Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15502
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李世光(Chi-Kung Lee)
dc.contributor.authorChun-Hsiung Wangen
dc.contributor.author王俊雄zh_TW
dc.date.accessioned2021-06-07T17:41:19Z-
dc.date.copyright2020-08-13
dc.date.issued2020
dc.date.submitted2020-08-03
dc.identifier.citation[1] A. Graps, 'An Introduction to Wavelets,' (in English), IEEE Comput. Sci. Eng., vol. 2, no. 2, pp. 50-61, Summer 1995, doi: 10.1109/99.388960.
[2] C.-H. Wang et al., 'Photonic Doppler velocimetry for high-speed fragment generator measurements,' Opt. Express, vol. 28, no. 3, pp. 3864-3878, 2020.
[3] S. Abrate, Impact on composite structures. Cambridge, England: Cambridge University Press, 2005.
[4] S. R. Reid and G. Zhou, Impact behaviour of fibre-reinforced composite materials and structures. Cambridge, England: Woodhead Publishing, 2000.
[5] N. K. Naik, R. Ramasimha, H. Arya, S. V. Prabhu, and N. ShamaRao, 'Impact response and damage tolerance characteristics of glass-carbon/epoxy hybrid composite plates,' (in English), Compos. B. Eng., vol. 32, no. 7, pp. 565-574, 2001, doi: 10.1016/S1359-8368(01)00036-1.
[6] Y. Shi, T. Swait, and C. Soutis, 'Modelling damage evolution in composite laminates subjected to low velocity impact,' (in English), Compos. Struct., vol. 94, no. 9, pp. 2902-2913, Sep 2012, doi: 10.1016/j.compstruct.2012.03.039.
[7] W. Tan, B. G. Falzon, L. N. S. Chiu, and M. Price, 'Predicting low velocity impact damage and Compression-After-Impact (CAI) behaviour of composite laminates,' (in English), Compos. Part A Appl. Sci. Manuf., vol. 71, pp. 212-226, Apr 2015, doi: 10.1016/j.compositesa.2015.01.025.
[8] A. Faggiani and B. G. Falzon, 'Predicting low-velocity impact damage on a stiffened composite panel,' (in English), Compos. Part A Appl. Sci. Manuf., vol. 41, no. 6, pp. 737-749, Jun 2010, doi: 10.1016/j.compositesa.2010.02.005.
[9] S. Feli and M. H. N. Pour, 'An analytical model for composite sandwich panels with honeycomb core subjected to high-velocity impact,' (in English), Compos. B. Eng., vol. 43, no. 5, pp. 2439-2447, Jul 2012, doi: 10.1016/j.compositesb.2011.11.028.
[10] B. H. Gu, 'Analytical modeling for the ballistic perforation of planar plain-woven fabric target by projectile,' (in English), Compos. B. Eng., vol. 34, no. 4, pp. 361-371, 2003, doi: 10.1016/S1359-8368(02)00137-3.
[11] A. K. Bandaru, V. V. Chavan, S. Ahmad, R. Alagirusamy, and N. Bhatnagar, 'Ballistic impact response of Kevlar (R) reinforced thermoplastic composite armors,' (in English), Int. J. Impact Eng., vol. 89, pp. 1-13, Mar. 2016, doi: 10.1016/j.ijimpeng.2015.10.014.
[12] L. Chhabildas, H. Sutherland, and J. Asay, 'A velocity interferometer technique to determine shear‐wave particle velocity in shock‐loaded solids,' J. Appl. Phys., vol. 50, no. 8, pp. 5196-5201, Jul. 1979, doi: 10.1063/1.326657.
[13] O. T. Strand, D. R. Goosman, C. Martinez, T. L. Whitworth, and W. W. Kuhlow, 'Compact system for high-speed velocimetry using heterodyne techniques,' (in English), Rev. Sci. Instrum., vol. 77, no. 8, p. 083108, Aug 2006, doi: 10.1063/1.2336749.
[14] C. Kettenbeil, M. Mello, M. Bischann, and G. Ravichandran, 'Heterodyne transverse velocimetry for pressure-shear plate impact experiments,' (in English), J. Appl. Phys., vol. 123, no. 12, p. 125902, Mar 2018, doi: 10.1063/1.5023007.
[15] D. D. Mallick, M. Zhao, B. T. Bosworth, B. E. Schuster, M. A. Foster, and K. T. Ramesh, 'A Simple Dual-Beam Time-Multiplexed Photon Doppler Velocimeter for Pressure-Shear Plate Impact Experiments,' (in English), Exp. Mech., vol. 59, no. 1, pp. 41-49, Jan 2019, doi: 10.1007/s11340-018-0435-y.
[16] C. R. Johnson, J. W. LaJeunesse, P. A. Sable, A. Dawson, A. Hatzenbihler, and J. P. Borg, 'Photon Doppler velocimetry measurements of transverse surface velocities,' Rev. Sci. Instrum., vol. 89, no. 6, p. 063106, Jun 2018, doi: 10.1063/1.5006178.
[17] B. Zuanetti, T. Wang, and V. Prakash, 'A compact fiber optics-based heterodyne combined normal and transverse displacement interferometer,' Rev. Sci. Instrum., vol. 88, no. 3, p. 033108, Mar 2017, doi: 10.1063/1.4978340.
[18] M. Bowden and S. Knowles, 'Optimisation of laser-driven flyer velocity using photonic Doppler velocimetry,' in Optical Technologies for Arming, Safing, Fuzing, and Firing V, San Diego, Aug. 2009, vol. 7434: International Society for Optics and Photonics, p. 743403, doi: 10.1117/12.826246.
[19] K. E. Brown, W. L. Shaw, X. Zheng, and D. D. Dlott, 'Simplified laser-driven flyer plates for shock compression science,' Rev. Sci. Instrum., vol. 83, no. 10, p. 103901, Oct. 2012, doi: 10.1063/1.4754717.
[20] A. A. Banishev, W. L. Shaw, W. P. Bassett, and D. D. Dlott, 'High-speed laser-launched flyer impacts studied with ultrafast photography and velocimetry,' J. Dynamic Behavior Mater., vol. 2, no. 2, pp. 194-206, Feb. 2016, doi: 10.1007/s40870-016-0058-2.
[21] W. P. Bassett, B. P. Johnson, N. K. Neelakantan, K. S. Suslick, and D. D. Dlott, 'Shock initiation of explosives: High temperature hot spots explained,' (in English), Appl. Phys. Lett., vol. 111, no. 6, p. 061902, Aug. 2017, doi: 10.1063/1.4985593.
[22] H. M. Wang and Y. L. Wang, 'Laser-driven flyer application in thin film dissimilar materials welding and spalling,' (in English), Opt. Laser Eng., vol. 97, pp. 1-8, Oct 2017, doi: 10.1016/j.optlaseng.2017.04.016.
[23] J. Kucera, A. C. Anastacio, P. Nesvadba, M. Kunzel, J. Selesovsky, and J. Pachman, 'Experimental Determination of Acceleration of Explosively Driven Metal by Photonic Doppler Velocimetry in the Process of Explosive Welding,' (in English), Propellants Explos. Pyrotech., vol. 43, no. 5, pp. 479-487, May 2018, doi: 10.1002/prep.201700275.
[24] A. V. Andriyash et al., 'Application of photon Doppler velocimetry for characterization of ejecta from shock-loaded samples,' (in English), J. Appl. Phys., vol. 123, no. 24, p. 243102, Jun. 2018, doi: 10.1063/1.5029958.
[25] S. Liu, D. Wang, T. Li, G. Chen, Z. Li, and Q. Peng, 'Analysis of photonic Doppler velocimetry data based on the continuous wavelet transform,' Rev. Sci. Instrum., vol. 82, no. 2, p. 023103, Feb 2011, doi: 10.1063/1.3534011.
[26] T. P. Le and P. Argoul, 'Continuous wavelet transform for modal identification using free decay response,' (in English), J. Sound Vib., vol. 277, no. 1-2, pp. 73-100, Oct 2004, doi: 10.1016/j.jsv.2003.08.049.
[27] C. K. Lee, W. J. Wu, G. Y. Wu, C. L. Li, Z. D. Chen, and J. Y. Chen, 'Design and performance verification of a microscope-based interferometer for miniature-specimen metrology,' (in English), Opt. Eng., vol. 44, no. 8, p. 085602, Aug 2005, doi: Artn 08560210.1117/1.2010147.
[28] S. S. Gorthi and P. Rastogi, 'Fringe projection techniques: whither we are?,' Opt. Laser Eng., vol. 48, no. 2, pp. 133-140, 2010.
