請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15446完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡沛學(Pei-Shiue Tsai) | |
| dc.contributor.author | Yu-Ting Hsu | en |
| dc.contributor.author | 許瑜庭 | zh_TW |
| dc.date.accessioned | 2021-06-07T17:40:41Z | - |
| dc.date.copyright | 2020-08-04 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-07-23 | |
| dc.identifier.citation | 1. Al-Hashimi AF, Mohammed FH, and Al-Khazragi AS. Oxidative stress in chronic renal failure patients treated by peritoneal dialysis. Saudi Med J 25: 1186-1192, 2004. 2. Alatab S, Najafi I, Atlasi R, Pourmand G, Tabatabaei-Malazy O, and Ahmadbeigi N. A systematic review of preclinical studies on therapeutic potential of stem cells or stem cells products in peritoneal fibrosis. Minerva Urol Nefrol 70: 162-178, 2018. 3. Barnes JL, and Gorin Y. Myofibroblast differentiation during fibrosis: role of NAD(P)H oxidases. Kidney Int 79: 944-956, 2011. 4. Bedard K, and Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87: 245-313, 2007. 5. Bermudez MA, Sendon-Lago J, Eiro N, Trevino M, Gonzalez F, Yebra-Pimentel E, Giraldez MJ, Macia M, Lamelas ML, Saa J, Vizoso F, and Perez-Fernandez R. Corneal epithelial wound healing and bactericidal effect of conditioned medium from human uterine cervical stem cells. Invest Ophthalmol Vis Sci 56: 983-992, 2015. 6. Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, Fridman WH, Pages F, Trajanoski Z, and Galon J. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25: 1091-1093, 2009. 7. Bondi CD, Manickam N, Lee DY, Block K, Gorin Y, Abboud HE, and Barnes JL. NAD(P)H oxidase mediates TGF-beta1-induced activation of kidney myofibroblasts. J Am Soc Nephrol 21: 93-102, 2010. 8. Chan EC, Jiang F, Peshavariya HM, and Dusting GJ. Regulation of cell proliferation by NADPH oxidase-mediated signaling: potential roles in tissue repair, regenerative medicine and tissue engineering. Pharmacol Ther 122: 97-108, 2009. 9. Chen F, Haigh S, Barman S, and Fulton DJ. From form to function: the role of Nox4 in the cardiovascular system. Front Physiol 3: 412, 2012. 10. Chen K, Kirber MT, Xiao H, Yang Y, and Keaney JF, Jr. Regulation of ROS signal transduction by NADPH oxidase 4 localization. J Cell Biol 181: 1129-1139, 2008. 11. Chen Q, Shou P, Zheng C, Jiang M, Cao G, Yang Q, Cao J, Xie N, Velletri T, Zhang X, Xu C, Zhang L, Yang H, Hou J, Wang Y, and Shi Y. Fate decision of mesenchymal stem cells: adipocytes or osteoblasts? Cell Death Differ 23: 1128-1139, 2016. 12. Chen YT, Chang YT, Pan SY, Chou YH, Chang FC, Yeh PY, Liu YH, Chiang WC, Chen YM, Wu KD, Tsai TJ, Duffield JS, and Lin SL. Lineage tracing reveals distinctive fates for mesothelial cells and submesothelial fibroblasts during peritoneal injury. J Am Soc Nephrol 25: 2847-2858, 2014. 13. Cho S, Yu SL, Kang J, Jeong BY, Lee HY, Park CG, Yu YB, Jin DC, Hwang WM, Yun SR, Song HS, Park MH, and Yoon SH. NADPH oxidase 4 mediates TGF-beta1/Smad signaling pathway induced acute kidney injury in hypoxia. PLoS One 14: e0219483, 2019. 14. Chou CJ, Peng SY, Wu MH, Yang CC, Lin YS, Cheng WT, Wu SC, and Lin YP. Generation and characterization of a transgenic pig carrying a DsRed-monomer reporter gene. PLoS One 9: e106864, 2014. 15. Crestani B, Besnard V, and Boczkowski J. Signalling pathways from NADPH oxidase-4 to idiopathic pulmonary fibrosis. Int J Biochem Cell Biol 43: 1086-1089, 2011. 16. Eom YW, Shim KY, and Baik SK. Mesenchymal stem cell therapy for liver fibrosis. Korean J Intern Med 30: 580-589, 2015. 17. Fan Y, Herr F, Vernochet A, Mennesson B, Oberlin E, and Durrbach A. Human Fetal Liver Mesenchymal Stem Cell-Derived Exosomes Impair Natural Killer Cell Function. Stem Cells Dev 28: 44-55, 2019. 18. Fan YP, Hsia CC, Tseng KW, Liao CK, Fu TW, Ko TL, Chiu MM, Shih YH, Huang PY, Chiang YC, Yang CC, and Fu YS. The Therapeutic Potential of Human Umbilical Mesenchymal Stem Cells From Wharton's Jelly in the Treatment of Rat Peritoneal Dialysis-Induced Fibrosis. Stem Cells Transl Med 5: 235-247, 2016. 19. Ferreira JR, Teixeira GQ, Santos SG, Barbosa MA, Almeida-Porada G, and Goncalves RM. Mesenchymal Stromal Cell Secretome: Influencing Therapeutic Potential by Cellular Pre-conditioning. Front Immunol 9: 2837, 2018. 20. Friedenstein AJ, Chailakhyan RK, Latsinik NV, Panasyuk AF, and Keiliss-Borok IV. Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation 17: 331-340, 1974. 21. Gazdic M, Volarevic V, Arsenijevic N, and Stojkovic M. Mesenchymal stem cells: a friend or foe in immune-mediated diseases. Stem Cell Rev Rep 11: 280-287, 2015. 22. Ghosh AK. Factors involved in the regulation of type I collagen gene expression: implication in fibrosis. Exp Biol Med (Maywood) 227: 301-314, 2002. 23. Ha H, Cha MK, Choi HN, and Lee HB. Effects of peritoneal dialysis solutions on the secretion of growth factors and extracellular matrix proteins by human peritoneal mesothelial cells. Perit Dial Int 22: 171-177, 2002. 24. Harrell CR, Fellabaum C, Jovicic N, Djonov V, Arsenijevic N, and Volarevic V. Molecular Mechanisms Responsible for Therapeutic Potential of Mesenchymal Stem Cell-Derived Secretome. Cells 8: 2019. 25. He T, Xiong J, Nie L, Yu Y, Guan X, Xu X, Xiao T, Yang K, Liu L, Zhang D, Huang Y, Zhang J, Wang J, Sharma K, and Zhao J. Resveratrol inhibits renal interstitial fibrosis in diabetic nephropathy by regulating AMPK/NOX4/ROS pathway. J Mol Med (Berl) 94: 1359-1371, 2016. 26. Hecker L, Vittal R, Jones T, Jagirdar R, Luckhardt TR, Horowitz JC, Pennathur S, Martinez FJ, and Thannickal VJ. NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury. Nat Med 15: 1077-1081, 2009. 27. Huang JW, Yen CJ, Wu HY, Chiang CK, Cheng HT, Lien YC, Hung KY, and Tsai TJ. Tamoxifen downregulates connective tissue growth factor to ameliorate peritoneal fibrosis. Blood Purif 31: 252-258, 2011. 28. Isenberg JS, Ridnour LA, Perruccio EM, Espey MG, Wink DA, and Roberts DD. Thrombospondin-1 inhibits endothelial cell responses to nitric oxide in a cGMP-dependent manner. Proc Natl Acad Sci U S A 102: 13141-13146, 2005. 29. Jaiswal M, Koul V, Dinda AK, Mohanty S, and Jain KG. Cell adhesion and proliferation studies on semi-interpenetrating polymeric networks (semi-IPNs) of polyacrylamide and gelatin. J Biomed Mater Res B Appl Biomater 98: 342-350, 2011. 30. Jang YJ, An SY, and Kim JH. Identification of MFGE8 in mesenchymal stem cell secretome as an anti-fibrotic factor in liver fibrosis. BMB Rep 50: 58-59, 2017. 31. Jiang F, Liu GS, Dusting GJ, and Chan EC. NADPH oxidase-dependent redox signaling in TGF-beta-mediated fibrotic responses. Redox Biol 2: 267-272, 2014. 32. Jobling MF, Mott JD, Finnegan MT, Jurukovski V, Erickson AC, Walian PJ, Taylor SE, Ledbetter S, Lawrence CM, Rifkin DB, and Barcellos-Hoff MH. Isoform-specific activation of latent transforming growth factor beta (LTGF-beta) by reactive oxygen species. Radiat Res 166: 839-848, 2006. 33. Kanazawa H, Fujimoto Y, Teratani T, Iwasaki J, Kasahara N, Negishi K, Tsuruyama T, Uemoto S, and Kobayashi E. Bone marrow-derived mesenchymal stem cells ameliorate hepatic ischemia reperfusion injury in a rat model. PLoS One 6: e19195, 2011. 34. Kawanishi K, and Nitta K. Cell sheet-based tissue engineering for mesothelial cell injury. Contrib Nephrol 185: 66-75, 2015. 35. Kim Y, Park SY, Jung H, Noh YS, Lee JJ, and Hong JY. Inhibition of NADPH Oxidase 4 (NOX4) Signaling Attenuates Tuberculous Pleural Fibrosis. J Clin Med 8: 2019. 36. Ko J, Kang HJ, Kim DA, Ryu ES, Yu M, Lee H, Lee HK, Ryu HM, Park SH, Kim YL, and Kang DH. Paricalcitol attenuates TGF-beta1-induced phenotype transition of human peritoneal mesothelial cells (HPMCs) via modulation of oxidative stress and NLRP3 inflammasome. FASEB J 33: 3035-3050, 2019. 37. Lambeth JD. NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 4: 181-189, 2004. 38. Lee HB, Yu MR, Song JS, and Ha H. Reactive oxygen species amplify protein kinase C signaling in high glucose-induced fibronectin expression by human peritoneal mesothelial cells. Kidney Int 65: 1170-1179, 2004. 39. Lee RH, Pulin AA, Seo MJ, Kota DJ, Ylostalo J, Larson BL, Semprun-Prieto L, Delafontaine P, and Prockop DJ. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 5: 54-63, 2009. 40. Levine S, and Saltzman A. Abdominal cocoon: an animal model for a complication of peritoneal dialysis. Perit Dial Int 16: 613-616, 1996. 41. Liang S, Kisseleva T, and Brenner DA. The Role of NADPH Oxidases (NOXs) in Liver Fibrosis and the Activation of Myofibroblasts. Front Physiol 7: 17, 2016. 42. Liu B, Ding F, Hu D, Zhou Y, Long C, Shen L, Zhang Y, Zhang D, and Wei G. Human umbilical cord mesenchymal stem cell conditioned medium attenuates renal fibrosis by reducing inflammation and epithelial-to-mesenchymal transition via the TLR4/NF-kappaB signaling pathway in vivo and in vitro. Stem Cell Res Ther 9: 7, 2018. 43. Liu Y, Cheong Ng S, Yu J, and Tsai WB. Modification and crosslinking of gelatin-based biomaterials as tissue adhesives. Colloids Surf B Biointerfaces 174: 316-323, 2019. 44. Maguire G. Stem cell therapy without the cells. Commun Integr Biol 6: e26631, 2013. 45. Miyahara Y, Nagaya N, Kataoka M, Yanagawa B, Tanaka K, Hao H, Ishino K, Ishida H, Shimizu T, Kangawa K, Sano S, Okano T, Kitamura S, and Mori H. Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat Med 12: 459-465, 2006. 46. Mizuno M, Ito Y, Mizuno T, Harris CL, Suzuki Y, Okada N, Matsuo S, and Morgan BP. Membrane complement regulators protect against fibrin exudation increases in a severe peritoneal inflammation model in rats. Am J Physiol Renal Physiol 302: F1245-1251, 2012. 47. Nimura A, Muneta T, Koga H, Mochizuki T, Suzuki K, Makino H, Umezawa A, and Sekiya I. Increased proliferation of human synovial mesenchymal stem cells with autologous human serum: comparisons with bone marrow mesenchymal stem cells and with fetal bovine serum. Arthritis Rheum 58: 501-510, 2008. 48. Nishimura H, Ito Y, Mizuno M, Tanaka A, Morita Y, Maruyama S, Yuzawa Y, and Matsuo S. Mineralocorticoid receptor blockade ameliorates peritoneal fibrosis in new rat peritonitis model. Am J Physiol Renal Physiol 294: F1084-1093, 2008. 49. Noh H, Kim JS, Han KH, Lee GT, Song JS, Chung SH, Jeon JS, Ha H, and Lee HB. Oxidative stress during peritoneal dialysis: implications in functional and structural changes in the membrane. Kidney Int 69: 2022-2028, 2006. 50. Onishi A, Morishita Y, Muto S, and Kusano E. The Mechanism of Peritoneal Fibrosis in Peritoneal Dialysis. Journal of Nephrology Therapeutics S3: 2011. 51. Park HW, Moon HE, Kim HS, Paek SL, Kim Y, Chang JW, Yang YS, Kim K, Oh W, Hwang JH, Kim JW, Kim DG, and Paek SH. Human umbilical cord blood-derived mesenchymal stem cells improve functional recovery through thrombospondin1, pantraxin3, and vascular endothelial growth factor in the ischemic rat brain. J Neurosci Res 93: 1814-1825, 2015. 52. Perez-Ilzarbe M, Diez-Campelo M, Aranda P, Tabera S, Lopez T, del Canizo C, Merino J, Moreno C, Andreu EJ, Prosper F, and Perez-Simon JA. Comparison of ex vivo expansion culture conditions of mesenchymal stem cells for human cell therapy. Transfusion 49: 1901-1910, 2009. 53. Richter K, and Kietzmann T. Reactive oxygen species and fibrosis: further evidence of a significant liaison. Cell Tissue Res 365: 591-605, 2016. 54. Rio P, and Bueren JA. TGF-beta: a master regulator of the bone marrow failure puzzle in Fanconi anemia. Stem Cell Investig 3: 75, 2016. 55. Rockey DC, Bell PD, and Hill JA. Fibrosis--A Common Pathway to Organ Injury and Failure. N Engl J Med 373: 96, 2015. 56. Saito T, and Tabata Y. Preparation of gelatin hydrogels incorporating low-molecular-weight heparin for anti-fibrotic therapy. Acta Biomater 8: 646-652, 2012. 57. Samarakoon R, Overstreet JM, and Higgins PJ. TGF-beta signaling in tissue fibrosis: redox controls, target genes and therapeutic opportunities. Cell Signal 25: 264-268, 2013. 58. Selgas R, Bajo MA, Aguilera A, Sanchez-Tomero JA, Cirugeda A, del Peso G, Alvarez V, Jimenez-Heffernan JA, Diaz C, and Lopez-Cabrera M. [Epithelial-mesenchymal transition in fibrosing processes. Mesothelial cells obtained ex vivo from patients treated with peritoneal dialysis as transdifferentiation model]. Nefrologia 24: 34-39, 2004. 59. Serrander L, Cartier L, Bedard K, Banfi B, Lardy B, Plastre O, Sienkiewicz A, Forro L, Schlegel W, and Krause KH. NOX4 activity is determined by mRNA levels and reveals a unique pattern of ROS generation. Biochem J 406: 105-114, 2007. 60. Sturrock A, Cahill B, Norman K, Huecksteadt TP, Hill K, Sanders K, Karwande SV, Stringham JC, Bull DA, Gleich M, Kennedy TP, and Hoidal JR. Transforming growth factor-beta1 induces Nox4 NAD(P)H oxidase and reactive oxygen species-dependent proliferation in human pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 290: L661-L673, 2006. 61. Surre J, Saint-Ruf C, Collin V, Orenga S, Ramjeet M, and Matic I. Strong increase in the autofluorescence of cells signals struggle for survival. Sci Rep 8: 12088, 2018. 62. Trojanowska M, LeRoy EC, Eckes B, and Krieg T. Pathogenesis of fibrosis: type 1 collagen and the skin. J Mol Med (Berl) 76: 266-274, 1998. 63. Uccelli A, Moretta L, and Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol 8: 726-736, 2008. 64. van Westrhenen R, Aten J, Aberra M, Dragt CA, Deira G, and Krediet RT. Effects of inhibition of the polyol pathway during chronic peritoneal exposure to a dialysis solution. Perit Dial Int 25 Suppl 3: S18-21, 2005. 65. Vissers MC, Pullar JM, and Hampton MB. Hypochlorous acid causes caspase activation and apoptosis or growth arrest in human endothelial cells. Biochem J 344 Pt 2: 443-449, 1999. 66. Vizoso FJ, Eiro N, Cid S, Schneider J, and Perez-Fernandez R. Mesenchymal Stem Cell Secretome: Toward Cell-Free Therapeutic Strategies in Regenerative Medicine. Int J Mol Sci 18: 2017. 67. Wakabayashi K, Hamada C, Kanda R, Nakano T, Io H, Horikoshi S, and Tomino Y. Adipose-derived mesenchymal stem cells transplantation facilitate experimental peritoneal fibrosis repair by suppressing epithelial-mesenchymal transition. J Nephrol 27: 507-514, 2014. 68. Wang H, and Hartnett ME. Roles of Nicotinamide Adenine Dinucleotide Phosphate (NADPH) Oxidase in Angiogenesis: Isoform-Specific Effects. Antioxidants (Basel) 6: 2017. 69. Wang J, Jiang ZP, Su N, Fan JJ, Ruan YP, Peng WX, Li YF, and Yu XQ. The role of peritoneal alternatively activated macrophages in the process of peritoneal fibrosis related to peritoneal dialysis. Int J Mol Sci 14: 10369-10382, 2013. 70. Wang J, Liu S, Li H, Sun J, Zhang S, Xu X, Liu Y, Wang Y, and Miao L. A review of rodent models of peritoneal dialysis and its complications. Int Urol Nephrol 47: 209-215, 2015. 71. Wang N, Li Q, Zhang L, Lin H, Hu J, Li D, Shi S, Cui S, Zhou J, Ji J, Wan J, Cai G, and Chen X. Mesenchymal stem cells attenuate peritoneal injury through secretion of TSG-6. PLoS One 7: e43768, 2012. 72. Wermuth PJ, Mendoza FA, and Jimenez SA. Abrogation of transforming growth factor-beta-induced tissue fibrosis in mice with a global genetic deletion of Nox4. Lab Invest 99: 470-482, 2019. 73. Yoshida K, Nakashima A, Doi S, Ueno T, Okubo T, Kawano KI, Kanawa M, Kato Y, Higashi Y, and Masaki T. Serum-Free Medium Enhances the Immunosuppressive and Antifibrotic Abilities of Mesenchymal Stem Cells Utilized in Experimental Renal Fibrosis. Stem Cells Transl Med 7: 893-905, 2018. 74. Yu J, Tu YK, Tang YB, and Cheng NC. Stemness and transdifferentiation of adipose-derived stem cells using L-ascorbic acid 2-phosphate-induced cell sheet formation. Biomaterials 35: 3516-3526, 2014. 75. Zareie M, Keuning ED, ter Wee PM, Beelen RH, and van den Born J. Peritoneal dialysis fluid-induced changes of the peritoneal membrane are reversible after peritoneal rest in rats. Nephrol Dial Transplant 20: 189-193, 2005. 76. Jiang H, Dong L, Gong FY, Gu YP, Zhang HH, Fan D, and Sun ZG. Inflammatory genes are novel prognostic biomarkers for colorectal cancer. Int J Mol Med 42: 368-380, 2018. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15446 | - |
| dc.description.abstract | 組織纖維化是因細胞外基質過度累積所造成的病症,此現象常出現於慢性疾病或慢性組織損傷患處。在人類腹膜透析病患中,腹膜纖維化會造成腹膜逐漸失去功能,不僅影響腹膜透析的效率,也可能演變成高死亡率之包囊性腹膜硬化症。纖維化相關蛋白TGF-β(transforming growth factor-β)為纖維化形成的主要調控因子,文獻指出TGF-β引發之NOX4酵素的過度活化亦參與了纖維化的形成,NOX(nicotinamide adenine dinucleotide phosphate oxidase)的主要功能之一為製造活性氧化物質(reactive oxygen species, ROS),且在腹膜透析病患中發現,腹膜間皮細胞產出之活性氧化物質是造成腹膜纖維化的主因之一。此篇論文將以人類腹膜間皮細胞(human peritoneal mesothelial cells, MeT-5A)及三品種豬隻 (Landrace × Yorkshire dam × Duroc sire, LYD)動物模式探討次氯酸鈉(NaOCl)引發腹膜纖維化之機制。實驗結果顯示,腹膜間皮細胞產生細胞內活性氧化物質的能力與總量與次氯酸鈉濃度及反應時間呈正相關,透過流式細胞儀的分析,腹膜間皮細胞經次氯酸鈉刺激後,會導致細胞壞死,而非細胞凋亡路徑的活化。此外,腹膜間皮細胞及豬隻腹膜纖維化模型研究結果顯示,次氯酸鈉可能藉由活化TGF-β1, NOX4, ERK引發腹膜纖維化。此篇論文中,我們亦探討間質幹細胞治療之應用,如生物材料包裹間質幹細胞,增加間質幹細胞之存活時間,及透過蛋白質體分析找出培養過間質幹細胞之培養液中抑制纖維化之相關分子,提供有潛力減緩纖維化及促進腹膜再生的研究方向。 | zh_TW |
| dc.description.abstract | Fibrosis, characterized by excessive accumulation of extracellular matrix, is a common pathological consequence in many chronic diseases or injuries occurring in various organs including in peritoneum. Patients who suffer from peritoneal fibrosis will gradually loss the normal function, and in some rare cases, develop encapsulat-ing peritoneal sclerosis which can result in high mortalities. TGF-β (transforming growth factor-β) has been identified as a major mediator in fibrotic process, and NOX4, a type of NADPH (nicotinamide adenine dinucleotide phosphate oxidase) oxidase, may have a pivotal role in mediating profibrotic responses. NOX-derived reactive oxygen species (reactive oxygen species, ROS) generation from peritoneal mesothelial cells is thought to be the key mechanism for TGF-β-induced peritoneal fibrosis in peritoneal dialysis patients. In this study, human peritoneal mesothelial cells (MeT-5A) and LYD (Landrace × Yorkshire dam × Duroc sire) porcine were used to investigate the mechanism of sodium hypochlorite (NaOCl)-induced perito-neal fibrosis. Intracellular ROS production in human mesothelial cells (MeT-5A) exhibited dose and time dependent increase under NaOCl stimulation. Besides, based on in vitro flow cytometry evidence, cell necrosis, but not apoptosis was the major cell fate of MeT-5A when treated with NaOCl. The protein expression of up-stream signals of fibrosis (TGF-β1, Nox4, and ERK) were also enhanced both in vitro and in vivo. Based on our in vitro and in vivo model systems, NaOCl induced TGF-β1/NOX4/ERK pathway which likely resulted in the peritoneal fibrosis ob-served in our porcine model. In this study, potential therapeutic options were also explored including biomaterial applications of MSC therapy and MSC cultured me-dium. Nevertheless, information derived from proteomic analysis would provide promising target molecules for the inhibition of peritoneal fibrosis and the regenera-tion of peritoneum. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T17:40:41Z (GMT). No. of bitstreams: 1 U0001-2207202015112600.pdf: 3475890 bytes, checksum: 05f7e4b79d98723f13c6d2d97029b754 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 論文口試委員會審定書 i 誌謝 ii Abstract iii 中文摘要 v Contents vii List of figures xi List of tables xiii Chapter 1 Introduction 1.1 The structure and physiological functions of peritoneum 1 1.2 Long-term peritoneal dialysis (PD) induced peritoneal fibrosis (PF) in PD patients 1.2.1 The pathological structure of peritoneum upon fibrosis 2 1.2.2 The molecular mechanism of peritoneal fibrosis induced by peritoneal dialy-sis 3 1.2.3 Reactive oxygen species (ROS) and associated molecules as candidate markers of peritoneal dialysis-induced peritoneal fibrosis 5 1.3 Potential mechanisms of TGF-β-induced upregulation of NOX4 expression 5 1.4 The features of different peritoneal fibrosis animal models 7 1.5 Potential therapies for peritoneal fibrosis by mesenchymal stem cells (MSC) 1.5.1 The functions of Mesenchymal stem cells (MSC) 9 1.5.2 The inhibition efficacy of fibrosis in MSC therapies 10 1.5.3 The approaches of MSC therapies 11 1.6 Aims of this project 14 Chapter 2 Materials and Methods 2.1 Cell culture and cell lysate preparation 15 2.2 Apoptosis and necrosis detection by flow cytometry 16 2.3 Cell viability assay (MTT assay) 17 2.4 Cellular ROS detection assay 17 2.5 Establishment of sodium hypochlorite-induced peritoneal fibrosis and time point sample collections 18 2.6 Western blot 19 2.7 Immunofluorescence assay (IFA) 21 2.8 Cell sheet culture system 21 2.9 Mesenchymal Stem Cell (MSC) culture in gelatin-based hydrogel 23 2.10 Cell viability of MSC in hydrogel 23 2.11 Proteomic analyses of human umbilical cord-derived stem cell culture su-pernatant 24 2.12 Statistical analysis 25 Chapter 3 Results 3.1 NaOCl promoted generation of intracellular ROS in MeT-5A 26 3.2 NaOCl promoted mesothelial cell death via necrosis 29 3.3 NaOCl-induced TGF-β1, Nox4, and p-ERK expressions in mesothelial cells 31 3.4 NaOCl induced overexpression of TGF-β1 on the peritoneum 33 3.5 NOX4 protein expression was increased after 0.1% NaOCl injury 35 3.6 NaOCl promoted overexpression of p-ERK in abdominal wall, a downstream signaling molecule of TGF-β-NOX4 axis 37 3.7 Myofibroblast marker α-SMA protein expression showed time-dependent in-crease in 0.1% NaOCl-induced fibrosis model 39 3.8 Type I collagen deposition was increased in 0.1% NaOCl-induced peritoneal fibrosis pig model 41 3.9 Mesenchymal stem cells as therapeutic approach 43 3.10 Gelatin-based hydrogel as bio-compatible material for MSCs therapy model 45 3.11 Proteomic analysis of MSC culture supernatant 47 Chapter 4 Discussion 50 Chapter 5 Conclusion and future work 61 Reference 63 | |
| dc.language.iso | en | |
| dc.subject | 間質幹細胞治療 | zh_TW |
| dc.subject | 腹膜纖維化 | zh_TW |
| dc.subject | TGF-β1 | zh_TW |
| dc.subject | NOX4 | zh_TW |
| dc.subject | ERK | zh_TW |
| dc.subject | ERK | en |
| dc.subject | NOX4 | en |
| dc.subject | TGF-β1 | en |
| dc.subject | MSC therapy | en |
| dc.subject | peritoneal fibrosis | en |
| dc.title | 以豬隻動物模式探討次氯酸鈉引發腹膜纖維化之機制 | zh_TW |
| dc.title | The Mechanism of Sodium Hypochlorite-induced Porcine Model of Peritoneal Fibrosis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林水龍(Shuei-Liong Lin),蔡素宜(Su-Yi Tsai),李雅珍(Ya-Jane Lee),陳怡婷(Yi-Ting Chen) | |
| dc.subject.keyword | 腹膜纖維化,TGF-β1,NOX4,ERK,間質幹細胞治療, | zh_TW |
| dc.subject.keyword | peritoneal fibrosis,TGF-β1,NOX4,ERK,MSC therapy, | en |
| dc.relation.page | 69 | |
| dc.identifier.doi | 10.6342/NTU202001737 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-07-23 | |
| dc.contributor.author-college | 獸醫專業學院 | zh_TW |
| dc.contributor.author-dept | 獸醫學研究所 | zh_TW |
| 顯示於系所單位: | 獸醫學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2207202015112600.pdf 未授權公開取用 | 3.39 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
