請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15508
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊宏智(Hong-Tsu Young) | |
dc.contributor.author | Wen-Ya Lin | en |
dc.contributor.author | 林温雅 | zh_TW |
dc.date.accessioned | 2021-06-07T17:41:23Z | - |
dc.date.copyright | 2020-07-16 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-07-13 | |
dc.identifier.citation | [1] 衛福部統計處, '108年國人死因統計結果,' 2020. [Online]. https://www.mohw.gov.tw/cp-16-54482-1.html. [2] 劉嘉韻, '揪早期肺癌 低劑量斷層掃描有效,' 2019. [Online]. https://health.udn.com/health/story/6024/3706449. [3] 張桂榕, '健檢時發現肺結節 就是罹患肺癌嗎?,' 2019. [Online]. https://health.businessweekly.com.tw/AArticle.aspx?id=ARTL000144806. [4] National Lung Screening Trial Research Team et al., 'Reduced lung-cancer mortality with low-dose computed tomographic screening,' The New England journal of medicine, vol. 365, no. 5, pp. 395-409, 2011. [5] 台灣肺癌學會, '臨床試驗『以低劑量電腦斷層掃描篩檢台灣不吸菸肺癌高危險群之研究』,' 2018. [Online]. http://tlcs.org.tw/secretariatn_notice_article.php?the_no=czoyOiI1NiI7. [6] 梁雲芳, '發現肺結節,代表有肺腺癌?,' 2019. [Online]. https://www.femh.org.tw/research/news_detail.aspx?NewsNo=10635 Class=1. [7] Phillip M. Boiselle, MD, 'Computed Tomography Screening for Lung Cancer,' JAMA, vol. 309, no. 11, pp. 1163-1170, 2013. [8] 臺中榮民總醫院, '低劑量電腦斷層肺癌篩檢,' 2019. [Online]. http://www.vghtc.gov.tw/UnitPage/RowViewDetail?WebRowsID=7745870f-fcf4-4311-8222-4be8d4563c65 UnitID=a36eccff-6bd4-424e-8837-2831220a848d CompanyID=e8e0488e-54a0-44bf-b10c-d029c423f6e7 UnitDefaultTemplate=1. [9] 蘇一峰, '千萬不要以為 'X光正常就等於沒有肺癌!',' 2016. [Online]. http://tvgh-suvy.blogspot.com/2016/06/udn.html. [10] 聯合報, '低劑量斷層掃描 揪肺癌更有力,' 2015. [Online]. https://health.udn.com/health/story/6024/990631. [11] National Lung Screening Trial Research Team, Aberle DR, Adams AM, et al., 'Reduced Lung-Cancer Mortality With Low-Dose Computed Tomographic Screening,' N Engl J Med., vol. 365, no. 5, pp. 395-409, 2011. [12] A. C. o. Radiology, 'Lung-RADS Version 1.0 Assess-ment Categories,' 2014. [Online]. https://www.acr.org/-/media/ACR/Files/RADS/Lung-RADS/LungRADS_AssessmentCategories.pdf. [13] McKee BJ, Regis SM, McKee AB, Flacke S, Wald C., 'Performance of ACR Lung-RADS in a Clinical CT Lung Screening Program,' J Am Coll Radiol., vol. 12, no. 3, pp. 273-276, 2015. [14] 葉俞君 and 陳志道, '低劑量電腦斷層於肺癌篩檢之標準化報告及處置,' 家庭醫學與基層醫療, vol. 31, no. 6, pp. 198-204, 2016. [15] ACR (American College of Radiology), 'Lung CT Screening Reporting Data System (Lung-RADS),' [Online]. https://www.acr.org/Clinical-Resources/Reporting-and-Data-Systems/Lung-Rads. [16] 高云姝 周洁 潘军 于观贞 梁军, '人工智能技术在肺部肿瘤中的研究现状和应用前景,' Academic Journal of Second Military Medical University, pp. 834-839, 2018. [17] Setio AAA, Traverso A, de Bel T, et al., 'Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: The LUNA16 challenge.,' Medical image analysis, vol. 42, pp. 1-13, 2017. [18] 'Lung Nodule Amalysis 2016,' [Online]. https://luna16.grand-challenge.org/Home/. [19] S. Wang et al., 'A multi-view deep convolutional neural networks for lung nodule segmentation,' 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1752-1755, 2017. [20] Aresta, G., Jacobs, C., Araújo, T. et al., 'iW-Net: an automatic and minimalistic interactive lung nodule segmentation deep network,' Scientific Reports, vol. 9, no. 11591, 2019. [21] Li, Shulong et al. , 'Predicting lung nodule malignancies by combining deep convolutional neural network and handcrafted features,' Physics in medicine and biology, Vols. 64,17, no. 175012, 2019. [22] Tu, Xiaoguang; Xie, Mei; Gao, Jingjing; Ma, Zheng; Chen, Daiqiang; Wang, Qingfeng; Finlayson, Samuel G.; Ou, Yangming; Cheng, Jie-Zhi;, 'Automatic Categorization and Scoring of Solid, Part-Solid and Non-Solid Pulmonary Nodules in CT Images with Convolutional Neural Network,' 2017. [23] Kang SK, Garry K, Chung R, et al., 'Natural Language Processing for Identification of Incidental Pulmonary Nodules in Radiology Reports,' Journal of the American College of Radiology : JACR, vol. 16, no. 11, pp. 1587-1594, 2019. [24] Beyer, Sebastian E et al., 'Automatic Lung-RADS™ classification with a natural language processing system,' Journal of thoracic disease, vol. 9, no. 9, pp. 3114-3122, 2017. [25] C. A. Ferreira, G. Aresta, A. Cunha, A. M. Mendonça and A. Campilho, 'Wide Residual Network for Lung-Rads™ Screening Referral,' 2019 IEEE 6th Portuguese Meeting on Bioengineering (ENBENG), pp. 1-4, 2019. [26] Hao Tang, Chupeng Zhang, and Xiaohui Xie, 'NoduleNet: Decoupled False Positive Reduction for Pulmonary Nodule Detection and Segmentation,' MICCAI, 25 7 2019. [27] Lambin P, Rios-Velazquez E, Leijenaar R, et al, 'Radiomics: extracting more information from medical images using advanced feature analysis,' Eur J Cancer, vol. 48, no. 4, pp. 441-446, 2012. [28] Wikipedia, 'Omics,' [Online]. https://en.wikipedia.org/wiki/Omics. [29] Zwanenburg, Alex et al., 'Image biomarker standardisation initiative,' vol. 295, pp. 328-338, 2020. [30] van Griethuysen, Joost J M et al., 'Computational Radiomics System to Decode the Radiographic Phenotype.,' Cancer research, vol. 77, no. 21, pp. e104-e107, 2017. [31] 行銷資料科學, '主成分分析的概念及應用,' 23 8 2019. [Online]. https://medium.com/marketingdatascience/%E4%B8%BB%E6%88%90%E5%88%86%E5%88%86%E6%9E%90%E7%9A%84%E6%A6%82%E5%BF%B5%E5%8F%8A%E6%87%89%E7%94%A8-9807aac9c483. [32] 徐阡晏, and 楊宏智, '以綜合感測器為基礎之小風扇損壞初期快速檢測系統,' 碩士論文, 國立臺灣大學, 2019. [33] 蔡乙陞, and 李貫銘, “銑削加工振動訊號應用於刀具磨耗監控之研究,” 碩士論文, 臺灣大學, 2019. [34] Chen, Junfei et al., 'A Machine Learning Ensemble Approach Based on Random Forest and Radial Basis Function Neural Network for Risk Evaluation of Regional Flood Disaster: A Case Study of the Yangtze River Delta, China.,' International journal of environmental research and public health, vol. 17, no. 1, 2019. [35] Pocket Dentistry, 'Other Imaging Modalities,' [Online]. https://pocketdentistry.com/14-other-imaging-modalities/. [36] NVIDIA, 'GEFORCE GTX 1060,' [Online]. https://www.nvidia.com/zh-tw/geforce/products/10series/geforce-gtx-1060/. [37] M. SIRSAT - Data Science and Machine Learning, 'What is Confusion Matrix and Advanced Classification Metrics?,' 2019. [Online]. https://manisha-sirsat.blogspot.com/2019/04/confusion-matrix.html. [38] Alex Mitrani, 'ROC and AUC for Categorical Model Evaluation,' 2019. [Online]. https://medium.com/swlh/roc-and-auc-for-categorical-model-evaluation-486dc1c267e4. [39] Radiology Rounds, 'Image Reconstruction Planes,' [Online]. https://www.ipfradiologyrounds.com/hrct-primer/image-reconstruction/. [40] 李慶雨 等, '醫療器械的可用性工程淺析,' 中國醫療設備, vol. 32, no. 2, 2017. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15508 | - |
dc.description.abstract | 根據衛福部癌症死亡人數資料顯示,肺癌已蟬聯10年死亡率冠軍,是當前最致命的癌症之一,由於早期篩檢不易,將近7成屬於晚期患者不容易治療,再加上肺癌腫瘤容易轉移的特性,死亡率一直居高不下。近年許多早期篩檢方法被提出,包括使用低劑量電腦斷層 (Low Dose Computed Tomography, LDCT) 取代傳統X光片進行肺癌篩檢,與提出相應的肺部影像報告系統如Lung-RADS (Lung CT Screening Reporting and Data System) 準則以提供標準化的肺癌篩檢診斷流程。然而低劑量電腦斷層影像判讀是相當費時之工作,在可預見的未來肺癌篩檢將持續普及,屆時將有更大量的影像需由醫生判讀,若能引進自動化判讀技術,將可大幅降低判讀人力成本。過往研究中,除了探討判讀流程中的各步驟自動化算法外,也逐漸發展基於肺部影像報告系統之算法整合研究。 本研究提出一基於Lung-RADS準則之肺癌輔助診斷演算流程,旨在大幅節省醫生判讀低劑量電腦斷層影像所需時間。演算流程使用機器學習、影像組學等方法達成自動化。訓練出之模型能直接從電腦斷層影像中偵測肺結節位置並對之進行分割,並可警示類別有爭議之結節,相比過往研究更符合實務診斷邏輯。最後開發一可實務使用之系統,對系統進行基本的可用性測試,將系統演示給相關專業醫師測試後搜集反應意見,提供未來推動產品化方向之參考。 | zh_TW |
dc.description.abstract | According to the data of the Ministry of Health and Welfare, lung cancer has the highest mortality rate for past 10 years, and is one of the deadliest cancers at present. Since early screening is not easy for lung cancer, nearly 70% of patient belongs to advance stage when they were diagnosed, which is hard to be treated. Furthermore, lung cancer tumors are easy to metastasize, cause the mortality rate remains very high. In recent years, many early screening methods have been proposed, including the use of Low Dose Computed Tomography (LDCT) instead of traditional X-ray films for lung cancer screening, and the corresponding screening reporting system such as Lung-RADS (Lung CT Screening Reporting and Data System) guidelines had been proposed to standardize LDCT lung cancer screening diagnostic procedures. However, the interpretation of LDCT images is quite time-consuming. In the foreseeable future, lung cancer screening will continue to be popularized. By then, a larger number of images will need to be viewed by doctors. If automated screening technology can be introduced, the cost of screening manpower can be greatly reduced. In previous studies, in addition to discussing the automatic algorithm of each step in the screening process, algorithm integration study based on lung imaging reporting system has also been gradually developed. In this study, an automatic lung cancer screening process based on the Lung-RADS guidelines has been proposed, which aims to significantly save the time of doctors. The automatic screening process is automated by using machine learning, radiomics and some other methods. The trained model can directly detect and segment pulmonary nodules from CT images, and can warn the doctors about the nodules with controversial categories, which is more in line with practical diagnosis logic than previous studies. Afterward, a practical system which ensemble the whole process is developed as a software application. At last, basic usability test is performed on the software, and the software was demonstrated to professional doctors and we collected their opinions, providing a reference for future productization. | en |
dc.description.provenance | Made available in DSpace on 2021-06-07T17:41:23Z (GMT). No. of bitstreams: 1 U0001-1307202014334600.pdf: 8147871 bytes, checksum: 8003e5ad4d9e0e482e89b403fb83e240 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 口試委員會審定書 ii 誌謝 iii 摘要 iv Abstract v 目錄 vii 圖目錄 x 表目錄 xii 第1章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 2 1.3 文獻回顧 3 1.3.1 肺結節 (Lung Nodule) 3 1.3.2 低劑量電腦斷層 (Low Dose CT) 4 1.3.3 Lung-RADS 5 1.3.4 LIDC-IDRI資料集 8 1.3.5 肺結節AI自動化診斷 9 1.4 論文架構 10 第2章 研究方法 11 2.1 肺結節自動化篩檢流程 11 2.2 肺結節AI偵測與分割 12 2.2.1 NoduleNet 12 2.3 肺結節AI分類 14 2.3.1 影像組學 (Radiomics) 14 2.3.2 主成分分析 (Principal Component Analysis, PCA) 17 2.3.3 支持向量機 (Support Vector Machine, SVM) 18 2.3.4 隨機森林 (Random Forest, RF) 19 2.3.5 支援向量回歸 (Support Vector Regression, SVR) 21 2.4 Lung-RADS肺結節輔助診斷系統 22 2.4.1 演算法整合 22 2.4.2 系統設計 23 2.5 小結 24 第3章 肺結節偵測與分割模型 25 3.1 實驗資料 25 3.2 模型建立 26 3.3 模型評估與比較 28 3.4 小結 31 第4章 肺結節分類模型 32 4.1 實驗資料 32 4.2 模型建立 33 4.2.1 特徵擷取 33 4.2.2 特徵選取與分類 36 4.2.3 分類模型探討 41 4.2.4 回歸模型建立 43 4.3 模型評估與比較 49 4.4 小結 51 第5章 Lung-RADS肺結節輔助診斷系統 52 5.1 系統介紹 52 5.2 系統規格評估 56 5.3 可用性測試 58 5.4 小結 61 第6章 結論與未來展望 62 6.1 結論 62 6.2 未來展望 63 參考文獻 64 | |
dc.language.iso | zh-TW | |
dc.title | 建置Lung-RADS肺結節AI輔助診斷系統之研究 | zh_TW |
dc.title | The Study of Building AI Pulmonary Nodule CADx System Based on Lung-RADS | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 梁嘉德(JA-DER LIANG),林上智(Shang-Chih Lin),楊炳德 | |
dc.subject.keyword | Lung-RADS,肺癌篩檢,肺結節,機器學習,影像組學, | zh_TW |
dc.subject.keyword | Lung-RADS,Lung Cancer Screening,Lung Nodules,Machine Learning,Radiomics, | en |
dc.relation.page | 68 | |
dc.identifier.doi | 10.6342/NTU202001470 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2020-07-13 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1307202014334600.pdf 目前未授權公開取用 | 7.96 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。