Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15593Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 陳彥榮(Yen-Rong Chen) | |
| dc.contributor.author | Shin-Wei Chen | en |
| dc.contributor.author | 陳欣蔚 | zh_TW |
| dc.date.accessioned | 2021-06-07T17:48:25Z | - |
| dc.date.copyright | 2013-03-15 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-02-18 | |
| dc.identifier.citation | Aird, W.C. (2007). Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circulation research 100, 158-173.
Ambrosetti, D.C., Basilico, C., and Dailey, L. (1997). Synergistic activation of the fibroblast growth factor 4 enhancer by Sox2 and Oct-3 depends on protein-protein interactions facilitated by a specific spatial arrangement of factor binding sites. Molecular and cellular biology 17, 6321-6329. Astermark, J., Berntorp, E., White, G.C., Kroner, B.L., and Group, M.S. (2001). The Malmo International Brother Study (MIBS): further support for genetic predisposition to inhibitor development in hemophilia patients. Haemophilia : the official journal of the World Federation of Hemophilia 7, 267-272. Avina-Zubieta, J.A., Galindo-Rodriguez, G., and Lavalle, C. (1998). Rheumatic manifestations of hematologic disorders. Current opinion in rheumatology 10, 86-90. Baugh, R.J., Broze, G.J., Jr., and Krishnaswamy, S. (1998). Regulation of extrinsic pathway factor Xa formation by tissue factor pathway inhibitor. The Journal of biological chemistry 273, 4378-4386. Bendall, S.C., Stewart, M.H., Menendez, P., George, D., Vijayaragavan, K., Werbowetski-Ogilvie, T., Ramos-Mejia, V., Rouleau, A., Yang, J., Bosse, M., et al. (2007). IGF and FGF cooperatively establish the regulatory stem cell niche of pluripotent human cells in vitro. Nature 448, 1015-1021. Braet, F., and Wisse, E. (2002). Structural and functional aspects of liver sinusoidal endothelial cell fenestrae: a review. Comparative hepatology 1, 1. Broze, G.J., Jr., Warren, L.A., Novotny, W.F., Higuchi, D.A., Girard, J.J., and Miletich, J.P. (1988). The lipoprotein-associated coagulation inhibitor that inhibits the factor VII-tissue factor complex also inhibits factor Xa: insight into its possible mechanism of action. Blood 71, 335-343. 55 Burnouf, T., Caron, C., Radosevich, M., Goubran, H.A., Goudemand, J., and El-Ekiaby, M. (2008). Properties of a concentrated minipool solvent-detergent treated cryoprecipitate processed in single-use bag systems. Haemophilia : the official journal of the World Federation of Hemophilia 14, 956-962. Buttler, K., Kreysing, A., von Kaisenberg, C.S., Schweigerer, L., Gale, N., Papoutsi, M., and Wilting, J. (2006). Mesenchymal cells with leukocyte and lymphendothelial characteristics in murine embryos. Developmental dynamics : an official publication of the American Association of Anatomists 235, 1554-1562. Chuah, M.K., VandenDriessche, T., and Morgan, R.A. (1995). Development and analysis of retroviral vectors expressing human factor VIII as a potential gene therapy for hemophilia A. Human gene therapy 6, 1363-1377. Cohn, E.J., Strong, L.E., and et al. (1946). Preparation and properties of serum and plasma proteins; a system for the separation into fractions of the protein and lipoprotein components of biological tissues and fluids. Journal of the American Chemical Society 68, 459-475. Connelly, S., and Kaleko, M. (1997). Gene therapy for hemophilia A. Thrombosis and haemostasis 78, 31-36. Couvelard, A., Scoazec, J.Y., Dauge, M.C., Bringuier, A.F., Potet, F., and Feldmann, G. (1996). Structural and functional differentiation of sinusoidal endothelial cells during liver organogenesis in humans. Blood 87, 4568-4580. Davidoff, A.M., Gray, J.T., Ng, C.Y., Zhang, Y., Zhou, J., Spence, Y., Bakar, Y., and Nathwani, A.C. (2005). Comparison of the ability of adeno-associated viral vectors pseudotyped with serotype 2, 5, and 8 capsid proteins to mediate efficient transduction of the liver in murine and nonhuman primate models. Molecular therapy : the journal of the American Society of Gene Therapy 11, 875-888. de Biasi, R., Rocino, A., Papa, M.L., Salerno, E., Mastrullo, L., and De Blasi, D. (1994). Incidence of factor VIII inhibitor development in hemophilia A patients treated with less pure plasma derived concentrates. Thrombosis and haemostasis 71, 544-547. 