請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15513完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 洪一薰(I-Hsuan Hong) | |
| dc.contributor.author | Rou-Chun Chen | en |
| dc.contributor.author | 陳柔君 | zh_TW |
| dc.date.accessioned | 2021-06-07T17:41:27Z | - |
| dc.date.copyright | 2020-07-15 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-07-13 | |
| dc.identifier.citation | 中華民國交通部. (2018). 自用小客車使用狀況調查報告. 取自於:https://www.motc.gov.tw/uploaddowndoc?file=survey/201910301030260.pdf filedisplay=201910301030260.pdf flag=doc. 六圖網. (2017). 彎曲柏油馬路矢量素材. 取自於:http://www.16pic.com/vector/pic_5082300.html. 行政院. (2017). 空氣污染防制行動方案. 取自於:https://www.ey.gov.tw/Goals/81689F916EB5D550. 交通部公路總局. (2019). 統計查詢網. 取自於:https://stat.thb.gov.tw. 車輛研究測試中心. (2011). 全球主要國家電動車示範運行推動現況. 取自於:https://www.car-safety.org.tw/uploads/Rule/%E5%85%A8%E7%90%83%E4%B8%BB%E8%A6%81%E5%9C%8B%E5%AE%B6%E9%9B%BB%E5%8B%95%E8%BB%8A%E7%A4%BA%E7%AF%84%E9%81%8B%E8%A1%8C%E6%8E%A8%E5%8B%95%E7%8F%BE%E6%B3%81.pdf. 財團法人國家政策研究基金會. (2013). 石化能源污染知多少. 取自於:https://www.npf.org.tw/3/12415. 張雯婷. (民109). 基於時空過程模型預測電動汽車充電需求. 臺灣大學工業工程學研究所碩士論文, 臺北市. 臺北市政府交通局. (2019). 臺北市交通查詢系統. 取自於:http://dotstat.taipei.gov.tw/pxweb2007P/Dialog/. 臺北市政府資訊局. (2019). 臺北市資料大平台. 取自於:https://data.taipei/#/dataset/detail?id=d5c0656b-5250-4179-a491-c94daa56ef2c. 臺北市停車管理工程處. (2020). 108 年度公有停車場暨機關學校停車場電動汽車充電格位一覽表. 取自於:https://www-ws.gov.taipei/Download.ashx?u=LzAwMS9VcGxvYWQvNDU1L3JlbGZpbGUvNDA1MzIvNzQxNTAzNi8zNzJkMzZjYy02OWZhLTQxODMtYTk1YS1lNGY1ZjI0YzczYWMucGRm MTA45bm05bqm5YWs5pyJ5YGc6LuK5aC05pqo5qmf6Zec5a245qCh5YGc6LuK5aC06Zu75YuV5rG96LuK5YWF6Zu75qC85L2N5LiA6Ka96KGoKFBERuaqlOahiCkucGR.pdf. 臺北市停車管理工程處. (2020). 臺北市停車資訊導引系統. 取自於:http://tpis.pma.gov.tw/ParkInfo/realinfo. 綠學院. (2018). Tesla 電動車大降價車主被當盤子,都這麼便宜了為什麼我們還是預言台灣發展不起來?. 取自於:http://greenimpact.cc/zh-TW. Alimujiang, A., Jiang, P. (2020). Synergy and co-benefits of reducing CO2 and air pollutant emissions by promoting electric vehicles—A case of shanghai. Energy for Sustainable Development, 55, 181-189. Andrenacci, N., Ragona, R., Valenti, G. (2016). A demand-side approach to the optimal deployment of electric vehicle charging stations in metropolitan areas. Applied Energy, 182, 39-46. Bai, X., Chin, K.S., Zhou, Z. (2019). A bi-objective model for location planning of electric vehicle charging stations with GPS trajectory data. Computers Industrial Engineering, 128, 591-604. Bouguerra, S., Layeb, S. B. (2019). Determining optimal deployment of electric vehicles charging stations: Case of Tunis City, tunisia. Case Studies on Transport Policy, 7(3), 628-642. Carlo, H. J., Aldarondo, F., Saavedra, P. M., Torres, S. N. (2012). Capacitated continuous facility location problem with unknown number of facilities. Engineering Management Journal, 24(3), 24-31. Carlo, H. J., David, V., SalvatDávila, G. S. (2017). Transportationlocation problem with unknown number of facilities. Computers Industrial Engineering, 112, 212-220. Deb, K., Deb, K. (2014). Multi-objective Optimization. In Search methodologies: Introductory tutorials in optimization and decision support techniques (p. 403-449). Boston, MA: Springer US. Dong, G., Ma, J., Wei, R., Haycox, J. (2019). Electric vehicle charging point placement optimisation by exploiting spatial statistics and maximal coverage location models. Transportation Research Part D: Transport and Environment, 67, 77-88. Google. (n.d.). 台北市大安區. 取自於:https://www.google.com/maps/place/%E5%8F%B0%E5%8C%97%E5%B8%82%E5%A4%A7%E5%AE%89%E5%8D%80/@25.0263064,121.5263363,14z/data=!3m1!4b1!4m5!3m4!1s0x3442aa2c1969f84d:0x6ea0b5cbf2d9955d!8m2!3d25.0249441!4d121.5433783. Guo, F., Yang, J., Lu, J. (2018). The battery charging station location problem: Impact of users’ range anxiety and distance convenience. Transportation Research Part E: Logistics and Transportation Review, 114, 1-18. He, F., Yin, Y., Zhou, J. (2015). Deploying public charging stations for electric vehicles on urban road networks. Transportation Research Part C: Emerging Technologies, 60, 227-240. Hong, I., Assavapokee, T., Ammons, J., Boelkins, C., Gilliam, K., Oudit, D., ... Wongthatsanekorn, W. (2006). Planning the escrap reverse production system under uncertainty in the state of Georgia: A case study. IEEE Transactions on Electronics Packaging Manufacturing, 29(3), 150-162. Hosseininezhad, S. J., Salhi, S., Jabalameli, M. S. (2015). A cross entropy-based heuristic for the capacitated multi-source weber problem with facility fixed cost. Computers Industrial Engineering, 83, 151-158. Huang, K., Kanaroglou, P., Zhang, X. (2016). The design of electric vehicle charging network. Transportation Research Part D: Transport and Environment, 49, 1-17. Huang, P., Ma, Z., Xiao, L., Sun, Y. (2019). Geographic Information System-assisted optimal design of renewable powered electric vehicle charging stations in high-density cities. Applied Energy, 255, 113855. IEEE. (2016). Distances in classification. Retrieved from http://www.ieee.ma/uaesb/pdf/distances-in-classification.pdf. IPCC. (2019). The ocean and cryosphere in a changing climate. Retrieved from https://report.ipcc.ch/srocc/pdf/SROCC_SPM_Approved.pdf. Khoei, A. A., Süral, H., Tural, M. K. (2020). Multifacility green Weber problem. Computers Operations Research, 113, 104780. Li, Y., Zhang, P., Wu, Y. (2018). Public recharging infrastructure location strategy for promoting electric vehicles: A bi-level programming approach. Journal of Cleaner Production, 172, 2720-2734. Lin, W.Y., Hsiao, M.C., Wu, P.C., Fu, J. S., Lai, L.W., Lai, H.C.(2020). Analysis of air quality and health cobenefits regarding electric vehicle promotion coupled with power plant emissions. Journal of Cleaner Production, 247, 119152. Luna, T. F., UrionaMaldonado, M., Silva, M. E., Vaz, C. R. (2020). The influence of e-carsharing schemes on electric vehicle adoption and carbon emissions: An emerging economy study. Transportation Research Part D: Transport and Environment, 79, 102226. Luo, Y., Feng, G., Wan, S., Zhang, S., Li, V., Kong, W. (2020). Charging scheduling strategy for different electric vehicles with optimization for convenience of drivers, performance of transport system and distribution network. Energy, 194, 116807. Manzoural Ajdad, S., Torabi, S. A., Eshghi, K. (2012). Single-source capacitated multi-facility weber problem—an iterative two phase heuristic algorithm. Computers Operations Research, 39(7), 1465-1476. Mehrjerdi, H., Hemmati, R. (2019). Electric vehicle charging station with multilevel charging infrastructure and hybrid solar-battery-diesel generation incorporating comfort of drivers. Journal of Energy Storage, 26, 100924. Mehrjerdi, H., Hemmati, R. (2020). Stochastic model for electric vehicle charging station integrated with wind energy. Sustainable Energy Technologies and Assessments, 37, 100577. Murray, A. T., Tong, D. (2007). Coverage optimization in continuous space facility siting. International Journal of Geographical Information Science, 21(7), 757776. Ngatchou, P., Zarei, A., ElSharkawi, A. (2005). Pareto Multi Objective Optimization. In Proceedings of the 13th international conference on, intelligent systems application to power systems (p. 84-91). Nie, Y. M., Ghamami, M. (2013). A corridor-centric approach to planning electric vehicle charging infrastructure. Transportation Research Part B: Methodological, 57, 172-190. Ou, S., Lin, Z., He, X., Przesmitzki, S., Bouchard, J. (2020). Modeling charging infrastructure impact on the electric vehicle market in China. Transportation Research Part D: Transport and Environment, 81, 102248. Realff, M. J., Ammons, J. C., Newton, D. J. (2004). Robust reverse production system design for carpet recycling. Iie Transactions, 36(8), 767-776. RMI. (2014). Pulling back the veil on ev charging station costs. Retrieved from https://rmi.org/pulling-back-veil-ev-charging-station-costs/. Shareef, H., Islam, M. M., Mohamed, A. (2016). A review of the stage-of-theart charging technologies, placement methodologies, and impacts of electric vehicles. Renewable and Sustainable Energy Reviews, 64, 403-420. UNEP. (n.d.). Why does transport matter? Retrieved from https://www.unenvironment.org/explore-topics/transport/why-does-transport-matter. WHO. (2016). Ambient air pollution: A global assessment of exposure and burden of disease. Retrieved from https://apps.who.int/iris/bitstream/handle/10665/250141/9789241511353-eng.pdf. Zhang, S., Wang, H., Zhang, Y., Li, Y., Li, Y. (2019). A novel two-stage location model of charging station considering dynamic distribution of electric taxis. Sustainable Cities and Society, 51, 101752. Zheng, J., Sun, X., Jia, L., Zhou, Y. (2020). Electric passenger vehicles sales and carbon dioxide emission reduction potential in China’s leading markets. Journal of Cleaner Production, 243, 118607. Zhu, Z.H., Gao, Z.Y., Zheng, J.F., Du, H.M. (2016). Charging station location problem of plug-in electric vehicles. Journal of Transport Geography, 52, 11-22. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15513 | - |