[29] M. Servin, J. L. Marroquin, and F. J. Cuevas, 'Demodulation of a single interferogram by use of a two-dimensional regularized phase-tracking technique,' (in English), Appl. Opt., vol. 36, no. 19, pp. 4540-8, Jul 1997, doi: 10.1364/ao.36.004540.
[30] C. Quan, C. J. Tay, X. Y. He, X. Kang, and H. M. Shang, 'Microscopic surface contouring by fringe projection method,' (in English), Opt. Laser Technol., vol. 34, no. 7, pp. 547-552, Oct 2002, doi: 10.1016/S0030-3992(02)00070-1.
[31] H. N. Yen, D. M. Tsai, and J. Y. Yang, 'Full-field 3-D measurement of solder pastes using LCD-based phase shifting techniques,' (in English), IEEE Trans. Electron. Packag. Manuf., vol. 29, no. 1, pp. 50-57, Jan 2006, doi: 10.1109/Tepm.2005.862632.
[32] Q. Zhang and X. Su, 'High-speed optical measurement for the drumhead vibration,' Opt. Express, vol. 13, no. 8, pp. 3110-6, Apr 2005, doi: 10.1364/opex.13.003110.
[33] L. C. Chen and C. C. Huang, 'Miniaturized 3D surface profilometer using digital fringe projection,' (in English), Meas. Sci. Technol., vol. 16, no. 5, pp. 1061-1068, May. 2005, doi: 10.1088/0957-0233/16/5/003.
[34] Y. Fu and Q. Luo, 'Fringe projection profilometry based on a novel phase shift method,' Opt. Express, vol. 19, no. 22, pp. 21739-47, Oct 2011, doi: 10.1364/OE.19.021739.
[35] H. Guo, H. He, and M. Chen, 'Gamma correction for digital fringe projection profilometry,' Appl. Opt., vol. 43, no. 14, pp. 2906-14, May 2004, doi: 10.1364/ao.43.002906.
[36] H. Takasaki, 'Moire topography,' Appl. Opt., vol. 9, no. 6, pp. 1467-72, Jun 1970, doi: 10.1364/AO.9.001467.
[37] D. M. Meadows, W. O. Johnson, and J. B. Allen, 'Generation of surface contours by moire patterns,' Appl. Opt., vol. 9, no. 4, pp. 942-7, Apr 1970, doi: 10.1364/AO.9.000942.
[38] Q. Kemao, 'Two-dimensional windowed Fourier transform for fringe pattern analysis: Principles, applications and implementations,' (in English), Opt. Laser Eng., vol. 45, no. 2, pp. 304-317, Feb 2007, doi: 10.1016/j.optlaseng.2005.10.012.
[39] W. Gao, N. T. T. Huyen, H. S. Loi, and Q. Kemao, 'Real-time 2D parallel windowed Fourier transform for fringe pattern analysis using Graphics Processing Unit,' Opt. Express, vol. 17, no. 25, pp. 23147-23152, 2009.
[40] J.-P. Antoine, R. Murenzi, P. Vandergheynst, and S. T. Ali, Two-dimensional wavelets and their relatives. Cambridge, England: Cambridge University Press, 2008.
[41] M. Farge, 'Wavelet Transforms and Their Applications to Turbulence,' (in English), Annu. Rev. Fluid Mech., vol. 24, no. 1, pp. 395-457, 1992, doi: 10.1146/annurev.fl.24.010192.002143.
[42] J. Ma, 'Two-dimensional Continuous Wavelet Transform in Fringe Pattern Analysis,' Doctoral dissertation, Catholic University of America, Washington, DC, US, 2013.
[43] N. Delprat, B. Escudie, P. Guillemain, R. Kronlandmartinet, P. Tchamitchian, and B. Torresani, 'Asymptotic Wavelet and Gabor Analysis - Extraction of Instantaneous Frequencies,' (in English), IEEE Trans. Inf. Theory, vol. 38, no. 2, pp. 644-664, Mar 1992, doi: 10.1109/18.119728.
[44] C. Gonnet and B. Torresani, 'Local frequency analysis with two-dimensional wavelet transform,' Signal Process., vol. 37, no. 3, pp. 389-404, Jun. 1994, doi: 10.1016/0165-1684(94)90007-8
[45] S. Mallat, A Wavelet Tour of Signal Processing: The Sparse Way. Elsevier Science, 2008.
[46] R. A. Carmona, W. L. Hwang, and B. Torrésani, 'Characterization of signals by the ridges of their wavelet transforms,' IEEE Trans. Signal Process., vol. 45, no. 10, pp. 2586-2590, 1997.
[47] H. Liu, A. N. Cartwright, and C. Basaran, 'Moire interferogram phase extraction: a ridge detection algorithm for continuous wavelet transforms,' Appl. Opt., vol. 43, no. 4, pp. 850-857, 2004.
[48] H. Niu, C. Quan, and C. Tay, 'Phase retrieval of speckle fringe pattern with carriers using 2D wavelet transform,' Opt. Laser Eng., vol. 47, no. 12, pp. 1334-1339, 2009.
[49] J. Ma, Z. Wang, B. Pan, T. Hoang, M. Vo, and L. Luu, 'Two-dimensional continuous wavelet transform for phase determination of complex interferograms,' Appl. Opt., vol. 50, no. 16, pp. 2425-2430, 2011.
[50] 'Cardiac Muscle and Electrical Activity.' OER services. https://courses.lumenlearning.com/suny-ap2/chapter/cardiac-muscle-and-electrical-activity/ (accessed 06/18, 2020).
[51] J. M. J. Huttunen, L. Karkkainen, and H. Lindholm, 'Pulse transit time estimation of aortic pulse wave velocity and blood pressure using machine learning and simulated training data,' (in English), PLoS Comput. Biol., vol. 15, no. 8, p. e1007259, Aug 2019, doi: 10.1371/journal.pcbi.1007259.
[52] '# 44 The circulatory system - blood vessels.' Biology Note for A level. http://biology4alevel.blogspot.com/2014/11/43-circulatory-system-blood-vessels.html (accessed 06/19, 2020).
[53] S. A. Esper and M. R. Pinsky, 'Arterial waveform analysis,' Best Pract. Res. Clin. Anaesthesiol, vol. 28, no. 4, pp. 363-80, Dec 2014, doi: 10.1016/j.bpa.2014.08.002.
[54] J. E. Davies et al., 'Importance of the aortic reservoir in determining the shape of the arterial pressure waveform–the forgotten lessons of Frank,' Artery Research, vol. 1, no. 2, pp. 40-45, Sep. 2007, doi: 10.1016/j.artres.2007.08.001.
[55] A. Yartsev. 'Normal arterial line waveforms.' Deranged Physiology. https://derangedphysiology.com/main/cicm-primary-exam/required-reading/cardiovascular-system/Chapter%20760/normal-arterial-line-waveforms (accessed 06/19, 2020).
[56] L. Peter, N. Noury, and M. Cerny, 'A review of methods for non-invasive and continuous blood pressure monitoring: Pulse transit time method is promising?,' IRBM, vol. 35, no. 5, pp. 271-282, Oct. 2014, doi: 10.1016/j.irbm.2014.07.002.
[57] W. A. Brzezinski, 'Blood Pressure,' in Clinical Methods: The History, Physical, and Laboratory Examinations, 3 ed. Boston, US: Butterworths, 1990.
[58] J. Mayet and A. Hughes, 'Cardiac and vascular pathophysiology in hypertension,' Heart, vol. 89, no. 9, pp. 1104-9, Sep 2003, doi: 10.1136/heart.89.9.1104.
[59] T. Tamura, Y. Maeda, M. Sekine, and M. Yoshida, 'Wearable photoplethysmographic sensors—past and present,' Electronics, vol. 3, no. 2, pp. 282-302, Apr. 2014, doi: 10.3390/electronics3020282.
[60] S. Wilkes, G. Stansby, A. Sims, S. Haining, and J. Allen, 'Peripheral arterial disease: diagnostic challenges and how photoplethysmography may help,' (in English), Brit. J. Gen. Pract., vol. 65, no. 635, pp. 323-4, Jun 2015, doi: 10.3399/bjgp15X685489.
[61] R. D. Miller, L. I. Eriksson, L. A. Fleisher, J. P. Wiener-Kronish, N. H. Cohen, and W. L. Young, Miller's anesthesia e-book. Elsevier Health Sciences, 2014.
[62] K. A. Nerenberg et al., 'Hypertension Canada's 2018 Guidelines for Diagnosis, Risk Assessment, Prevention, and Treatment of Hypertension in Adults and Children,' Can. J. Cardiol., vol. 34, no. 5, pp. 506-525, May 2018, doi: 10.1016/j.cjca.2018.02.022.
[63] J. Fortin et al., 'Continuous non-invasive blood pressure monitoring using concentrically interlocking control loops,' (in English), Comput. Biol. Med., vol. 36, no. 9, pp. 941-57, Sep 2006, doi: 10.1016/j.compbiomed.2005.04.003.
[64] J. S. Gravenstein, D. A. Paulus, J. Feldman, and G. McLaughlin, 'Tissue hypoxia distal to a Penaz finger blood pressure cuff,' J. Clin. Monit. Comput., vol. 1, no. 2, pp. 120-5, Apr 1985, doi: 10.1007/BF02832199.
[65] D. A. McDonald, W. W. Nichols, and M. F. O'Rourke, McDonald's Blood Flow in Arteries: Theoretic, Experimental and Clinical Principles. Edward Arnold, 1990.
[66] D. J. Hughes, C. F. Babbs, L. A. Geddes, and J. D. Bourland, 'Measurements of Young's modulus of elasticity of the canine aorta with ultrasound,' Ultrason. Imaging, vol. 1, no. 4, pp. 356-67, Oct 1979, doi: 10.1177/016173467900100406.
[67] R. De Boer, 'Beat-to-beat blood pressure fluctuations and heart rate variability in man,' Doctoral Dissertation, Utrecht (the Netherlands): Elinkwijk, Universiteit te Amsterdam, Amsterdam, 1985.
[68] C. Poon and Y. Zhang, 'Cuff-less and noninvasive measurements of arterial blood pressure by pulse transit time,' in IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, 2005: IEEE, pp. 5877-5880, doi: 10.1109/IEMBS.2005.1615827.
[69] R. Mukkamala et al., 'Toward Ubiquitous Blood Pressure Monitoring via Pulse Transit Time: Theory and Practice,' IEEE. Trans. Biomed. Eng., vol. 62, no. 8, pp. 1879-901, Aug 2015, doi: 10.1109/TBME.2015.2441951.
[70] H. Akima, 'A method of bivariate interpolation and smooth surface fitting based on local procedures,' Commun. ACM, vol. 17, no. 1, pp. 18-20, Jan. 1974, doi: 10.1145/360767.360779.
[71] H. H. Asada, P. Shaltis, A. Reisner, S. Rhee, and R. C. Hutchinson, 'Mobile monitoring with wearable photoplethysmographic biosensors,' IEEE Eng. Med. Biol. Mag., vol. 22, no. 3, pp. 28-40, May-June 2003, doi: 10.1109/memb.2003.1213624.
[72] C. Chua and C. Heneghan, 'Continuous blood pressure monitoring using ECG and finger photoplethysmogram,' in International Conference of the IEEE Engineering in Medicine and Biology Society, New York, Aug. 2006: IEEE, pp. 5117-5120, doi: 10.1109/IEMBS.2006.259612.
[73] W. B. Murray and P. A. Foster, 'The peripheral pulse wave: information overlooked,' J. Clin. Monit. Comput., vol. 12, no. 5, pp. 365-77, Sep 1996, doi: 10.1007/BF02077634.
[74] A. A. Awad et al., 'The relationship between the photoplethysmographic waveform and systemic vascular resistance,' J. Clin. Monit. Comput., vol. 21, no. 6, pp. 365-372, Oct. 2007, doi: 10.1007/s10877-007-9097-5.
[75] L. Wang, E. Pickwell-Macpherson, Y. Liang, and Y. T. Zhang, 'Noninvasive cardiac output estimation using a novel photoplethysmogram index,' in Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, Sep. 2009: IEEE, pp. 1746-1749, doi: 10.1109/IEMBS.2009.5333091.
[76] W. M. Jubadi and S. F. A. M. Sahak, 'Heartbeat monitoring alert via SMS,' in IEEE Symposium on Industrial Electronics Applications, Kuala Lumpur, Oct. 2009, vol. 1: IEEE, pp. 1-5, doi: 10.1109/ISIEA.2009.5356491.
[77] T. H. Fu, S. H. Liu, and K. T. Tang, 'Heart Rate Extraction from Photoplethysmogram Waveform Using Wavelet Multi-resolution Analysis,' (in English), J. Med. Biol. Eng., vol. 28, no. 4, pp. 229-232, 2008.
[78] S. P. Linder, S. M. Wendelken, E. Wei, and S. P. McGrath, 'Using the morphology of photoplethysmogram peaks to detect changes in posture,' J. Clin. Monit. Comput., vol. 20, no. 3, pp. 151-158, 2006.
