Lai),侯劭毅(Shao-Yi Hou),吳宛儒(Wan-Ru Wu),林達顯(Da-Sian Lin),蔡伸隆(Shen-Long Cai) | |
| dc.subject.keyword | 生物活性化合物,包覆,逐層靜電沉積,乳清分離蛋白類澱粉纖維,果膠,檸檬烯,葵花油, | zh_TW |
| dc.subject.keyword | bioactive compounds,encapsulation,layer-by-layer electrostatic deposition,whey protein isolate amyloid fibril,pectin,limonene,sunflower oil, | en |
| dc.relation.page | 97 | |
| dc.identifier.doi | 10.6342/NTU202002305 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-08-05 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0308202017580600.pdf 未授權公開取用 | 3.14 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