| dc.description.abstract | 電動汽車的普及有助於落實低汙染、環保且共生共榮的運輸環境,然而充電基礎設施的不足和分布不均,讓電動汽車的發展窒礙難行。本研究考慮都市型態地區及燃油車主的排斥心理,將可行的實際道路結合既有停車場位置,建模為連續的點線段空間(Point and line segment space),在滿足現有電動汽車需求的情況下,最小化總建設成本及最小化總體燃油車主和電動車主所減少的利益,並根據車主距離容忍度和充電需求量的變動劃分不同情境,建立多目標混整數規劃(Multi-objective mixed integer programming)的穩健最佳化模型(Robust optimization model),透過最小化兩目標函數的最大偏差,在點線段空間中權衡兩個目標面向並求解穩健柏拉圖最適(Robust pareto optimality),給出適當的電動汽車充電站佈署規劃。 | zh_TW |
| dc.description.abstract | The promotion of electric vehicles has become the key measure to reduce air pollution. However, the shortage and uneven distribution of charging stations hinder the adoption of electric vehicles. This paper determines the optimal charging stations deployment to satisfy charging demands in an urban style city. Parking lots and curb parking space are two types of candidates for charging stations. The aim of the proposed model is to minimize the total construction cost and to minimize the benefit reduction to drivers in a psychological aspect. A case study is conducted to demonstrate the effectiveness of the proposed model. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T17:41:27Z (GMT). No. of bitstreams: 1 U0001-1107202015143500.pdf: 3694194 bytes, checksum: 31b35d90ffe17414e841d82eabc80c74 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員審定書. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i 誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ii 摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv 圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .vi 第1 章緒論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 第2 章文獻回顧. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1 離散型選點. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 連續型選點. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 第3 章研究方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 3.1 問題描述. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.2 道路與需求定義方法. . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.3 多目標混整數規劃模型. . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.4 多目標規劃求解方法及柏拉圖最適. . . . . . . . . . . . . . . . . . . 17 3.5 道路充電站建設個數優化機制. . . . . . . . . . . . . . . . . . . . . . 19 3.6 基於情境的多目標穩健最佳化. . . . . . . . . . . . . . . . . . . . . . 20 第4 章案例研究. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.1 參數設置. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.2 結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.3 敏感度分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 第5 章結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40 參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41 | |
| dc.language.iso | zh-TW | |
| dc.subject | 柏拉圖最適 | zh_TW |
| dc.subject | 電動汽車 | zh_TW |
| dc.subject | 充電站 | zh_TW |
| dc.subject | 多目標混整數規劃 | zh_TW |
| dc.subject | Electric vehicle | en |
| dc.subject | Pareto optimality | en |
| dc.subject | Multi-objective mixed integer programming | en |
| dc.subject | Charging station | en |
| dc.title | 在點線段空間中最佳化電動汽車充電站佈署 | zh_TW |
| dc.title | Optimal electric vehicle charging stations deployment in point and line segment space | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃奎隆(Kwei-Long Huang),藍俊宏(Jakey Blue),陳文智(Wen-Chih Chen) | |
| dc.subject.keyword | 電動汽車,充電站,多目標混整數規劃,柏拉圖最適, | zh_TW |
| dc.subject.keyword | Electric vehicle,Charging station,Multi-objective mixed integer programming,Pareto optimality, | en |
| dc.relation.page | 46 | |
| dc.identifier.doi | 10.6342/NTU202001442 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-07-13 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工業工程學研究所 | zh_TW |
| 顯示於系所單位: | 工業工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1107202015143500.pdf 未授權公開取用 | 3.61 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