56 Di Scipio, R.G., Kurachi, K., and Davie, E.W. (1978). Activation of human factor IX (Christmas factor). The Journal of clinical investigation 61, 1528-1538. Dwarki, V.J., Belloni, P., Nijjar, T., Smith, J., Couto, L., Rabier, M., Clift, S., Berns, A., and Cohen, L.K. (1995). Gene therapy for hemophilia A: production of therapeutic levels of human factor VIII in vivo in mice. Proceedings of the National Academy of Sciences of the United States of America 92, 1023-1027. Eaton, D., Rodriguez, H., and Vehar, G.A. (1986). Proteolytic processing of human factor VIII. Correlation of specific cleavages by thrombin, factor Xa, and activated protein C with activation and inactivation of factor VIII coagulant activity. Biochemistry 25, 505-512. Enomoto, K., Nishikawa, Y., Omori, Y., Tokairin, T., Yoshida, M., Ohi, N., Nishimura, T., Yamamoto, Y., and Li, Q. (2004). Cell biology and pathology of liver sinusoidal endothelial cells. Medical electron microscopy : official journal of the Clinical Electron Microscopy Society of Japan 37, 208-215. Enzan, H., Himeno, H., Hiroi, M., Kiyoku, H., Saibara, T., and Onishi, S. (1997). Development of hepatic sinusoidal structure with special reference to the Ito cells. Microscopy research and technique 39, 336-349. Falkowski, M., Schledzewski, K., Hansen, B., and Goerdt, S. (2003). Expression of stabilin-2, a novel fasciclin-like hyaluronan receptor protein, in murine sinusoidal endothelia, avascular tissues, and at solid/liquid interfaces. Histochemistry and cell biology 120, 361-369. Favaloro, E.J., Facey, D., and Henniker, A. (1999). Use of a novel platelet function analyzer (PFA-100) with high sensitivity to disturbances in von Willebrand factor to screen for von Willebrand's disease and other disorders. American journal of hematology 62, 165-174. Fay, P.J. (1993). Factor VIII structure and function. Thrombosis and haemostasis 70, 63-67. 57 Fay, P.J., Beattie, T., Huggins, C.F., and Regan, L.M. (1994). Factor VIIIa A2 subunit residues 558-565 represent a factor IXa interactive site. The Journal of biological chemistry 269, 20522-20527. Fong, G.H., Rossant, J., Gertsenstein, M., and Breitman, M.L. (1995). Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376, 66-70. Foster, P.A., Fulcher, C.A., Houghten, R.A., and Zimmerman, T.S. (1988). An immunogenic region within residues Val1670-Glu1684 of the factor VIII light chain induces antibodies which inhibit binding of factor VIII to von Willebrand factor. The Journal of biological chemistry 263, 5230-5234. Franchini, M., Favaloro, E.J., and Lippi, G. (2010). Mild hemophilia A. Journal of thrombosis and haemostasis : JTH 8, 421-432. Furie, B., and Furie, B.C. (2005). Thrombus formation in vivo. The Journal of clinical investigation 115, 3355-3362. Galjaard, H. (1980). Genetic metabolic diseases : early diagnosis and prenatal analysis (Amsterdam; New York; New York: Elsevier/North-Holland Biomedical Press ; sole distributors for the U.S.A. and Canada, Elsevier North-Holland). Gitschier, J., Kogan, S., Levinson, B., and Tuddenham, E.G. (1988). Mutations of factor VIII cleavage sites in hemophilia A. Blood 72, 1022-1028. Gjerset, G.F., McGrady, G., Counts, R.B., Martin, P.J., Jason, J., Kennedy, S., Evatt, B., and Hansen, J.A. (1985). Lymphadenopathy-associated virus antibodies and T cells in hemophiliacs treated with cryoprecipitate or concentrate. Blood 66, 718-720. Gomperts, E.D., Malekzadeh, M.H., and Fine, R.N. (1981). Dialysis and renal transplant in a hemophiliac. Thrombosis and haemostasis 46, 626-628. Gouysse, G., Couvelard, A., Frachon, S., Bouvier, R., Nejjari, M., Dauge, M.C., Feldmann, G., Henin, D., and Scoazec, J.Y. (2002). Relationship between vascular 58 development and vascular differentiation during liver organogenesis in humans. Journal of hepatology 37, 730-740. Green, P.M., Bagnall, R.D., Waseem, N.H., and Giannelli, F. (2008). Haemophilia A mutations in the UK: results of screening one-third of the population. British journal of haematology 143, 115-128. Groth, C.G., Hathaway, W.E., Gustafsson, A., Geis, W.P., Putnam, C.W., Bjorken, C., Porter, K.A., and Starzl, T.E. (1974). Correction of coagulation in the hemophilic dog by transplantation of lymphatic tissue. Surgery 75, 725-733. Hay, C.R., Negrier, C., and Ludlam, C.A. (1997). The treatment of bleeding in acquired haemophilia with recombinant factor VIIa: a multicentre study. Thrombosis and haemostasis 78, 1463-1467. Hirashima, M., Kataoka, H., Nishikawa, S., Matsuyoshi, N., and Nishikawa, S. (1999). Maturation of embryonic stem cells into endothelial cells in an in vitro model of vasculogenesis. Blood 93, 1253-1263. Hollestelle, M.J., Thinnes, T., Crain, K., Stiko, A., Kruijt, J.K., van Berkel, T.J., Loskutoff, D.J., and van Mourik, J.A. (2001). Tissue distribution of factor VIII gene expression in vivo--a closer look. Thrombosis and haemostasis 86, 855-861. Hornsey, V.S., Young, D.A., Docherty, A., Hughes, W., and Prowse, C.V. (2004). Cryoprecipitate prepared from plasma treated with methylene blue plus light: increasing the fibrinogen concentration. Transfusion medicine 14, 369-374. Horwitz, E.M., Prockop, D.J., Fitzpatrick, L.A., Koo, W.W., Gordon, P.L., Neel, M., Sussman, M., Orchard, P., Marx, J.C., Pyeritz, R.E., et al. (1999). Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nature medicine 5, 309-313. Hoyer, L.W. (1994). Hemophilia A. The New England journal of medicine 330, 38-47. 59 International Stem Cell, I., Adewumi, O., Aflatoonian, B., Ahrlund-Richter, L., Amit, M., Andrews, P.W., Beighton, G., Bello, P.A., Benvenisty, N., Berry, L.S., et al. (2007). Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nature biotechnology 25, 803-816. Jiang, H., Lillicrap, D., Patarroyo-White, S., Liu, T., Qian, X., Scallan, C.D., Powell, S., Keller, T., McMurray, M., Labelle, A., et al. (2006). Multiyear therapeutic benefit of AAV serotypes 2, 6, and 8 delivering factor VIII to hemophilia A mice and dogs. Blood 108, 107-115. Judson, R.L., Babiarz, J.E., Venere, M., and Blelloch, R. (2009). Embryonic stem cell-specific microRNAs promote induced pluripotency. Nature biotechnology 27, 459-461. Kaji, K., Norrby, K., Paca, A., Mileikovsky, M., Mohseni, P., and Woltjen, K. (2009). Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458, 771-775. Karon, J.M., and Berkelman, R.L. (1991). The geographic and ethnic diversity of AIDS incidence trends in homosexual/bisexual men in the United States. Journal of acquired immune deficiency syndromes 4, 1179-1189. Kasper, C.K. (2012). Judith Graham Pool and the discovery of cryoprecipitate. Haemophilia : the official journal of the World Federation of Hemophilia 18, 833-835. Kaufman, D.S., Hanson, E.T., Lewis, R.L., Auerbach, R., and Thomson, J.A. (2001). Hematopoietic colony-forming cells derived from human embryonic stem cells. Proc Natl Acad Sci USA 98, 10716-10721. Kaufman, R.J., Pipe, S.W., Tagliavacca, L., Swaroop, M., and Moussalli, M. (1997). Biosynthesis, assembly and secretion of coagulation factor VIII. Blood coagulation & fibrinolysis : an international journal in haemostasis and thrombosis 8 Suppl 2, S3-14. 60 Keeling, D.M., Luddington, R., Allain, J.P., Lawrie, A.S., and Williamson, L.M. (1997). Cryoprecipitate prepared from plasma virally inactivated by the solvent detergent method. British journal of haematology 96, 194-197. Kempton, C.L., Soucie, J.M., Miller, C.H., Hooper, C., Escobar, M.A., Cohen, A.J., Key, N.S., Thompson, A.R., and Abshire, T.C. (2010). In non-severe hemophilia A the risk of inhibitor after intensive factor treatment is greater in older patients: a case-control study. Journal of thrombosis and haemostasis : JTH 8, 2224-2231. Kuroda, T., Tada, M., Kubota, H., Kimura, H., Hatano, S.Y., Suemori, H., Nakatsuji, N., and Tada, T. (2005). Octamer and Sox elements are required for transcriptional cis regulation of Nanog gene expression. Molecular and cellular biology 25, 2475-2485. Lalor, P.F., Lai, W.K., Curbishley, S.M., Shetty, S., and Adams, D.H. (2006). Human hepatic sinusoidal endothelial cells can be distinguished by expression of phenotypic markers related to their specialised functions in vivo. World journal of gastroenterology : WJG 12, 5429-5439. Larsson, S.A. (1984). Hemophilia in Sweden. Studies on demography of hemophilia and surgery in hemophilia and von Willebrand's disease. Acta medica Scandinavica Supplementum 684, 1-72. Levenberg, S., Golub, J.S., Amit, M., Itskovitz-Eldor, J., and Langer, R. (2002). Endothelial cells derived from human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America 99, 4391-4396. Levenstein, M.E., Ludwig, T.E., Xu, R.H., Llanas, R.A., VanDenHeuvel-Kramer, K., Manning, D., and Thomson, J.A. (2006). Basic fibroblast growth factor support of human embryonic stem cell self-renewal. Stem cells 24, 568-574. Li, Z., Suzuki, Y., Huang, M., Cao, F., Xie, X., Connolly, A.J., Yang, P.C., and Wu, J.C. (2008). Comparison of reporter gene and iron particle labeling for tracking fate of human embryonic stem cells and differentiated endothelial cells in living subjects. Stem cells 26, 864-873. 61 Lin, T., Ambasudhan, R., Yuan, X., Li, W., Hilcove, S., Abujarour, R., Lin, X., Hahm, H.S., Hao, E., Hayek, A., et al. (2009). A chemical platform for improved induction of human iPSCs. Nature methods 6, 805-808. Liu, L., Mah, C., and Fletcher, B.S. (2006). Sustained FVIII expression and phenotypic correction of hemophilia A in neonatal mice using an endothelial-targeted sleeping beauty transposon. Molecular therapy : the journal of the American Society of Gene Therapy 13, 1006-1015. Lynch, C.M., Israel, D.I., Kaufman, R.J., and Miller, A.D. (1993). Sequences in the coding region of clotting factor VIII act as dominant inhibitors of RNA accumulation and protein production. Human gene therapy 4, 259-272. Mah, C., Sarkar, R., Zolotukhin, I., Schleissing, M., Xiao, X., Kazazian, H.H., and Byrne, B.J. (2003). Dual vectors expressing murine factor VIII result in sustained correction of hemophilia A mice. Human gene therapy 14, 143-152. Manco-Johnson, M.J., Abshire, T.C., Shapiro, A.D., Riske, B., Hacker, M.R., Kilcoyne, R., Ingram, J.D., Manco-Johnson, M.L., Funk, S., Jacobson, L., et al. (2007). Prophylaxis versus episodic treatment to prevent joint disease in boys with severe hemophilia. The New England journal of medicine 357, 535-544. Martin, G.R. (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proceedings of the National Academy of Sciences of the United States of America 78, 7634-7638. Matsuda, T., Nakamura, T., Nakao, K., Arai, T., Katsuki, M., Heike, T., and Yokota, T. (1999). STAT3 activation is sufficient to maintain an undifferentiated state of mouse embryonic stem cells. The EMBO journal 18, 4261-4269. McMahon, S.B., Van Buskirk, H.A., Dugan, K.A., Copeland, T.D., and Cole, M.D. (1998). The novel ATM-related protein TRRAP is an essential cofactor for the c-Myc and E2F oncoproteins. Cell 94, 363-374. 62 Moayeri, M., Hawley, T.S., and Hawley, R.G. (2005). Correction of murine hemophilia A by hematopoietic stem cell gene therapy. Molecular therapy : the journal of the American Society of Gene Therapy 12, 1034-1042. Morrison, G.M., and Brickman, J.M. (2006). Conserved roles for Oct4 homologues in maintaining multipotency during early vertebrate development. Development 133, 2011-2022. Morrissey, J.H. (2001). Tissue factor: an enzyme cofactor and a true receptor. Thrombosis and haemostasis 86, 66-74. Naito, K., and Fujikawa, K. (1991). Activation of human blood coagulation factor XI independent of factor XII. Factor XI is activated by thrombin and factor XIa in the presence of negatively charged surfaces. The Journal of biological chemistry 266, 7353-7358. Nakagawa, M., Koyanagi, M., Tanabe, K., Takahashi, K., Ichisaka, T., Aoi, T., Okita, K., Mochiduki, Y., Takizawa, N., and Yamanaka, S. (2008). Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nature biotechnology 26, 101-106. Nathwani, A.C., Gray, J.T., Ng, C.Y., Zhou, J., Spence, Y., Waddington, S.N., Tuddenham, E.G., Kemball-Cook, G., McIntosh, J., Boon-Spijker, M., et al. (2006). Self-complementary adeno-associated virus vectors containing a novel liver-specific human factor IX expression cassette enable highly efficient transduction of murine and nonhuman primate liver. Blood 107, 2653-2661. Nathwani, A.C., Tuddenham, E.G., Rangarajan, S., Rosales, C., McIntosh, J., Linch, D.C., Chowdary, P., Riddell, A., Pie, A.J., Harrington, C., et al. (2011). Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. The New England journal of medicine 365, 2357-2365. Nichols, J., Zevnik, B., Anastassiadis, K., Niwa, H., Klewe-Nebenius, D., Chambers, I., Scholer, H., and Smith, A. (1998). Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95, 379-391. 63 Nilsson, I.M., Berntorp, E., Lofqvist, T., and Pettersson, H. (1992). Twenty-five years' experience of prophylactic treatment in severe haemophilia A and B. Journal of internal medicine 232, 25-32. Niwa, H., Burdon, T., Chambers, I., and Smith, A. (1998). Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev 12, 2048-2060. Nonaka, H., Tanaka, M., Suzuki, K., and Miyajima, A. (2007). Development of murine hepatic sinusoidal endothelial cells characterized by the expression of hyaluronan receptors. Developmental dynamics : an official publication of the American Association of Anatomists 236, 2258-2267. Nonaka, H., Watabe, T., Saito, S., Miyazono, K., and Miyajima, A. (2008). Development of stabilin2+ endothelial cells from mouse embryonic stem cells by inhibition of TGF[beta]/activin signaling. Biochemical and biophysical research communications 375, 256-260. Ohlfest, J.R., Frandsen, J.L., Fritz, S., Lobitz, P.D., Perkinson, S.G., Clark, K.J., Nelsestuen, G., Key, N.S., McIvor, R.S., Hackett, P.B., et al. (2005). Phenotypic correction and long-term expression of factor VIII in hemophilic mice by immunotolerization and nonviral gene transfer using the Sleeping Beauty transposon system. Blood 105, 2691-2698. Okumura-Nakanishi, S., Saito, M., Niwa, H., and Ishikawa, F. (2005). Oct-3/4 and Sox2 regulate Oct-3/4 gene in embryonic stem cells. The Journal of biological chemistry 280, 5307-5317. Pallister CJ and Watson MS (2010). Haematology. Scion Publishing. pp. 334–336. ISBN 1-904842-39-9. Pedersen, B., Holscher, T., Sato, Y., Pawlinski, R., and Mackman, N. (2005). A balance between tissue factor and tissue factor pathway inhibitor is required for embryonic development and hemostasis in adult mice. Blood 105, 2777-2782. 64 Pesce, M., and Scholer, H.R. (2001). Oct-4: gatekeeper in the beginnings of mammalian development. Stem cells 19, 271-278. Pool, J.G., and Shannon, A.E. (1965). Production of high-potency concentrates of antihemophilic globulin in a closed-bag system. The New England journal of medicine 273, 1443-1447. Precup, J.W., Kline, B.C., and Fass, D.N. (1991). A monoclonal antibody to factor VIII inhibits von Willebrand factor binding and thrombin cleavage. Blood 77, 1929-1936. Rasi, V., and Ikkala, E. (1990). Haemophiliacs with factor VIII inhibitors in Finland: prevalence, incidence and outcome. British journal of haematology 76, 369-371. Raz, R., Lee, C.K., Cannizzaro, L.A., d'Eustachio, P., and Levy, D.E. (1999). Essential role of STAT3 for embryonic stem cell pluripotency. Proceedings of the National Academy of Sciences of the United States of America 96, 2846-2851. Rizza CR. The clinical features of clotting factor deficiencies. In: Human Blood Coagulation Haemostasis and Thrombosis, 2nd ed, Biggs R (Ed), Blackwell Scientific Publications, Oxford 1976. p.238. Rodaway, A., and Patient, R. (2001). Mesendoderm. an ancient germ layer? Cell 105, 169-172. Rodda, D.J., Chew, J.L., Lim, L.H., Loh, Y.H., Wang, B., Ng, H.H., and Robson, P. (2005). Transcriptional regulation of nanog by OCT4 and SOX2. The Journal of biological chemistry 280, 24731-24737. Rowland, B.D., Bernards, R., and Peeper, D.S. (2005). The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene. Nature cell biology 7, 1074-1082. Rowland, B.D., and Peeper, D.S. (2006). KLF4, p21 and context-dependent opposing forces in cancer. Nature reviews Cancer 6, 11-23. 65 Rubin, R.N., and Leopold, L.H. (1998). Hematologic pathophysiology (Madison, Conn.: Fence Creek Publishing). Sadler, J.E. (1998). Biochemistry and genetics of von Willebrand factor. Annual review of biochemistry 67, 395-424. Saenko, E.L., Loster, K., Josic, D., and Sarafanov, A.G. (1999). Effect of von Willebrand Factor and its proteolytic fragments on kinetics of interaction between the light and heavy chains of human factor VIII. Thrombosis research 96, 343-354. Sarkar, R., Mucci, M., Addya, S., Tetreault, R., Bellinger, D.A., Nichols, T.C., and Kazazian, H.H., Jr. (2006). Long-term efficacy of adeno-associated virus serotypes 8 and 9 in hemophilia a dogs and mice. Human gene therapy 17, 427-439. Scoazec, J.Y., and Feldmann, G. (1991). In situ immunophenotyping study of endothelial cells of the human hepatic sinusoid: results and functional implications. Hepatology 14, 789-797. Shalaby, F., Rossant, J., Yamaguchi, T.P., Gertsenstein, M., Wu, X.F., Breitman, M.L., and Schuh, A.C. (1995). Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376, 62-66. Shi, Q., Wilcox, D.A., Fahs, S.A., Weiler, H., Wells, C.W., Cooley, B.C., Desai, D., Morateck, P.A., Gorski, J., and Montgomery, R.R. (2006). Factor VIII ectopically targeted to platelets is therapeutic in hemophilia A with high-titer inhibitory antibodies. The Journal of clinical investigation 116, 1974-1982. Smedsrod, B., Pertoft, H., Gustafson, S., and Laurent, T.C. (1990). Scavenger functions of the liver endothelial cell. The Biochemical journal 266, 313-327. Smith, A.G. (2001). Embryo-derived stem cells: of mice and men. Annual review of cell and developmental biology 17, 435-462. Sultan, Y. (1992). Prevalence of inhibitors in a population of 3435 hemophilia patients in France. French Hemophilia Study Group. Thrombosis and haemostasis 67, 600-602. 66 Sun, Y., and Gailani, D. (1996). Identification of a factor IX binding site on the third apple domain of activated factor XI. The Journal of biological chemistry 271, 29023-29028. Takahashi, K., Tanabe, K., and Ohnuki, M. (2007a). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861-872. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S. (2007b). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861-872. Takahashi, K., and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-676. Thomson, J.A. (1998). Embryonic Stem Cell Lines Derived from Human Blastocysts. Science 282, 1145-1147. Tomioka, M., Nishimoto, M., Miyagi, S., Katayanagi, T., Fukui, N., Niwa, H., Muramatsu, M., and Okuda, A. (2002). Identification of Sox-2 regulatory region which is under the control of Oct-3/4-Sox-2 complex. Nucleic acids research 30, 3202-3213. Toole, J.J., Knopf, J.L., Wozney, J.M., Sultzman, L.A., Buecker, J.L., Pittman, D.D., Kaufman, R.J., Brown, E., Shoemaker, C., Orr, E.C., et al. (1984). Molecular cloning of a cDNA encoding human antihaemophilic factor. Nature 312, 342-347. Toole, J.J., Pittman, D.D., Orr, E.C., Murtha, P., Wasley, L.C., and Kaufman, R.J. (1986). A large region (approximately equal to 95 kDa) of human factor VIII is dispensable for in vitro procoagulant activity. Proceedings of the National Academy of Sciences of the United States of America 83, 5939-5942. Urnov, F.D., Miller, J.C., Lee, Y.L., Beausejour, C.M., Rock, J.M., Augustus, S., Jamieson, A.C., Porteus, M.H., Gregory, P.D., and Holmes, M.C. (2005). Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435, 646-651. 67 Valnickova, Z., and Enghild, J.J. (1998). Human procarboxypeptidase U, or thrombin-activable fibrinolysis inhibitor, is a substrate for transglutaminases. Evidence for transglutaminase-catalyzed cross-linking to fibrin. The Journal of biological chemistry 273, 27220-27224. van Dieijen, G., Tans, G., Rosing, J., and Hemker, H.C. (1981). The role of phospholipid and factor VIIIa in the activation of bovine factor X. The Journal of biological chemistry 256, 3433-3442. Viel, K.R., Ameri, A., Abshire, T.C., Iyer, R.V., Watts, R.G., Lutcher, C., Channell, C., Cole, S.A., Fernstrom, K.M., Nakaya, S., et al. (2009). Inhibitors of factor VIII in black patients with hemophilia. The New England journal of medicine 360, 1618-1627. Vittet, D., Prandini, M.H., Berthier, R., Schweitzer, A., Martin-Sisteron, H., Uzan, G., and Dejana, E. (1996). Embryonic stem cells differentiate in vitro to endothelial cells through successive maturation steps. Blood 88, 3424-3431. von dem Borne, P.A., Meijers, J.C., and Bouma, B.N. (1995). Feedback activation of factor XI by thrombin in plasma results in additional formation of thrombin that protects fibrin clots from fibrinolysis. Blood 86, 3035-3042. Walker, I., Pai, M., Akabutu, J., Ritchie, B., Growe, G., Poon, M.C., Card, R., Ali, K., Israels, S., Teitel, J., et al. (1995). The Canadian Hemophilia Registry as the basis for a national system for monitoring the use of factor concentrates. Transfusion 35, 548-551. Wang, L., Calcedo, R., Nichols, T.C., Bellinger, D.A., Dillow, A., Verma, I.M., and Wilson, J.M. (2005). Sustained correction of disease in naive and AAV2-pretreated hemophilia B dogs: AAV2/8-mediated, liver-directed gene therapy. Blood 105, 3079-3086. Wang, L., Li, L., Shojaei, F., Levac, K., Cerdan, C., Menendez, P., Martin, T., Rouleau, A., and Bhatia, M. (2004). Endothelial and hematopoietic cell fate of human embryonic stem cells originates from primitive endothelium with hemangioblastic properties. Immunity 21, 31-41. 68 Wang, Z.Z., Au, P., Chen, T., Shao, Y., Daheron, L.M., Bai, H., Arzigian, M., Fukumura, D., Jain, R.K., and Scadden, D.T. (2007). Endothelial cells derived from human embryonic stem cells form durable blood vessels in vivo. Nature biotechnology 25, 317-318. Wei, C.L., Miura, T., Robson, P., Lim, S.K., Xu, X.Q., Lee, M.Y., Gupta, S., Stanton, L., Luo, Y., Schmitt, J., et al. (2005). Transcriptome profiling of human and murine ESCs identifies divergent paths required to maintain the stem cell state. Stem cells 23, 166-185. White, G.C., 2nd, Rosendaal, F., Aledort, L.M., Lusher, J.M., Rothschild, C., Ingerslev, J., Factor, V., and Factor, I.X.S. (2001). Definitions in hemophilia. Recommendation of the scientific subcommittee on factor VIII and factor IX of the scientific and standardization committee of the International Society on Thrombosis and Haemostasis. Thrombosis and haemostasis 85, 560. White, G.C., 2nd, and Shoemaker, C.B. (1989). Factor VIII gene and hemophilia A. Blood 73, 1-12. Wigle, J.T., Harvey, N., Detmar, M., Lagutina, I., Grosveld, G., Gunn, M.D., Jackson, D.G., and Oliver, G. (2002). An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. The EMBO journal 21, 1505-1513. Wion, K.L., Kelly, D., Summerfield, J.A., Tuddenham, E.G., and Lawn, R.M. (1985). Distribution of factor VIII mRNA and antigen in human liver and other tissues. Nature 317, 726-729. Wollert, K.C., Meyer, G.P., Lotz, J., Ringes-Lichtenberg, S., Lippolt, P., Breidenbach, C., Fichtner, S., Korte, T., Hornig, B., Messinger, D., et al. (2004). Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 364, 141-148. Wood, W.I., Capon, D.J., Simonsen, C.C., Eaton, D.L., Gitschier, J., Keyt, B., Seeburg, P.H., Smith, D.H., Hollingshead, P., Wion, K.L., et al. (1984). Expression of active human factor VIII from recombinant DNA clones. Nature 312, 330-337. 69 Xu, L., Nichols, T.C., Sarkar, R., McCorquodale, S., Bellinger, D.A., and Ponder, K.P. (2005). Absence of a desmopressin response after therapeutic expression of factor VIII in hemophilia A dogs with liver-directed neonatal gene therapy. Proceedings of the National Academy of Sciences of the United States of America 102, 6080-6085. Yamahara, K., Sone, M., Itoh, H., Yamashita, J.K., Yurugi-Kobayashi, T., Homma, K., Chao, T.H., Miyashita, K., Park, K., Oyamada, N., et al. (2008). Augmentation of neovascularization [corrected] in hindlimb ischemia by combined transplantation of human embryonic stem cells-derived endothelial and mural cells. PloS one 3, e1666. Yang, L., Soonpaa, M.H., Adler, E.D., Roepke, T.K., Kattman, S.J., Kennedy, M., Henckaerts, E., Bonham, K., Abbott, G.W., Linden, R.M., et al. (2008). Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature 453, 524-528. Ying, Q.L., Nichols, J., Chambers, I., and Smith, A. (2003). BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115, 281-292. Yoshida, M., Nishikawa, Y., Omori, Y., Yoshioka, T., Tokairin, T., McCourt, P., and Enomoto, K. (2007). Involvement of signaling of VEGF and TGF-beta in differentiation of sinusoidal endothelial cells during culture of fetal rat liver cells. Cell and tissue research 329, 273-282. Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L., Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., Stewart, R., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917-1920. Yuan, H., Corbi, N., Basilico, C., and Dailey, L. (1995). Developmental-specific activity of the FGF-4 enhancer requires the synergistic action of Sox2 and Oct-3. Genes Dev 9, 2635-2645. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15593 | - |
| dc.description.abstract | 甲型血友病是最為常見的血友病類型,由於第八凝血因子 (FVIII) 的缺乏所造成。FVIII 是一種凝血因子,它的變異會使血纖維無法形成血栓,導致無法凝血而血流不止的情形。肝臟為體內 FVIII的主要來源,而肝臟中組成血管內皮之肝竇內皮細胞(liver sinusoidal endothelium cell, LSEC)是體內最主要的 FVIII 生產細胞。過去曾有研究指出,將具正常小鼠之肝竇內皮細胞移植入第八因子缺損的血友病模式小鼠中可以減緩血友病的病症。因此,利用肝竇內皮細胞被期待成為血友病細胞療法之細胞來源之一。在本研究中,分成人類誘導式多能幹細胞株(human induced pluripotent stem cell, hiPSC)的建立以及將 hiPSC 誘導分化為表現 FVIII 的 LSEC 兩部分。
在第一部分中,首先先對人類體細胞株 Hs68 進行再程序化誘導,以慢病毒感染,使之表現多能性相關轉錄因子 c-Myc、Klf4、Oct4 和 Sox2,預期形成人類誘導式多能幹細胞,但在經細胞表面抗原及 mRNA 表現分析後,卻發現細胞並無表現完整的多能性特性。幾經調整重複未果,後直接以 hiPSC 細胞株 253G1 進行 Lsec 的分化研究。 肝竇內皮細胞為特化的內皮細胞,在胚胎發育初期由血管內皮前驅細胞延伸進入初萌發的肝臟後,逐漸分化形成。因此在本研究第二部分以人類胚胎幹細胞分化至血管內皮細胞為基礎,合併抑制 TGFβ 訊息傳導可以誘導小鼠肝竇內皮細胞分化之過去研究,設計出以 BMP4、ActivinA、bFGF、VEFG 和 TGFβ 受體抑制劑(Tbr1ki2)等條件分化培養基(conditional medium)。利用人類iPSC 253G1 細胞株,以胚胎小體 (embryonic body, EB) 培養的方式,誘導分化成肝竇內皮細胞。在經過 16天之分化後,約有 55% 之分化細胞表現肝竇內皮細胞特性,即具透明質酸清除受體 stabilin-2 的表現,且擁有將透明質酸吞噬清除的能力,並具有 FVIII 的 mRNA 和蛋白質表現。 在本篇論文中完成了將人類誘導式多能幹細胞誘導分化至具 FVIII 表現之類肝竇內皮細胞的研究,並期望可用於血友病的治療以及再生醫學之應用。 | zh_TW |
| dc.description.abstract | Hemophilia A is the most common type of hemophilia and is also known as factor VIII (FVIII) deficiency. FVIII is an essential blood clotting factor, and its defects result in the formation of fibrin deficient clots, causing bleeding. liver is a major source of FVIII and the liver sinusoidal endothelial cells (LSEC) are endothelial cells (EC) that line the hepatic microvasculature, sinusoids, which are the major cell type of FVIII production. Previous reports showed that transplantation of LSEC improved the hemophilia phenotype of mice deficient for FVIII. Thus, LSEC is expected to be one of the source for cell therapy of Hemophilia A. My research can be divided into two parts, the generation of human induced pluripotent stem cell (hiPSC) and the differentiation toward LSEC, which can express FVIII, from hiPSC.
In the first part, I infect c-Myc, Klf4, Oct4, and Sox2 to human somatic cell line HS68 by lentivirus for human iPSC formation. However, the results from analysis of cell surface antigen and mRNA expression showed that there is no complete pluripotent-specific expressed in cells. LSEC is a specified EC which emerged into liver bud at early development stage. In my second part of thesis, on the basis of differentiation from human embryonic stem cell (hESC) toward EC, associated the previous study: the inhibition of TGFβ/activin signaling could generate LESC-like from mouse ESC. I designed the protocol for inducing hiPSC toward LSEC through conditional medium with specific cytokines such as BMP4, ActivinA, bFGF, VEGF and TGFβ receptor inhibitor (Tbr1ki2) at different stages. By adopting 253G1 into embryonic body (EB) form, I used the protocol for LSEC induction.16 days later, about 55%-differentiated cells expressed a LESC marker, stabilin-2, a major hyaluronan clearance receptor, and incorporated FITC-labeled hyaluronan. Most importantly, those cells produced FVIII as evidenced by mRNA expression and protein secretion. In conclusion, FVIII-producing LSEC can be derived from human iPS cells and those cells may be an excellent source for cell therapy of hemophilia and the application of regeneration medicine. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T17:48:25Z (GMT). No. of bitstreams: 1 ntu-102-R99442015-1.pdf: 17853462 bytes, checksum: 36c5ab723a279371f20b900645be6537 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 國立臺灣大學碩士學位論文口試委員會審定書 ii
中文摘要 iii Abstract iv 目錄 vi 第一章 緒論 1 1.1 血友病 (hemophilia) 1 1.2 凝血因子 (coagulation factor) 2 1.3 凝血機制 (coagulation mechanism) 3 1.4 血友病治療 5 1.5 血友病與基因療法 7 1.6 幹細胞 (stem cell) 8 1.7 人類誘導式多能幹細胞 (human induced pluripotent stem cell, hiPSC) 10 1.8 肝竇內皮細胞 (Liver sinusoidal endothelial cell, Lsec) 11 1.9 多能幹細胞至內皮細胞的分化 13 第二章 研究目的與架構 15 第三章 材料與方法 17 2.1 細胞培養 (cell culture) 17 2.1.2 細胞培養液 (culture medium) 17 2.1.3 細胞解凍 17 2.1.4 細胞繼代 (cell subculture) 17 2.1.5 細胞保存 18 2.2 質體建構 (plasmid construction) 18 2.2.1 質體 (plasmid) 18 2.2.2 聚合酶鏈鎖反應 (polymerase chain reaction) 19 2.2.3 勝任細胞製備 (competent cell preparation) 20 2.2.4 細菌轉形 (transformation) 21 2.2.5 限制酶剪切 (restriction enzyme digestion) 21 2.2.6 DNA 片段的回收與萃取 22 2.2.7 DNA黏合 (ligation) 22 2.2.8 小量質體製備 23 2.2.9 大量質體製備 23 2.3 慢病毒製備及感染 (lentivirus production and infection) 24 2.3.1 轉染 (transfection) 24 2.3.2 病毒顆粒收集、濃縮 24 2.3.3 病毒感染 (infection) 24 2.3.4 病毒效價 (titer) 評估 25 2.4 細胞再程序化 (reprogramming) 25 2.4.1 小鼠纖維母細胞 (mouse embryonic fibroblast, MEF) 初代細胞培養 25 2.4.2 餵養細胞 (feeder cells) 準備 25 2.4.3 Hs68 細胞之再程序化誘導 26 2.5 人類胚胎幹細胞/誘導式多能幹細胞培養 26 2.5.1 人類胚胎幹細胞/誘導式多能幹細胞培養液 (ESC/iPSC medium) 26 2.5.2 人類胚胎幹細胞/誘導式多能幹細胞用解離液 26 2.5.3 人類胚胎幹細胞/誘導式多能幹細胞保存液 DAP213 27 2.5.4 人類胚胎幹細胞/誘導式多能幹細胞繼代與培養 27 2.5.5 人類胚胎幹細胞/誘導式多能幹細胞保存 27 2.5.6 人類胚胎幹細胞/誘導式多能幹細胞解凍 27 2.6 人類誘導式多能幹細胞之定性分析 27 2.6.1 鹼性磷酸酶染色 (alkaline phosphatase staining) 28 2.6.2 免疫螢光染色 (immunofluorescence staining assay) 28 2.6.3 mRNA 表現量分析 28 2.7 人類誘導式多能幹細胞分化至肝竇內皮細胞 29 2.7.1 人類誘導式多能幹細胞株 (induced pluripotent cell, iPSC) 29 2.7.2 誘導分化 30 2.8 肝竇內皮細胞定性分析 30 2.8.1 表面受體檢測 30 2.8.2 mRNA 表現量分析 30 2.8.3 清除受體吞噬能力檢測 31 2.8.4 酵素免疫分析法 (Enzyme-linked immunosorbent assay, ELISA) 31 第四章 實驗結果 32 3.1 以慢病毒載體感染體細胞株 32 3.2 以Hs68 再程序化誘導製作誘導式多能幹細胞 32 3.3 類多能幹細胞表達專一性表面抗原 32 3.4 人類誘導式多能幹細胞誘導分化為類肝竇內皮細胞 34 3.5 人類誘導式多能幹細胞抑制 TGFβ 訊息傳導可增進肝竇內皮細胞的特化 34 3.6 類肝竇內皮細胞表現具功能性的清除受體及第八凝血因子 35 第五章 綜合討論與未來方向 37 4.1 類誘導式多能幹細胞的多能性相關基因表現量低 37 4.2 人類體細胞再程序化誘導不完全 37 4.3 類肝竇內皮細胞分化誘導 38 4.4 綜合討論與未來研究方向 39 第五章 圖表 41 圖一、質體 MKOS :: pCDH 41 圖二、慢病毒感染效率分析 42 圖三、Hs68 再程序化誘導流程 43 圖四、Hs68 再程序化誘導48 天後細胞外觀型態 44 圖五、類多能幹細胞表面抗原鹼性磷酸酶表現 45 圖六、類多能幹細胞表面抗原 SSEA4、TRA-1-60、TRA-1-81表現 47 圖七、類多能幹細胞多能性基因表現的定量分析 48 圖八、自人類誘導式多能幹細胞至肝竇內皮細胞之分化誘導流程 49 圖九、經肝竇內皮分化誘導之細胞的階段性分化標記基因表達 50 圖十、經分化誘導肝竇內皮細胞之細胞表面抗原的表現 51 圖十一、類肝竇內皮細胞清除受體對低密度脂蛋白及透明質酸的攝取 52 圖十二、類肝竇內皮細胞的第八凝血因子表現 53 第六章 附錄 54 附錄一、二級凝血級聯反應 54 第七章 參考文獻 55 | |
| dc.language.iso | zh-TW | |
| dc.subject | TGFβ 受體抑制 | zh_TW |
| dc.subject | 甲型血友病 | zh_TW |
| dc.subject | 肝竇內皮細胞 | zh_TW |
| dc.subject | 誘導式多能幹細胞 | zh_TW |
| dc.subject | 第八凝血因子 | zh_TW |
| dc.subject | induced pluripotent stem cell | en |
| dc.subject | factor VIII | en |
| dc.subject | liver sinusoidal endothelial cell | en |
| dc.subject | TGFβ receptor inhibitor | en |
| dc.subject | hemophilia A | en |
| dc.title | 以人類多能幹細胞分化至肝竇內皮細胞之研究 | zh_TW |
| dc.title | The differentiation of liver sinusoidal endothelium cells from human induced pluripotent stem cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李昆達(Kung-Ta Lee),黃兆祺(Eric Hwang) | |
| dc.subject.keyword | 誘導式多能幹細胞,肝竇內皮細胞,第八凝血因子,TGFβ 受體抑制,甲型血友病, | zh_TW |
| dc.subject.keyword | induced pluripotent stem cell,liver sinusoidal endothelial cell,factor VIII,TGFβ receptor inhibitor,hemophilia A, | en |
| dc.relation.page | 70 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2013-02-18 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科技學系 | zh_TW |
| Appears in Collections: | 生化科技學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-102-1.pdf Restricted Access | 17.44 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