[79] C. Poon, X. Teng, Y. Wong, C. Zhang, and Y. Zhang, 'Changes in the photoplethysmogram waveform after exercise,' in IEEE/EMBS International Summer School on Medical Devices and Biosensors, Hong Kong, Jun. 2004: IEEE, pp. 115-118, doi: 10.1109/ISSMD.2004.1689576.
[80] S. Lu et al., 'Can photoplethysmography variability serve as an alternative approach to obtain heart rate variability information?,' J. Clin. Monit. Comput., vol. 22, no. 1, pp. 23-29, 2008.
[81] K. Takazawa et al., 'Assessment of vasoactive agents and vascular aging by the second derivative of photoplethysmogram waveform,' Hypertension, vol. 32, no. 2, pp. 365-70, Aug 1998, doi: 10.1161/01.hyp.32.2.365.
[82] U. Rubins, A. Grabovskis, J. Grube, and I. Kukulis, 'Photoplethysmography analysis of artery properties in patients with cardiovascular diseases,' in 14th Nordic-Baltic Conference on Biomedical Engineering and Medical Physics, Berlin, Jun. 2008: Springer, pp. 319-322, doi: 10.1007/978-3-540-69367-3_85.
[83] M. Elgendi, 'On the analysis of fingertip photoplethysmogram signals,' Curr. Cardiol. Rev., vol. 8, no. 1, pp. 14-25, Feb 2012, doi: 10.2174/157340312801215782.
[84] S. C. Millasseau, R. P. Kelly, J. M. Ritter, and P. J. Chowienczyk, 'Determination of age-related increases in large artery stiffness by digital pulse contour analysis,' Clin. Sci., vol. 103, no. 4, pp. 371-7, Oct 2002, doi: 10.1042/cs1030371.
[85] S. R. Alty, N. Angarita-Jaimes, S. C. Millasseau, and P. J. Chowienczyk, 'Predicting arterial stiffness from the digital volume pulse waveform,' IEEE. Trans. Biomed. Eng., vol. 54, no. 12, pp. 2268-75, Dec. 2007, doi: 10.1109/tbme.2007.897805.
[86] N. Westerhof, J. W. Lankhaar, and B. E. Westerhof, 'The arterial Windkessel,' Med. Biol. Eng. Comput., vol. 47, no. 2, pp. 131-41, Feb 2009, doi: 10.1007/s11517-008-0359-2.
[87] R. H. Thiele and M. E. Durieux, 'Arterial waveform analysis for the anesthesiologist: past, present, and future concepts,' Anesth. Analg., vol. 113, no. 4, pp. 766-76, Oct 2011, doi: 10.1213/ANE.0b013e31822773ec.
[88] T. M. Nosek, Essentials of Human Physiology. Gold Standard Multimedia Incorporated, 1998.
[89] H. Xiang, Y. Liu, Y. Qin, W. Pan, and M. Yu, 'Calibration of pulse wave transit time method in blood pressure measurement based on the korotkoff sound delay time,' in World Congress on Medical Physics and Biomedical Engineering, Beijing, May 2012: Springer, pp. 426-429, doi: 10.1007/978-3-642-29305-4_113.
[90] M. Y. Wong, C. C. Poon, and Y. T. Zhang, 'An evaluation of the cuffless blood pressure estimation based on pulse transit time technique: a half year study on normotensive subjects,' Cardiovasc. Eng., vol. 9, no. 1, pp. 32-8, Mar 2009, doi: 10.1007/s10558-009-9070-7.
[91] J. Proença, J. Muehlsteff, X. Aubert, and P. Carvalho, 'Is pulse transit time a good indicator of blood pressure changes during short physical exercise in a young population?,' in Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, 2010: IEEE, pp. 598-601, doi: 10.1109/IEMBS.2010.5626627.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15502-
dc.description.abstract小波轉換因具備可調變的頻率解析度、快速的運算效率以及針對瞬時變化的頻率成分敏感度等特性而被廣泛運用。在本論文中,即利用小波轉換本身優異的特性,輔助數項創新型光學量測系統技術的開發,以單點速度量測出發到全域動態訊號量測,包含超高速速度量測儀、基於條紋解相技術的表面輪廓量測、以手腕橈動脈收縮行為觀測為主的生理訊號量測。
首先,本論文基於複合材料在高速碰撞之破壞行為研究之需求下,開發高速噴射碎片產生器及基於光學都卜勒干涉儀架構之超高速速度量測儀。噴射碎片產生器透過不同高電壓施以電橋所產生之電弧爆炸行為,提供在安全的操作情況下達成模擬不同速度範圍之撞擊測試。所開發的超高速度量測儀,以商用波段光纖降低成本,同時達到簡潔的架構、以及達每秒千公尺等級的速度量測需求,搭配小波演算法及自行開發的速度歷程曲線追跡演算法,已成功驗證並且量測數種動能驅動之複材飛行碎片之速度歷程,此噴射碎片產生器具備可更改口徑及可替換不同複合材料之多層結構,可提供各種複合材料在不同撞擊動能的破壞行為測試。
其二,非接觸式並可全域偵測物體高度的量測即時性已在各方面的應用上產生強烈需求,本論文即針對操作於頻譜域的條紋解相演算法進行完整審視,針對量測需求比較窗函數及小波函數差異,並將頻譜轉換因子之於相位計算的操作重新規劃。同時以模擬及實際架設實驗比較不同演算法之優劣特性,並且驗證所提出基於小波的條紋分析演算法,具備高準確性、高紋理還原度以及相對快的運算速度。所開發單張條紋解相演算法可應用於動態量測,並接續進行第三部分之橈動脈運動行為研究,以非接觸式量測方式對動脈進行動態量測。
第三方面,為能達到心血管疾病的監測與預防,新式血壓量測技術必須滿足四大條件:無需監督、不需配戴充氣袖帶、可連續量測、及高準確性,而近年所發展之無袖帶式血壓量測技術尚未滿足高準確性的要求。因此,本研究在陰影疊紋的架構下,利用第二部分所提出的條紋分析演算法在無受外力、非接觸的情形下,對於脈搏振動訊號進行量測,並且同時與其他生理訊號如心電圖、血流速波形、血流量波形、血壓值等參數做比較,量測結果清楚顯示手腕處橈動脈收縮運動行為與上述參數之相對關係,並可作為後續血壓模型發展作為基礎。
zh_TW
dc.description.abstractWavelet transform is known for its benefits of versatile frequency localization accuracy, high computation efficiency, and high sensitivity to cope with signals with instantaneous frequency change. In this dissertation, we took the advantages of wavelet transform to perform signal analysis within the development of innovative optical metrology systems in three aspects: 1) ultra-high velocity measurement, 2) surface metrology with fringe analysis, and 3) physiological signals measurement.
To provide the solution to the facture behavior evaluation under impact events of high momentum for composite materials, we developed a fragment generator design and a velocity measurement system based on photonic Doppler velocimetry. The continuous wavelet transform was adopted to generate the spectrum distribution over the time-frequency plane from the collected heterodyne signals, and we developed a velocity line tracing algorithm to acquire quantized velocity profile of the ejecting fragments introduced from the simulated impact events.
The real-time requirement for contactless full-field spatial detection of an object’s surface has drawn much attention to meet various applications. We reviewed the fringe analysis algorithms operating at the spectrum domain, compared different transformation bases, and summarized the transformation product operations. The wavelet-based algorithm was shown with high accuracy, accurate reconstructed texture, and relatively fast computation speed. The proposed algorithm was used to analyze the shadow moiré fringe in the latter part of dynamic arterial vibration measurement.
The development of blood pressure monitoring with unsupervised, cuff-less, continuous, and accurate methods has significant potential to control cardiovascular diseases (CVDs). The recent cuff-less methods still lack sufficient accuracy. We used the shadow moiré topography with our proposed fringe analysis algorithm to perform non-contact inspection on the arterial vibration. Compared with different physiological signals, the vessel contraction behavior at the radial artery was clearly classified and would provide strong base for further development of blood pressure models.
en
dc.description.provenanceMade available in DSpace on 2021-06-07T17:41:19Z (GMT). No. of bitstreams: 1
U0001-1407202010154800.pdf: 13028799 bytes, checksum: 7245229d35cafbabb058a309bdf38f89 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書 ii
Acknowledge iii
摘要 iv
Abstract v
Content vi
List of Tables x
List of Figures xi
Notations xviii
Acronyms xix
Chapter 1. Introduction 1
1.1. Preface and Motivation 1
1.2. Organization 4
Chapter 2. Principle and Methodology: Ultra-High Velocity Measurement 5
2.1. Review 5
2.2. Configuration 7
2.3. Photonic Doppler Velocimetry 9
2.4. Continuous Wavelet Transform 10
2.5. Velocity Line Tracing Algorithm 11
2.6. GUI: ScopePDV 13
Chapter 3. Result and Discussion: Ultra-High Velocity Measurement 15
3.1. System Validation 15
3.2. Electrical Property Evaluation 17
3.3. Specimen 18
3.4. Expected Fragment Generator Spectrum 20
3.5. Simulation: Reflection Intensity 21
3.6. Simulation: Heterodyne Signal 24
3.7. Uncertainty Analysis 25
3.8. Experimental Results 27
3.9. Summary to Ultra-High Velocity Measurement 30
Chapter 4. Principle: Surface Metrology with Fringe Analysis 31
4.1. Review 31
4.2. General Expression of a Fringe Pattern and its Classification 34
4.3. Interferometry 39
4.4. Fringe Projection 41
4.5. Shadow Moiré 44
4.6. Characteristic Indicator for Surface Complexity 45
4.7. Simulated Fringe Pattern and Object Phase 47
4.8. Noise Source of a Fringe Pattern 53
Chapter 5. Methodology: Surface Metrology with Fringe Analysis 54
5.1. Phase Retrieval 54
5.2. Phase Shifting Method 55
5.3. Fourier Transform Method 57
5.4. Adaptive Fourier Transform Method 58
5.5. Time-Frequency Analysis 59
5.6. Window Fourier Transform Method 60
5.7. 2D Continuous Wavelet Transform Method 63
5.8. Cover Map 71
5.9. Complex Transformation Product to Wrapped Phase 73
5.10. Phase Reconstruction 75
Chapter 6. Result and Discussion: Surface Metrology with Fringe Analysis 79
6.1. Simulation based on Interferometry 80
6.2. Experiment based on Fringe Projection 87
6.3. Summary to Fringe Analysis 95
Chapter 7. Review to Physiological Signals 96
7.1. Electrocardiogram (ECG or EKG) 96
7.2. Hemodynamics and Arterial Line 97
7.3. Photoplethysmogram (PPG) 101
7.4. Blood Pressure Measurement 102
7.5. Pulse Transit Time (PTT) and Pulse Arrival Time (PAT) 104
Chapter 8. Methodology: Physiological Signals Measurement 105
8.1. Configuration 105
8.2. Processing Flow for Arterial Vibration 107
8.3. GUI: Signal Acquisition and Sequential Fringe Analysis 108
8.4. System Validation 110
8.5. Data Collection and Protocol 113
8.6. Vibration Waveform Retrieval 114
8.7. Blood Flow Waveform Retrieval 117
8.8. Blood Pressure Calculation with Oscillometric Method 118
8.9. Waveform Smoothing and Base Line Interpolation 119
8.10. Pearson Correlation 119
8.11. Characteristic Point Detection of ECG Waveform 120
8.12. Characteristic Point Detection of PPG Waveform 121
8.13. Feature Indicators of PPG Waveform 122
Chapter 9. Result and Discussion: Physiological Signals Measurement 123
9.1. Physiological Waveform and Spectrum 124
9.2. Heartbeat Interval Calculation 125
9.3. Stack Mean Waveform 126
9.4. Phase Comparison between Physiological Signals 128
9.5. Correlation to Blood Pressure 131
9.6. Summary to Physiological Signals Measurement 140
Chapter 10. Conclusions and Future Work 141
10.1. Conclusions 141
10.2. Future Work 143
References 145
dc.language.isoen
dc.title基於小波函數解析之創新光學系統研究與開發:光子都卜勒干涉儀及生理訊號量測zh_TW
dc.titleResearch and Development of Wavelet-based Innovative Optical Instruments: PDV and Physiological Signals Measurementen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree博士
dc.contributor.author-orcid0000-0002-2279-4601
dc.contributor.coadvisor吳文中(Wen-Jong Wu)
dc.contributor.oralexamcommittee黃君偉(Jiun-Woei Huang),余良彬(Liang-Bin Yu),李舒昇(Shu-Sheng Lee),林鼎晸(Ding-Zheng Lin),鄭琮達(Tsung-Dar Cheng)
dc.subject.keyword小波轉換,複合材料,速度量測,表面輪廓量測,生理訊號量測,zh_TW
dc.subject.keywordwavelet,composite,velocity measurement,surface morphology,physiological signals,en
dc.relation.page152
dc.identifier.doi10.6342/NTU202001496
dc.rights.note未授權
dc.date.accepted2020-08-03
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
U0001-1407202010154800.pdf
  目前未授權公開取用
12.72 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved