Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15600
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃義侑(Yi-You Huang)
dc.contributor.authorTsui-Hsun wuen
dc.contributor.author吳翠焄zh_TW
dc.date.accessioned2021-06-07T17:48:33Z-
dc.date.copyright2013-03-06
dc.date.issued2013
dc.date.submitted2013-02-18
dc.identifier.citationReference
[1] Ferguson MW, O'Kane S. Scar-free healing: from embryonic mechanisms to adult
therapeutic intervention. Philos Trans R Soc Lond, B, Biol Sci. 2004;359:839-50.
[2] Galliera E, Randelli P, Dogliotti G, Dozio E, Colombini A, Lombardi G, et al. “Matrix
metalloproteases MMP-2 and MMP-9: are they early biomarkers of bone remodelling and
healing after arthroscopic acromioplasty?” Injury. 2010;41:1204-7.
[3] Florczak-Rzepka M, Grond-Ginsbach C, Montaner J, Steiner T. “Matrix metalloproteinases
in human spontaneous intracerebral hemorrhage: an update”. Cerebrovasc Dis.
2012;34:249-62.
[4] Gkantidis N, Katsaros C, Chiquet M.“Detection of gelatinolytic activity in developing
basement membranes of the mouse embryo head by combining sensitive in situ
zymography with immunolabeling.” Histochemistry and cell biology. 2012;138:557-71.
[5] Darren F. Seals, Sara A. Courtneidge,“The ADAMs family of metalloproteases:
multidomain proteins with multiple functions” Genes & Dev. 2003. 17: 7-30
[6] Charles J. Malemud, “Matrix metalloproteinases (MMPs) in health and disease: an
overview” Frontiers in Bioscience 11, 1696-1701, May 1, 2006
[7] Fortunata Vasaturo, Fabiana Solai, Carolina Malacrino, Tiziana Nardo, Bruno Vincenzi,
Mauro Modesti, Susanna Scarpa,“Plasma levels of matrix metalloproteinases 2 and 9
correlate with histological grade in breast cancer patients.” Oncol Lett. 2013 January; 5(1):
316–320.
[8] Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor
microenvironment. Cell. 2010;141:52-67.
[9] Jain RK, Stylianopoulos T. Delivering nanomedicine to solid tumors. Nature reviews
Clinical oncology. 2010;7:653-64.
[10] Mauviel A. Cytokine regulation of metalloproteinase gene expression. J Cell Biochem.
1993;53:288-95.
[11] Hübner G, Brauchle M, Smola H, Madlener M, Fässler R, Werner S. “Differential
regukation of pro-inflammatory cytokines during wound healing in normal and
glucocorticoid-treated mice.” Cytokine. 1996;8:548-56.
[12] Dolley CM, McEwan JR, Henney AM. Matrix metalloproteinases and vardiovascular
disease. Circ Res. 1995. 77: 863-868.
[13] Ardi, V.C., Kupriyanova, T.A., Deryugina, E.I., and Quigley, J.P., “Human
neutrophils uniquely release TIMP-free MMP-9 to provide a potent catalytic
stimulator of angiogenesis.” Proc. Natl. Acad. Sci. 2007, 104, 20262–20267.
[14] 蔡慧思,魏聖修,劉俊坤,許健成.“基質金屬蛋白脢MMP9,2與腫瘤細胞轉移之重要性”
醫檢會報第25卷第二期.
[15] Ehrmantraut S, Laschke MW, Merkel D, Scheuer C, Willnecker V, Meyer-Lindenberg A, et
al. “Perioperative steroid administration inhibits angiogenic host tissue response to
porous polyethylene (Medpor) implants.” Eur Cell Mater. 2010;19:107-16.
[16] A metalloproteinase disintegrin that release tumor-necrosis factor-alph fact. nature.
1997;385:729-33.
[17] Sternlicht, M.D., and Werb, Z. (2001). How matrix metalloproteinases regulate
cell behavior. Annu. Rev. Cell Dev. Biol. 17, 463–516.
[18] Mirowska-Guzel D, Gromadzka G, Czlonkowski A, Czlonkowska A. “Association of
MMP1, MMP3, MMP9, and MMP12 polymorphisms with risk and clinical course of
multiple sclerosis in a Polish population.” J Neuroimmunol. 2009;214:113-7.
[19] Han YP, Yan C, Garner WL. “Proteolytic activation of matrix metalloproteinase-9 in skin
wound healing is inhibited by alpha-1-antichymotrypsin”. J Invest Dermatol.
2008;128:2334-42.
[20] Weiss, S.J., Peppin, G., Ortiz, X., Ragsdale, C., and Test, S.T., “Oxidative
autoactivation of latent collagenase by human neutrophils.” Science, 1985, 227,747–749.
[21] Tram N.Q Pham, Barry L. Brown, Pauline R.M Dobson, Vernon J. Richardson,“Protein
kinase C-eta (PKC-η) is required for the development of inducible nitric oxide synthase
(iNOS) positive phenotype in human monocytic cells” Nitric Oxide, 2003, vol 9, 123-134
[22] Nagase H., Visse R., Murphy G., “Structure and function of matrix metalloproteinases and
TIMPs.” Cardiovasc Res, 2006,69 (3): 562-573
[23] Rupp P.A., Visconti R.P., CziroK A., Cheresh D.A., Little C.D.,“Matrix metalloproteinase
2-integrin alpha(v)beta3 binding is required for mesenchymal cell invasive activity but not
epithelial locomotion: a computational time-lapse study.” Mol Bio Cell., 2008,
19(12):5529-40
[24] Friedl P., Wolf K.,“Tube travel: the role of proteases in individual and collective cancer
cell invasion.”Cancer Res., 2008, 15;68(18):7247-9.
[25] Sabeh F., Ota I., Homlmbeck K., Birkedal-Hansen H., Soloway P., Balbin M., Lopez-Otin C.,
Shapiro S., Inada M., Krane S., Allen E., Chung D., Weiss S.J.,“Tumor cell traffic through
the extracellular matrix is controlled by the membrane-anchored collagenase
MT1-MMP.”J. Cell Biol. 2004, 22;167(4):769-81
[26] Sabeh F., Li XY, Saunders T.L., Rowe R.G., Weiess S.J., “Secreted versus
membrane-anchored collagenases: relative roles in fibroblast-dependent collagenolysis
and invasion.“J Biol Chem, 2009, 21;284(34):23001-11
[27] Peter J.F., Otto A.M., Wolf B.,“Enrichment and detection of molecules secreted by tumor
cells using magnetic reversed-phase particles and LC-MALDI-TOF-MS.”J. Biomol Tech.,
2007, 18(5):287-97.
[28] Brinkmann, V., Reichard, U., Goosmann, C., Fauler, B., Uhlemann, Y., Weiss, D.S.,
Weinrauch, Y., and Zychlinsky, A. “Neutrophil extracellular traps kill bacteria.
Science 2004, 303, 1532–1535.
[29] Kessenbrock, K., Krumbholz, M., Schonermarck, U., Back, W., Gross, W.L.,Werb, Z.,
Grone, H.J., Brinkmann, V., and Jenne, D.E., Netting neutrophils in autoimmune
small-vessel vasculitis. Nat. Med. 2009, 15, 623–625.
[30] Butcher, D.T., Alliston, T., and Weaver, V.M., “A tense situation: forcing tumour
progression.” Nat. Rev. 2009, Cancer 9, 108–122.
[31] Zhang, X., Halvorsen, K., Zhang, C.Z., Wong, W.P., and Springer, T.A. (2009).
Mechanoenzymatic cleavage of the ultralarge vascular protein von Willebrand
factor. Science 324, 1330–1334.
[32] Haraguchi T, Tani K, Koga M, Oda Y, Itamoto K, Yamamoto N, et al. Matrix
Metalloproteinases (MMPs) Activity in Cultured Canine Bone Marrow Stromal Cells
(BMSCs). Journal of Veterinary Medical Science. 2012;74:633-6.
[33] Zhang H, Wang ZW, Wu HB, Li Z, Li LC, Hu XP, Ren ZL, Li BJ, Hu ZP.“Transforming
growth factor-β1 induces matrix metalloproteinase-9 expression in rat vascular smooth
muscle cells via ROS-dependent ERK-NF-κB pathways.” Mol Cell Biochem, 2012,
[34] Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor
microenvironment. Cell. 2010;141:52-67.
[35] Ghahary A, Ghaffari A.“Role of keratinocyte-fibroblast cross-talk in development of
hypertrophic scar.” Wound repair and regeneration : official publication of the Wound
Healing Society and the European Tissue Repair Society. 2007;15 Suppl 1:S46-53
[36] Ramtani S. Mechanical modelling of cell/ECM and cell/cell interactions during the
contraction of a fibroblast-populated collagen microsphere: theory and model simulation.
J Biomech. 2004;37:1709-18.
[37] Ogata S, Yorioka N, Kohno N. Glucose and Prednisolone Alter Basic Fibroblast Growth
Factor Expression in Peritoneal Mesothelial Cells and Fibroblasts. Journal of the
American Society of Nephrology. 2001;12:2787-96.
[38] Saalbach A, Klein C, Schirmer C, Briest W, Anderegg U, Simon JC. Dermal Fibroblasts
Promote the Migration of Dendritic Cells. Journal of Investigative Dermatology.
2005;130:444-54.
[39] Adhirajan, N., N. Shanmugasundaram, et al. (2009). 'Collagen-based wound dressing for
doxycycline delivery: in-vivo evaluation in an infected excisional wound model in rats.' j
pharm pharmacol 61(12): 1617-1623.
[40] Jalali M, Bayat A. Current use of steroids in management of abnormal raised skin scars.
Surgeon. 2007;5:175-80.
[41] Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor
microenvironment. Cell. 2010;141:52-67.
[43] Roy R, Yang J, Moses MA. Matrix metalloproteinases as novel biomarkers and potential
therapeutic targets in human cancer. Journal of clinical oncology : official journal of the
American Society of Clinical Oncology. 2009;27:5287-97.
[44] Chun KW, Yoo HS, Yoon JJ, Park TG. Biodegradable PLGA microcarriers for injectable
delivery of chondrocytes: effect of surface modification on cell attachment and function.
Biotechnol Prog. 2004;20:1797-801.
[45] Pollauf EJ, Kim KK, Pack DW. Small-molecule release from poly
(D,L-lactide)/poly(D,L-lactide-co-glycolide) composite microparticles. Journal of
Pharmaceutical Sciences. 2005;94:2013-22.
[46] Young S. WM., Tabata Y, Mikos AG.,”Gelatin as a delivery vehicle for the controlled
release of bioactive molecules.” J.of Controlled Release, 2005, 109, 256-274.
[47] Yasuhiko Tabata, Yoshito Ikada, “Protein release from gelatin matrices”Advanced Drug
Delivery Reviews 31 (1998) 287–301
[48] Lopez, J.I., J.K. Mouw, and V.M. Weaver, Biomechanical regulation of cell orientation and
fate. Oncogene, 2008. 27(55): p. 6981-93.
[49] Nascimento, C.F., et al., Role of MMP9 on invadopodia formation in cells from adenoid
cystic carcinoma. Study by laser scanning confocal microscopy. Microsc Res Tech, 2009.
[50] Dormann, D. and C.J. Weijer, Imaging of cell migration. EMBO J, 2006. 
25(15): p. 3480-93. [51] Zhao, M., Electrical fields in wound healing-An overriding signal that directs 
cell
migration. Semin Cell Dev Biol, 2009. 20(6): p. 674-82.
[52] Wegener, J., C.R. Keese, and I. Giaever, Electric cell-substrate impedance 
sensing (ECIS)
as a noninvasive means to monitor the kinetics of cell 
spreading to artificial surfaces. Exp
Cell Res, 2000. 259(1): p. 158-66.
[53] Keese, C.R., et al., Electrical wound-healing assay for cells in vitro. Proc Natl 
Acad Sci U
S A, 2004. 101(6): p. 1554-9.
[54] Balasubramanian, L., et al., Impedance analysis of renal vascular smooth muscle cells. Am
J Physiol Cell Physiol, 2008. 295(4): p. C954-65.
[55] Tiruppathi, C., et al., Electrical method for detection of endothelial cell shape change in
real time: assessment of endothelial barrier function. Proc Natl Acad Sci U S A, 1992.
89(17): p. 7919-23.
[56] Gorshkova, I., et al., Protein kinase C-epsilon regulates sphingosine 
1-phosphate-mediated
migration of human lung endothelial cells through activation of phospholipase D2, protein
kinase C-zeta, and Rac1. J Biol Chem, 2008. 283(17): p. 11794-806.
[57] Hickey T, Kreutzer D, Burgess DJ, Moussy F. In vivo evaluation of a
dexamethasone/PLGA microsphere system designed to suppress the inflammatory tissue
response to implantable medical devices. J Biomed Mater Res. 2002;61:180-7.
[58] Kurpinski KT, Stephenson JT, Janairo RRR, Lee H, Li S. The effect of fiber alignment and
heparin coating on cell infiltration into nanofibrous PLLA scaffolds. Biomaterials.
2010;31:3536-42.
[59] Keese CR, Wegener J, Walker SR, Giaever I. Electrical wound-healing assay for cells in
vitro. Proc Natl Acad Sci U S A. 2004;101:1554-9.
[60] Solís Herruzo JA, de la Torre P, Díaz Sanjuán T, García Ruiz I, Muñoz Yagüe T. IL-6 and
extracellular matrix remodeling. Revista española de enfermedades digestivas : organo
oficial de la Sociedad Española de Patología Digestiva. 2005;97:575-95.
[61] Shirvaikar N, Marquez-Curtis LA, Janowska-Wieczorek A. Hematopoietic Stem Cell
Mobilization and Homing after Transplantation: The Role of MMP-2, MMP-9, and
MT1-MMP. Biochemistry research international. 2012;2012:685267.
[62] Tobita T, Senarita M, Hara A, Kusakari J. Determination of prednisolone in the
cochlear tissue. Hearing Research. 2002;165:30-4.
[63] Reiss MJ, Han YP, Garcia E, Goldberg M, Yu H, Garner WL. Matrix metalloproteinase-9
delays wound healing in a murine wound model. Surgery. 2005;147:295-302.
[64] Adhirajan N, Shanmugasundaram N, Shanmuganathan S, Babu M. Collagen-based wound
dressing for doxycycline delivery: in-vivo evaluation in an infected excisional wound
model in rats. j pharm pharmacol. 2009;61:1617-23.
[65] Han YP, Downey S, Garner WL. Interleukin-1alpha-induced proteolytic activation of
metalloproteinase-9 by human skin. Surgery. 2005;138:932-9.
[66] Alves NMP, Iva Reis, Rui L. Mano, João F. Controlling Cell Behavior Through the Design
of Polymer Surfaces. Small. 2010;6:2208-20.
[67] Fakhradin Mirkhalaf DJS. Electrocatalytic Oxygen Reduction on Functionalized Gold
Nanoparticles Incorporated in a Hydrophobic Environment. Langmuir. 2010;26 (18):pp
14995–5001.
[68] Takashi Kakiuchi, Minehiko Iida, Narutoshi Gon, Daisuke Hobara, Shin-ichiro
Imabayashi, and Katsumi Niki. Miscibility of Adsorbed 1-Undecanethiol and
11-Mercaptoundecanoic acid species in binary self-assemled monolayers on Au. Langmuir
2001, 17, 1599-1603. 2001.
[69] N. Isa KDG, T. Yan, W. Hase, and S. J. Sibener Experimental and simulation study of neon
collision dynamics with a 1-decanethiol monolayer The Journal of Chemical Physics.
2004;120:p2417-34
[70] Xiaojun Ji RS, Andrew M. Elliott, R. Jason Stafford, Emilio Esparza-Coss, James A.
Bankson, Gan Liang, Zhi-Ping Luo, Keeseong Park, John T. Markert, and Chun Li.
Bifunctional Gold Nanoshells with a Superparamagnetic Iron Oxide-Silica Core Suitable
for Both MR Imaging and Photothermal Therapy. The Journal of Physical Chemistry C.
2007;111:pp 6245–51.
[71] Han LM, Mathew M. Leibowitz, Frank L. Ly, Nam K. Zhong, Chuan-Jian. Quartz-crystal
microbalance and spectrophotometric assessments of inter-core and inter-shell reactivities
in nanoparticle thin film formation and growth. Journal of Materials Chemistry.
2001;11:1258-64.
[72] Dykman NKaL. Biodistribution and toxicity of engineered gold nanoparticles: a review
of in vitro and in vivo studies. Chem Soc Rev. 2011;40:1647-7
[73] Chen K-S, Liu, Pei-Yu, Hung, Tsui-Shan Liao, Shu-Chuan Chen, Su-Chen Lin, Hong-Ru
Chen, Wei-Yu Feng, Chi-Kuang. Preparation of Titanium Oxide-containing Organic Film
by Dipping Ti(OR)4 and Cold Plasma oxidizing on PET. Applied Surface Science.
2009;256:1101-5.
[74] Gkantidis N, Katsaros C, Chiquet M. Detection of gelatinolytic activity in developing
basement membranes of the mouse embryo head by combining sensitive in situ
zymography with immunolabeling. Histochemistry and cell biology. 2012;138:557-71.
[75] Tatsiana G. Shutava SB, Pranitha Vangala, Joshua J. Steffan, Rebecca L. Bigelow, James
A.Cardelli, D. Patrick O’Neal, and Yuri M. LvoL. Layer-by-Layer-Coated Gelatin
Nanoparticles as a Vehicle for Delivery of Natural Polyphenols. ACS Nano. 2009;3:1877-85.
[76] Uta B. Hofmann JRW, Goos N. P. van Muijen, and Dirk J. Ruiter. 'Matrix
Metalloproteinases in Human Melanoma.' THE JOURNAL OF INVESTIGATIVE
DERMATOLOGY. 2000;115,no3:337-9.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15600-
dc.description.abstract基質金屬蛋白(matrix metalloproteinase; MMPs)是組織內的蛋白酵素,其中以MMP-2及MMP-9為MMPs家族中兩種分解性的蛋白脢,尤其是在受傷的組織以及腫瘤組織中扮演重要的角色。當組織受傷後,白血球聚集,釋放出IL-1,IL-6等間白質素,吸引纖維母細胞聚集,盡速修復傷口避免感染,而這過程會造成因纖維母細胞(fibroblast)增生,形成過多的細胞間質(Extra cellular matrix; ECM)增生及纖維母細胞轉化為肌母細胞(myoblast) ,而形成疤痕。同時,MMPs也在血管增生,及在腫瘤侵襲和蔓延的過程中,分解和重塑細胞間質。
本研究首先利用聚乳酸顆粒包覆prednisolone,調控 IL-1β和MMP-9在傷口癒合的表現,以達到減少傷口癒合後疤痕組織的產生。在體外試驗,利用細胞行為分析儀(ECIS)探討纖維母細胞對藥物釋放反應。當以聚乳酸微粒包覆prednisolone藥物(PPM)濃度是5 mM及50 mM時,明顯的減緩細胞的生長速率。證明以這樣的藥物釋放方式,確實會影響纖維母細胞的生長速率,進而達到減少細胞間質(ECM)的過度產生。在動物實驗方面,以大鼠作為實驗動物在大鼠背上創造乾淨的切傷,再以不同濃度的PPM塗覆後縫合。分別在術後7及14天,犧牲老鼠後,取下癒合的傷口組織,分別作組織切片和以西方點墨法分析MMP-9及IL-1的表現。在組織切片中,可以明顯的看到用0.5mM以及5 mM PPM處理的傷口組織,新生的纖維化組織面積較未處理的傷口減少6%到116%(ANOVA, p< 0.05)的細胞增生。而在MMP-9和IL-1蛋白質表現方面,當IL-1減少則MMP-9便隨之增加(ANOVA, p <0.0001),證明確實可以藉由抑制IL-1而調控MMP-9的表現,進而達到減少ECM的產生。
本研究第二階段奈米金的實驗部份,藉由奈米金表面不同的修飾,測試細胞uptake的狀況。不同種類的細胞對不同的親疏水性奈米金有不同的攝入量,可以作為以AuNPs為model drug的參考。利用石英晶體微天平(QCM)的偵測電極做表面的修飾,使其與奈米金有良好的鍵結,以準確的量測奈米金。此一量測方式,與目前的ICP和Micro CT測量結果作一比較,QCM有較高的準確度。但是在活體或是細胞uptake奈米金之後,僅適用於Micro CT,不適用於QCM。所以在不同的細胞株以修飾過後的奈米金讓細胞uptake,再收取細胞量測金含量。
依據先前的二種實驗結果,另外設計以ECM的萃取物gelatin,包覆奈米金,探討MMPs與gelatin之間的關係,將gelatin包覆奈米金,之後以酵素作用,證明可以藉由酵素分解gelatin。再來以NIH 3T3,9c/Lac Z and Huh 7所分泌的MMP-9和MMP-2作明膠分析法,來測試腫瘤細胞中所分泌的MMP-9及MMP-2可以分解明膠,並且可以在西方點墨法中表現MMPs。
zh_TW
dc.description.abstractMMPs (matrix metalloproteinase) are primarily thought to solely be involved in homeostasis and turnover of the extracellular matrix (ECM), but there has been increasing evidence suggesting that MMPs act on cytokines, chemokines and protein mediators to regulate various aspects of inflammation and immunity. MMPs have been speculated to play a critical role in various inflammatory disease and cancer. The precise role of these MMPs in inflammation/immunity is unknown, as it still remains unclear as to whether they are involved in the promotion or reduction of these responses.
In this study, we provide a new pharmacological treatment, which may prevent scar formation on wound healing and/or plastic surgery wounds. Using the felationships of MMP-9 with cytokines such as IL-1β. We selected prednisolone as a model drug to activate the MMPs and reduce scar formation in wound excision. To prolong the drug effect, prednisolone of different amounts were encapsulated in biodegradable Poly (D,L-lactide acid; PDLL) microspheres. In the in vitro cell healing study, prednisolone was markedly effective in reducing the growth rate of fibroblast cells according to Electric Cell-Substrate Impedance Sensing (ECIS) method. At a higher concentration of prednisolone, a slower growth rate was observed. In the animal wound healing study after clear-cut wound, results show that in post-surgery days 7 and 14, all of the wound fibrosis areas of experimental rats administered with 0.5- and 5-mM of prednisolone-loaded PDLL microspheres (PPM) were decreased by 6% to 116% compared with those of the control groups (ANOVA, p< 0.05). The dosage of prednisolone used neither extends the healing time of wounds compared with the control group, nor increases the risk of infection. Adding the PPM led to reduce IL-1β but increase MMP-9 expression levels as compared with the control groups (ANOVA, p <0.0001). These results implies that using sustained releasing prednisolone microspheres can regulate ECM generated from fibroblasts, can avoid excess proliferation and reduce the formation of scar tissue during wound regeneration by inhibiting the degree of inflammation.
We also choose the Au-nanoparticles (AuNPs) as a model drug for investigating the drug delivery by the gelatin nanocarriers. AuNPs were modified by 11-mercaptoundecanoic acid (MUA) and 1-decanethiol (DCT) for potential applications to drug release, protective coatings, or immunosensors. In this study, plasma deposition methods (P-D methods) were used to immobilize Au electrode on the sensor surface of a quartz crystal microbalance (QCM) to create different microenvironments. Measurements of various AuNPs obtained on the plasma-treated surface of the Au electrode compared to those obtained on an untreated Au electrode show that the linear relationship between mass change and resonant frequency shift significantly differs for AuNPs, MUA-AuNPs, and DCT-AuNPs (R2 from 0.94 to 0.965, 0.934 to 0.972, and 0.874 to 0.9514, respectively). Our results demonstrate that surface modifications measured by a QCM system for various modified AuNPs is a reliable tool for in vitro test.
Finally, the gelatin-AuNPs were manufactured and fallowed by treatment with MMPs enzymes. We demonstrated that enzyme dissolved the ECM extraction of gelatin and changed the surface electric charge. Due to the reasons that the secretion MMP-9 and MMP-2 in the tumor cell are higher than that of the normal cell, NIH 3T3, 9c/Lac Z and Huh 7 cell lines were used and demonstrated that MMP-9 and MMP-2 expressed higher level in the human and mice by zymography assay. However the results are not conclusive.
en
dc.description.provenanceMade available in DSpace on 2021-06-07T17:48:33Z (GMT). No. of bitstreams: 1
ntu-102-D96548007-1.pdf: 64331650 bytes, checksum: ec1fb0b9a28f0c2bf5dca40433bb13c0 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents目 錄
圖目錄------------------------------------------------------------------------------------------------------------------ iii
表目錄------------------------------------------------------------------------------------------------------------------ v
英文摘要-------------------------------------------------------------------------------------------------------------- vi
中文摘要--------------------------------------------------------------------------------------------------------------- Xi
第一章 緒論
1.1 基質金屬蛋白--------------------------------------------------------------------------------------------- 1
1.1.1 MMPs 的特徵及種類------------------------------------------------------------------------ 1
1.1.2 MMPs 的活性調節---------------------------------------------------------------------------- 2
1.2 傷口癒合生理機轉-------------------------------------------------------------------------------------- 6
1.3 傷口癒合疤痕組織之治療方式------------------------------------------------------------------- 7
1.4 MMPs 與腫瘤環境的關係-------------------------------------------------------------------------- 8
1.5 以MMP為作用藥物的研究狀況---------------------------------------------------------------- 10
1.6 聚乳酸高分子-------------------------------------------------------------------------------------------- 13
1.7 明膠高分子------------------------------------------------------------------------------------------------ 14
1.8 細胞行為實驗分析------------------------------------------------------------------------------------- 15
第二章 研究目的 ---------------------------------------------------------------------------------------------- 18
研究架構------------------------------------------------------------------------------------------------ 20
第三章 材料與方法
3.1 材料-藥品--------------------------------------------------------------------------------------------------- 21
3.2 實驗設備---------------------------------------------------------------------------------------------------- 24
3.3 聚乳酸微粒製備---------------------------------------------------------------------------------------- 25
3.4 藥物控制釋放體外實驗---------------------------------------------------------------------------- 25
3.5 細胞初代培養及細胞株培養--------------------------------------------------------------------- 26
3.5.1 細胞初代培養------------------------------------------------------------------------------------- 26
3.5.2 細胞株培養----------------------------------------------------------------------------------------- 26
3.5.2.1 NIH 3T3----------------------------------------------------------------------------------------- 27
3.5.2.2 IL1 3T3------------------------------------------------------------------------------------------ 27
3.5.2.2 Hep G2------------------------------------------------------------------------------------------- 27
3.5.2.2 Huh 7---------------------------------------------------------------------------------------------- 27
3.6 細胞蛋白質萃取方式-------------------------------------------------------------------------------- 28
3.7 體外試驗--------------------------------------------------------------------------------------------------- 28
3.8 傷口癒合動物實驗模式---------------------------------------------------------------------------- 28
3.9 組織切片樣本製備------------------------------------------------------------------------------------ 29
3.10 組織樣本切片------------------------------------------------------------------------------------------ 30
3.11 組織切片染色------------------------------------------------------------------------------------------ 30
3.11.1 H&E stain ----------------------------------------------------------------------------------------- 31
3.11.2 Masson’s Tricrostain-------------------------------------------------------------------------- 31
3.11.3 Oil-red stain -------------------------------------------------------------------------------------- 32
3.12 西方點墨法----------------------------------------------------------------------------------------------- 32
3.12.1 組織蛋白萃取----------------------------------------------------------------------------------- 32
3.12.2 蛋白質電泳--------------------------------------------------------------------------------------- 32
3.13 明膠蛋白分析法---------------------------------------------------------------------------------------- 33
3.14 細胞毒性測試-------------------------------------------------------------------------------------------- 34
3.15 奈米金製備------------------------------------------------------------------------------------------------ 35
3.16 Micro CT量測------------------------------------------------------------------------------------------- 35
3.17 影像擷取及生物統計方法------------------------------------------------------------------------- 36
第四章 結果與討論
Part 1
4.1 藥物控制釋放-------------------------------------------------------------------------------------------- 37
4.2 ECIS分析藥物釋放對纖維母細胞生長行為的影響-------------------------------- 38
4.3 傷口癒合之動物實驗結果------------------------------------------------------------------------- 41
4.4 傷口癒合組織切片結果---------------------------------------------------------------------------- 43
4.5 IL-1β及MMP-9在西方點墨法的表現---------------------------------------------------- 48
Part 2
4.6 奈米金的修飾與定量-------------------------------------------------------------------------------- 50
4.7 以電漿沈積法修飾金電極表面----------------------------------------------------------------- 53
4.8 以ICP和QCM量測的結果作比較--------------------------------------------------------------- 54
4.9 細胞毒性試驗-------------------------------------------------------------------------------------------- 55
4.10 以Micro CT 量測細胞uptake AuNPs的結果------------------------------------------- 57
Part 3
4.11 腫瘤細胞株MMPs的表現量做為藥物釋放調控的可能------------------------- 58
4.12 細胞株所分泌MMPs在Zymorgraphy的表現------------------------------------------ 59
4.13 MMP-9在西方點墨法之表現------------------------------------------------------------------- 61
第五章 結論---------------------------------------------------------------------------------------------------- 62
附錄
圖目錄
圖1-1 Proteolytic Cascades Regulate MMP Function----------------------------------------------- 5
圖1-2 纖維母細胞受到細胞間素等因子影響分化過程示意圖------------------------------ 7
圖1-3組織結構及腫瘤功能性微環境調節誘導過程, 分解性酵素在細胞間質中所
扮演的角色--------------------------------------------------------------------------------------------------- 9
圖1-4基質金屬蛋白脢在腫瘤微環境中所扮演的功能----------------------------------------- 10
圖1-5 聚乳酸分子結構(Poly (D,L-lactide acid; PDLL) --------------------------------------------- 13
圖1-6明膠製備示意圖-------------------------------------------------------------------------------------------- 14
圖1-7細胞與電極板之間的作用力(ECIS) ------------------------------------------------------------- 16
圖4-1含predinosolone聚乳酸(prednisolone loading PDLL;PPM)顆粒於體外試驗中
濃度釋放曲線.--------------------------------------------------------------------------------------------- 37
圖4-2以電極表面感測在不同藥物濃度下纖維母細胞的傷口癒合模式-------------- 39
圖4-3 利用ECIS來量測纖維母細胞的生長速度-------------------------------------------------- 40
圖4-4 動物實驗傷口創造示意圖--------------------------------------------------------------------------- 42
圖4-5 手術後第七天的分別取背上的傷口癒合組織作組織切片的H&E 染色--- 44
圖4-6 手術後第14天,分別取背上的傷口愈合組織作組織切片的H&E 染色---- 45
圖4-7 以Mason’s trichromic stain 三染色法--------------------------------------------------------- 46
圖4-8 癒合後的動物傷口組織MMP-9,IL-1的表現量------------------------------------------- 49
圖4-9西方點墨法定量動物傷口癒合組織內IL-1β和MMP-9表現量----------------- 49
圖4-10奈米金表面修飾親水性分子,疏水性分子(DCT; 1-decanethiol)示意圖------- 50
圖4-11 FTIR分析經修飾後的AuNNPs表面-------------------------------------------------------- 51
圖4-12 利用電漿沈積法修飾石英晶體電極表面示意圖-------------------------------------- 53
圖4-13 ICP 定量製備AuNPs重量------------------------------------------------------------------------ 54
圖4-14 AuNPs, MUA-AuNPs and DCT-AuNPs 頻率響應變化.---------------------------- 54
圖4-15 不同濃度的奈米金粒子(AuNPs)以MTT測試細胞結果分析------------------ 56
圖4-16不同分化程度的脂肪細胞-------------------------------------------------------------------------- 56
圖4-17 Gelatin-AuNPs 合成示意圖----------------------------------------------------------------------- 58
圖4-18 Gelatin-AuNPs. 的TEM.-------------------------------------------------------------------------- 59
圖4-19以Zymorgraphy 分析MMP-9跟MMP-2的表現-------------------------------------- 60
圖4-20 以Zymorgraphy 分析NIH 3T3, 9c/LacZ及Huh 7 所分泌的MMP-9
MMP-2的表現------------------------------------------------------------------------------------------- 60
圖4-21以已知濃度的MMP-2(A)及MMP-9(B)序列稀釋作檢量線--------------------------61
圖4-22以細胞株分泌基質金屬蛋白與gelatin-AuNPs作用後,基質金屬蛋白活性
表現差異------------------------------------------------------------------------------------------------61
圖4-23以人類血清為控制組,NIH 3T3, 9c/Lac Z 及Huh 7,MMP-9 之表現--------- 62
圖4-24 以小鼠血清為控制組,NIH 3T3, 9c/Lac Z 及Huh 7,MMP-9 之表現---------62
















表目錄
表1-1 基質金屬蛋白酶結構與分類------------------------------------------------------------------------2
表1-2可作為腫瘤生物標記的MMPs及ADAM-------------------------------------------------- 12
表4-1 以不同藥物濃度聚乳酸顆粒處理後新生組織變化量-------------------------------- 47
表4-2 以Micro CT量測細胞uptake 表面不同修飾AuNPs含量----------------------- 57
dc.language.isozh-TW
dc.subject奈米金zh_TW
dc.subject基質金屬蛋白9 (MMP-9)zh_TW
dc.subject細胞基質(ECM)zh_TW
dc.subjectIL-1βzh_TW
dc.subject傷口癒合zh_TW
dc.subject聚乳酸包覆Prednisolone微粒(PPM)zh_TW
dc.subject小型電腦斷層(Micro-CT)zh_TW
dc.subject耦合電漿(ICP)zh_TW
dc.subjectmicro CT.en
dc.subjectPrednisolone-loaded PDLL microspheres (PPM)en
dc.subjectinductively coupled plasma (ICP)en
dc.subjectAu nanoparticles (AuNPs)en
dc.subjectMatrix metalloproteinases-9 (MMP-9)en
dc.subjectIL-βen
dc.subjectExtracellular matrix (ECM)en
dc.subjectWound healingen
dc.title以MMP-9為藥物釋放調控因子在傷口癒合及腫瘤之診治zh_TW
dc.titleWound healing and tumor therapy by regulation MMP-9 expressionen
dc.typeThesis
dc.date.schoolyear101-1
dc.description.degree博士
dc.contributor.oralexamcommittee張美惠,鄭宗記,陳克紹,潘愷
dc.subject.keyword聚乳酸包覆Prednisolone微粒(PPM),傷口癒合,IL-1β,細胞基質(ECM),基質金屬蛋白9 (MMP-9),奈米金,耦合電漿(ICP),小型電腦斷層(Micro-CT),zh_TW
dc.subject.keywordPrednisolone-loaded PDLL microspheres (PPM),Wound healing,Extracellular matrix (ECM),IL-β,Matrix metalloproteinases-9 (MMP-9),Au nanoparticles (AuNPs),inductively coupled plasma (ICP),micro CT.,en
dc.relation.page70
dc.rights.note未授權
dc.date.accepted2013-02-18
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
62.82 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved