Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15491
標題: 探討疫病菌質外體效應蛋白OPEL如何引發植物免疫反應
Investigation of how OPEL, an apoplastic effector from Phytophthora parasitica, elicits plant immune responses
作者: Ya-Yuan Yang
楊雅媛
指導教授: 劉瑞芬(Ruey-Fen Liou)
關鍵字: 細胞壁分解酵素,OPEL,植物免疫反應,疫病菌,醣苷水解酶,
cell wall degrading enzymes,OPEL,plant immunity,Phytophthora parasitica,glycosyl hydrolase,
出版年 : 2020
學位: 碩士
摘要: OPEL為Phytophthora parasitica所分泌的質外體效應蛋白 (apoplastic effector),序列分析顯示其具有signal peptide, thaumatin-like domain, glycine-rich domain及glycosyl hydrolase (GH) 16 domain,後者包含β-1,3-glucanase的保守性序列。以OPEL重組蛋白處理Nicotiana tabacum cv. Samsun-NN可引發明顯之壞疽斑 (necrosis)、癒傷葡聚醣 (callose) 沉積、活性氧分子 (reactive oxygen species, ROS) 累積及誘導防禦相關基因表現。此外,OPEL引發植物免疫反應的關鍵構造為GH16 domain,將其預測的酵素活性位點進行單點突變後,即大幅降低OPEL激發植物防禦反應的能力,因此OPEL很可能藉由分解植物細胞壁產生DAMP而引發免疫反應。為探討這個可能性,本研究製備OPEL重組蛋白及其酵素活性區雙點突變蛋白 (OPEL-dm),用以處理菸草後,收集質外體液 (分別稱為AF-OPEL及AF-OPEL-dm),防禦反應分析結果顯示AF-OPEL可引發菸草細胞壞疽、誘導防禦相關基因表現及增加對P. parasitica的抗性,但AF-OPEL-dm僅在菸草葉片引發微弱黃化。以95 oC加熱15分鐘後,AF-OPEL仍具有引發菸草細胞壞疽的活性;除此之外,AF-OPEL也較AF-OPEL-dm含有較多的還原糖。為了進一步找出AF-OPEL內引發植物免疫反應的活性物質,先後以正己烷及乙酸乙酯萃取,將AF-OPEL的成分分成低極性、中極性以及高極性等三個部份,續以the luminol-based chemiluminescence分析方法檢測各極性層萃取物引發活性氧分子累積的活性。結果顯示AF-OPEL的低極性層 (AF-OPEL/H)、中極性層 (AF-OPEL/EA) 及高極性層 (AF-OPEL-A) 萃取物均具有誘導活性氧分子累積的能力,但AF-OPEL/EA展現的活性明顯高於其他二者。進一步以高效液相層析法分析,發現三個AF-OPEL/EA特有的波峰,分別稱為peak I, peak II與peak III,其中僅peak II具有誘導活性氧分子累積的能力。這些結果顯示OPEL引發植物免疫反應之機制很可能是藉由辨識DAMPs而不是PAMPs且與其酵素活性密切相關。未來研究目標將著重於找出peak II所代表之物質,以瞭解其對於OPEL及植物間的交互作用。
OPEL is an elicitor protein identified in Phytophthora parasitica, which contains signal peptide in the N-terminus, followed by a thaumatin-like domain, a glycine rich domain and a GH16 domain. GH16 domain is characterized by the presence of a conserved active site for beta-1,3-glucanase. It has been shown previously that infiltration of OPEL recombinant protein into leaves of Nicotiana tabacum cv. Samsun-NN resulted in necrosis, callose deposition, ROS production as well as the induction of defense gene expression. Moreover, domain analysis indicated the elicitor activity of OPEL depends solely on the GH16 domain. Interestingly, the elicitor activity is compromised with OPEL recombinant protein harboring a single-point mutation in the predicted active site. It suggests an essential role of the enzymatic activity of OPEL in inducing plant defense responses, which might involve the generation of damage/danger-associated molecular pattern in the apoplast. To investigate this possibility, we prepared OPEL recombinant protein and OPEL mutant (OPEL-dm) with mutations at two key residues in the putative active site of the GH16 domain, infiltrated them individually into N. tabacum leaves, and then collected apoplastic fluid from the treated leaves, named AF-OPEL and AF-OPEL-dm, respectively. When infiltrated into tobacco leaves, AF-OPEL caused necrosis as well as induced defense gene expression and resistance against P. parasitica. In contrast, the activity of AF-OPEL-dm was significantly compromised. After heat treatment at 95 oC for 15 mins, AF-OPEL still retained most of its necrosis-inducing activity. Moreover, AF-OPEL contained more reducing sugars than AF-OPEL-dm. To identify the PTI-inducing substances, AF-OPEL was extracted by using n-hexane (H) and then ethyl acetate (EA) as the solvent, resulting in the collection of three fractions: AF-OPEL/H (low polar), AF-OPEL/EA (medium polar), and AF-OPEL/A (high polar). All three fractions induced ROS production as shown by the luminol-based chemiluminescence assay. However, the activity of AF-OPEL/EA was much higher than the other two.Further purification by high performance liquid chromatography (HPLC) identified three peaks (known as peak I, peak II, and peak III), which were found only in AF-OPEL/EA but not in the control experiment.Notably, only peak II induced ROS production. Based on these results, the mechanism for OPEL to induce PTI is through recognition of DAMP rather than PAMP and related to its putative site. In the future, we hope to identify the peak II-represented substance to understand the interaction between OPEL and plants.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15491
DOI: 10.6342/NTU202001537
全文授權: 未授權
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
U0001-1507202013072000.pdf
  未授權公開取用
2.38 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved