Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15394
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊淑怡(Shu-Yi Yang)
dc.contributor.authorHeng Chienen
dc.contributor.author錢衡zh_TW
dc.date.accessioned2021-06-07T17:33:42Z-
dc.date.copyright2021-02-22
dc.date.issued2021
dc.date.submitted2021-02-02
dc.identifier.citationAlexander, T., Meier, R., Toth, R., and Weber, H.C. (1988). Dynamics of arbuscule development and degeneration in mycorrhizas of Triticum aestivum L. and Avena sativa L. with reference to Zea mays L. New Phytologist 110, 363-370.
Alkan, N., Gadkar, V., Yarden, O., and Kapulnik, Y. (2006). Analysis of quantitative interactions between two species of arbuscular mycorrhizal fungi, Glomus mosseae and G. intraradices, by real-time PCR. Applied and Environmental Microbiology 72, 4192-4199.
An, J., Sun, M., van Velzen, R., Ji, C., Zheng, Z., Limpens, E., Bisseling, T., Deng, X., Xiao, S., and Pan, Z. (2018). Comparative transcriptome analysis of Poncirus trifoliata identifies a core set of genes involved in arbuscular mycorrhizal symbiosis. Journal of Experimental Botany 69, 5255-5264.
Balestrini, R., Rosso, L.C., Veronico, P., Melillo, M.T., De Luca, F., Fanelli, E., Colagiero, M., Salvioli, A., Ciancio, A., and Pentimone, I. (2019). Transcriptomic responses to water deficit and nematode infection in mycorrhizal tomato roots. Frontiers in Microbiology 10, 1807.
Baudin, M., Laloum, T., Lepage, A., Rípodas, C., Ariel, F., Frances, L., Crespi, M., Gamas, P., Blanco, F.A., and Zanetti, M.E. (2015). A phylogenetically conserved group of nuclear factor-Y transcription factors interact to control nodulation in legumes. Plant physiology 169, 2761-2773.
Berendzen, K., Searle, I., Ravenscroft, D., Koncz, C., Batschauer, A., Coupland, G., Somssich, I.E., and Ülker, B. (2005). A rapid and versatile combined DNA/RNA extraction protocol and its application to the analysis of a novel DNA marker set polymorphic between Arabidopsis thaliana ecotypes Col-0 and Landsberg erecta. Plant Methods 1, 4.
Bravo, A., York, T., Pumplin, N., Mueller, L.A., and Harrison, M.J. (2016). Genes conserved for arbuscular mycorrhizal symbiosis identified through phylogenomics. Nature Plants 2, 15208.
Buendia, L., Wang, T., Girardin, A., and Lefebvre, B. (2016). The LysM receptor‐like kinase SlLYK10 regulates the arbuscular mycorrhizal symbiosis in tomato. New Phytologist 210, 184-195.
Chaves‐Sanjuan, A., Gnesutta, N., Gobbini, A., Martignago, D., Bernardini, A., Fornara, F., Mantovani, R., and Nardini, M. (2021). Structural determinants for NF‐Y subunit organization and NF‐Y/DNA association in plants. The Plant Journal 105, 49-61.
Choi, J., Summers, W., and Paszkowski, U. (2018). Mechanisms underlying establishment of arbuscular mycorrhizal symbioses. Annual Review of Phytopathology 56, 135-160.
Combier, J.-P., Frugier, F., de Billy, F., Boualem, A., El-Yahyaoui, F., Moreau, S., Vernié, T., Ott, T., Gamas, P., and Crespi, M. (2006). MtHAP2-1 is a key transcriptional regulator of symbiotic nodule development regulated by microRNA169 in Medicago truncatula. Genes Development 20, 3084-3088.
Dolfini, D., Gatta, R., and Mantovani, R. (2012). NF-Y and the transcriptional activation of CCAAT promoters. Critical Reviews in Biochemistry and Molecular Biology 47, 29-49.
Favre, P., Bapaume, L., Bossolini, E., Delorenzi, M., Falquet, L., and Reinhardt, D. (2014). A novel bioinformatics pipeline to discover genes related to arbuscular mycorrhizal symbiosis based on their evolutionary conservation pattern among higher plants. BMC Plant Biology 14, 333.
Feddermann, N., Duvvuru Muni, R.R., Zeier, T., Stuurman, J., Ercolin, F., Schorderet, M., and Reinhardt, D. (2010). The PAM1 gene of petunia, required for intracellular accommodation and morphogenesis of arbuscular mycorrhizal fungi, encodes a homologue of VAPYRIN. The Plant Journal 64, 470-481.
Fiorilli, V., Vallino, M., Biselli, C., Faccio, A., Bagnaresi, P., and Bonfante, P. (2015). Host and non-host roots in rice: cellular and molecular approaches reveal differential responses to arbuscular mycorrhizal fungi. Frontiers in Plant Science 6, 636.
Floss, D.S., Gomez, S.K., Park, H.-J., MacLean, A.M., Müller, L.M., Bhattarai, K.K., Lévesque-Tremblay, V., Maldonado-Mendoza, I.E., and Harrison, M.J. (2017). A transcriptional program for arbuscule degeneration during AM symbiosis is regulated by MYB1. Current Biology 27, 1206-1212.
Glass, F., and Takenaka, M. (2018). The yeast three-hybrid system for protein interactions. In Two-Hybrid Systems (Springer), pp. 195-205.
Gobbato, E., Wang, E., Higgins, G., Bano, S.A., Henry, C., Schultze, M., and Oldroyd, G.E. (2013). RAM1 and RAM2 function and expression during arbuscular mycorrhizal symbiosis and Aphanomyces euteiches colonization. Plant Signaling Behavior 8, e26049.
Gobbato, E., Marsh, J.F., Vernié, T., Wang, E., Maillet, F., Kim, J., Miller, J.B., Sun, J., Bano, S.A., and Ratet, P. (2012). A GRAS-type transcription factor with a specific function in mycorrhizal signaling. Current Biology 22, 2236-2241.
Guether, M., Balestrini, R., Hannah, M., He, J., Udvardi, M.K., and Bonfante, P. (2009). Genome-wide reprogramming of regulatory networks, transport, cell wall and membrane biogenesis during arbuscular mycorrhizal symbiosis in Lotus japonicus. New Phytologist 182, 200-212.
Hackenberg, D., Wu, Y., Voigt, A., Adams, R., Schramm, P., and Grimm, B. (2012). Studies on differential nuclear translocation mechanism and assembly of the three subunits of the Arabidopsis thaliana transcription factor NF-Y. Molecular Plant 5, 876-888.
Helber, N., Wippel, K., Sauer, N., Schaarschmidt, S., Hause, B., and Requena, N. (2011). A versatile monosaccharide transporter that operates in the arbuscular mycorrhizal fungus Glomus sp is crucial for the symbiotic relationship with plants. The Plant Cell 23, 3812-3823.
Ho-Plágaro, T., Huertas, R., Tamayo-Navarrete, M.I., Ocampo, J.A., and Garcia-Garrido, J.M. (2018). An improved method for Agrobacterium rhizogenes-mediated transformation of tomato suitable for the study of arbuscular mycorrhizal symbiosis. Plant Methods 14, 34.
Ho-Plágaro, T., Molinero-Rosales, N., Farina Flores, D., Villena Diaz, M., and Garcia-Garrido, J.M. (2019). Identification and expression analysis of GRAS transcription factor genes involved in the control of arbuscular mycorrhizal development in tomato. Fronties in Plant Science 10, 268.
Hodge, A., Campbell, C.D., and Fitter, A.H. (2001). An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413, 297-299.
Hogekamp, C., and Küster, H. (2013). A roadmap of cell-type specific gene expression during sequential stages of the arbuscular mycorrhiza symbiosis. BMC Genomics 14, 306.
Hogekamp, C., Arndt, D., Pereira, P.A., Becker, J.D., Hohnjec, N., and Kuster, H. (2011). Laser microdissection unravels cell-type-specific transcription in arbuscular mycorrhizal roots, including CAAT-box transcription factor gene expression correlating with fungal contact and spread. Plant Physiology 157, 2023-2043.
Hohnjec, N., Vieweg, M.F., Pühler, A., Becker, A., and Küster, H. (2005). Overlaps in the transcriptional profiles of Medicago truncatula roots inoculated with two different Glomus fungi provide insights into the genetic program activated during arbuscular mycorrhiza. Plant Physiology 137, 1283-1301.
Jakobsen, I., and Rosendahl, L. (1990). Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants. New Phytologist 115, 77-83.
Javot, H., Penmetsa, R.V., Terzaghi, N., Cook, D.R., and Harrison, M.J. (2007). A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences 104, 1720-1725.
Jiang, Y., Xie, Q., Wang, W., Yang, J., Zhang, X., Yu, N., Zhou, Y., and Wang, E. (2018). Medicago AP2-domain transcription factor WRI5a is a master regulator of lipid biosynthesis and transfer during mycorrhizal symbiosis. Molecular Plant 11, 1344-1359.
Jiang, Y., Wang, W., Xie, Q., Liu, N., Liu, L., Wang, D., Zhang, X., Yang, C., Chen, X., and Tang, D. (2017). Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science 356, 1172-1175.
Johansen, A., Jakobsen, I., and Jensen, E. (1993). External hyphae of vesicular–arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 3. Hyphal transport of 32P and 15N. New Phytologist 124, 61-68.
Keymer, A., Pimprikar, P., Wewer, V., Huber, C., Brands, M., Bucerius, S.L., Delaux, P.-M., Klingl, V., von Röpenack-Lahaye, E., and Wang, T.L. (2017). Lipid transfer from plants to arbuscular mycorrhiza fungi. eLife 6, e29107.
Kim, I.-S., Sinha, S., De Crombrugghe, B., and Maity, S.N. (1996). Determination of functional domains in the C subunit of the CCAAT-binding factor (CBF) necessary for formation of a CBF-DNA complex: CBF-B interacts simultaneously with both the CBF-A and CBF-C subunits to form a heterotrimeric CBF molecule. Molecular and Cellular Biology 16, 4003-4013.
Kohlen, W., Charnikhova, T., Lammers, M., Pollina, T., Tóth, P., Haider, I., Pozo, M.J., de Maagd, R.A., Ruyter‐Spira, C., and Bouwmeester, H.J. (2012). The tomato CAROTENOID CLEAVAGE DIOXYGENASE 8 (SlCCD8) regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis. New Phytologist 196, 535-547.
Laloum, T., De Mita, S., Gamas, P., Baudin, M., and Niebel, A. (2013). CCAAT-box binding transcription factors in plants: Y so many? Trends in Plant Science 18, 157-166.
Li, S., Li, K., Ju, Z., Cao, D., Fu, D., Zhu, H., Zhu, B., and Luo, Y. (2016). Genome-wide analysis of tomato NF-Y factors and their role in fruit ripening. BMC Genomics 17, 36.
Liu, J., Blaylock, L.A., Endre, G., Cho, J., Town, C.D., VandenBosch, K.A., and Harrison, M.J. (2003). Transcript profiling coupled with spatial expression analyses reveals genes involved in distinct developmental stages of an arbuscular mycorrhizal symbiosis. The Plant Cell 15, 2106-2123.
Luginbuehl, L.H., Menard, G.N., Kurup, S., Van Erp, H., Radhakrishnan, G.V., Breakspear, A., Oldroyd, G.E., and Eastmond, P.J. (2017). Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science 356, 1175-1178.
MacLean, A.M., Bravo, A., and Harrison, M.J. (2017). Plant signaling and metabolic pathways enabling arbuscular mycorrhizal symbiosis. The Plant Cell 29, 2319-2335.
Maillet, F., Poinsot, V., André, O., Puech-Pagès, V., Haouy, A., Gueunier, M., Cromer, L., Giraudet, D., Formey, D., and Niebel, A. (2011). Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469, 58-63.
Manck-Götzenberger, J., and Requena, N. (2016). Arbuscular mycorrhiza symbiosis induces a major transcriptional reprogramming of the potato SWEET sugar transporter family. Frontiers in Plant Science 7, 487.
Myers, Z.A., and Holt III, B.F. (2018). Nuclear factor-Y: still complex after all these years? Current Opinion in Plant Biology 45, 96-102.
Nagy, R., Karandashov, V., Chague, V., Kalinkevich, K., Tamasloukht, M.B., Xu, G., Jakobsen, I., Levy, A.A., Amrhein, N., and Bucher, M. (2005). The characterization of novel mycorrhiza‐specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species. The Plant Journal 42, 236-250.
Park, H.-J., Floss, D.S., Levesque-Tremblay, V., Bravo, A., and Harrison, M.J. (2015). Hyphal branching during arbuscule development requires Reduced Arbuscular Mycorrhiza1. Plant Physiology 169, 2774-2788.
Parniske, M. (2008). Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nature Reviews Microbiology 6, 763-775.
Pimprikar, P., and Gutjahr, C. (2018). Transcriptional regulation of arbuscular mycorrhiza development. Plant Cell Physiology 59, 673-690.
Pimprikar, P., Carbonnel, S., Paries, M., Katzer, K., Klingl, V., Bohmer, M.J., Karl, L., Floss, D.S., Harrison, M.J., and Parniske, M. (2016). A CCaMK-CYCLOPS-DELLA complex activates transcription of RAM1 to regulate arbuscule branching. Current Biology 26, 987-998.
Pirozynski, K., and Malloch, D. (1975). The origin of land plants: a matter of mycotrophism. Biosystems 6, 153-164.
Powell, J.R., and Rillig, M.C. (2018). Biodiversity of arbuscular mycorrhizal fungi and ecosystem function. New Phytologist 220, 1059-1075.
Pumplin, N., and Harrison, M.J. (2009). Live-cell imaging reveals periarbuscular membrane domains and organelle location in Medicago truncatula roots during arbuscular mycorrhizal symbiosis. Plant Physiology 151, 809-819.
Pumplin, N., Mondo, S.J., Topp, S., Starker, C.G., Gantt, J.S., and Harrison, M.J. (2010). Medicago truncatula Vapyrin is a novel protein required for arbuscular mycorrhizal symbiosis. The Plant Journal 61, 482-494.
Remy, W., Taylor, T.N., Hass, H., and Kerp, H. (1994). Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proceedings of the National Academy of Sciences 91, 11841-11843.
Rich, M.K., Courty, P.-E., Roux, C., and Reinhardt, D. (2017). Role of the GRAS transcription factor ATA/RAM1 in the transcriptional reprogramming of arbuscular mycorrhiza in Petunia hybrida. BMC genomics 18, 1-14.
Rich, M.K., Schorderet, M., Bapaume, L., Falquet, L., Morel, P., Vandenbussche, M., and Reinhardt, D. (2015). The petunia GRAS transcription factor ATA/RAM1 regulates symbiotic gene expression and fungal morphogenesis in arbuscular mycorrhiza. Plant Physiology 168, 788-797.
Rípodas, C., Castaingts, M., Clúa, J., Blanco, F., and Zanetti, M.E. (2015). Annotation, phylogeny and expression analysis of the nuclear factor Y gene families in common bean (Phaseolus vulgaris). Frontiers in Plant Science 5, 761.
Rípodas, C., Castaingts, M., Clúa, J., Villafañe, J., Blanco, F.A., and Zanetti, M.E. (2019). The PvNF-YA1 and PvNF-YB7 subunits of the heterotrimeric NF-Y transcription factor influence strain preference in the Phaseolus vulgaris–Rhizobium etli symbiosis. Frontiers in Plant Science 10, 221.
Roth, R., Chiapello, M., Montero, H., Gehrig, P., Grossmann, J., O'Holleran, K., Hartken, D., Walters, F., Yang, S.Y., Hillmer, S., Schumacher, K., Bowden, S., Craze, M., Wallington, E.J., Miyao, A., Sawers, R., Martinoia, E., and Paszkowski, U. (2018). A rice Serine/Threonine receptor-like kinase regulates arbuscular mycorrhizal symbiosis at the peri-arbuscular membrane. Nature Communications 9, 4677.
Schaarschmidt, S., Gresshoff, P.M., and Hause, B. (2013). Analyzing the soybean transcriptome during autoregulation of mycorrhization identifies the transcription factors GmNF-YA1a/b as positive regulators of arbuscular mycorrhization. Genome Biology 14, R62.
Schüßler, A., Martin, H., Cohen, D., Fitz, M., and Wipf, D. (2006). Characterization of a carbohydrate transporter from symbiotic glomeromycotan fungi. Nature 444, 933.
Siefers, N., Dang, K.K., Kumimoto, R.W., Bynum, W.E., Tayrose, G., and Holt, B.F. (2009). Tissue-specific expression patterns of Arabidopsis NF-Y transcription factors suggest potential for extensive combinatorial complexity. Plant Physiology 149, 625-641.
Singh, S., Katzer, K., Lambert, J., Cerri, M., and Parniske, M. (2014). CYCLOPS, a DNA-binding transcriptional activator, orchestrates symbiotic root nodule development. Cell Host Microbe 15, 139-152.
Soyano, T., Kouchi, H., Hirota, A., and Hayashi, M. (2013). Nodule inception directly targets NF-Y subunit genes to regulate essential processes of root nodule development in Lotus japonicus. PLoS Genetics 9, e1003352.
Sugimura, Y., and Saito, K. (2017). Comparative transcriptome analysis between Solanum lycopersicum L. and Lotus japonicus L. during arbuscular mycorrhizal development. Soil Science and Plant Nutrition 63, 127-136.
Takeda, N., Sato, S., Asamizu, E., Tabata, S., and Parniske, M. (2009). Apoplastic plant subtilases support arbuscular mycorrhiza development in Lotus japonicus. The Plant Journal 58, 766-777.
Thirumurugan, T., Ito, Y., Kubo, T., Serizawa, A., and Kurata, N. (2008). Identification, characterization and interaction of HAP family genes in rice. Molecular Genetics and Genomics 279, 279-289.
Tromas, A., Parizot, B., Diagne, N., Champion, A., Hocher, V., Cissoko, M., Crabos, A., Prodjinoto, H., Lahouze, B., Bogusz, D., Laplaze, L., and Svistoonoff, S. (2012). Heart of endosymbioses: transcriptomics reveals a conserved genetic program among arbuscular mycorrhizal, actinorhizal and legume-rhizobial symbioses. PLoS One 7, e44742.
Vangelisti, A., Natali, L., Bernardi, R., Sbrana, C., Turrini, A., Hassani-Pak, K., Hughes, D., Cavallini, A., Giovannetti, M., and Giordani, T. (2018). Transcriptome changes induced by arbuscular mycorrhizal fungi in sunflower (Helianthus annuus L.) roots. Scientific Reports 8, 1-14.
Varma, A., Prasad, R., and Tuteja, N. (2018). Mycorrhiza-nutrient uptake, biocontrol, ecorestoration. (Springer).
Wang, J., Li, G., Li, C., Zhang, C., Cui, L., Ai, G., Wang, X., Zheng, F., Zhang, D., and Larkin, R.M. (2020). NF‐Y plays essential roles in flavonoid biosynthesis by modulating histone modifications in tomato. New Phytologist. DOI: 10.1111/nph.17112
Waters, M.T., Gutjahr, C., Bennett, T., and Nelson, D.C. (2017). Strigolactone signaling and evolution. Annual Review of Plant Biology 68.
Xie, X., Huang, W., Liu, F., Tang, N., Liu, Y., Lin, H., and Zhao, B. (2013). Functional analysis of the novel mycorrhiza‐specific phosphate transporter AsPT1 and PHT1 family from Astragalus sinicus during the arbuscular mycorrhizal symbiosis. New Phytologist 198, 836-852.
Xue, L., Cui, H., Buer, B., Vijayakumar, V., Delaux, P.-M., Junkermann, S., and Bucher, M. (2015). Network of GRAS transcription factors involved in the control of arbuscule development in Lotus japonicus. Plant Physiology 167, 854-871.
Xue, L., Klinnawee, L., Zhou, Y., Saridis, G., Vijayakumar, V., Brands, M., Dörmann, P., Gigolashvili, T., Turck, F., and Bucher, M. (2018). AP2 transcription factor CBX1 with a specific function in symbiotic exchange of nutrients in mycorrhizal Lotus japonicus. Proceedings of the National Academy of Sciences 115, E9239-E9246.
Yan, W.H., Wang, P., Chen, H.X., Zhou, H.J., Li, Q.P., Wang, C.R., Ding, Z.H., Zhang, Y.S., Yu, S.B., Xing, Y.Z., and Zhang, Q.F. (2011). A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Molecular Plant 4, 319-330.
Yang, S.-Y., Grønlund, M., Jakobsen, I., Grotemeyer, M.S., Rentsch, D., Miyao, A., Hirochika, H., Kumar, C.S., Sundaresan, V., and Salamin, N. (2012). Nonredundant regulation of rice arbuscular mycorrhizal symbiosis by two members of the PHOSPHATE TRANSPORTER1 gene family. The Plant Cell 24, 4236-4251.
Yang, W., Lu, Z., Xiong, Y., and Yao, J. (2017). Genome-wide identification and co-expression network analysis of the OsNF-Y gene family in rice. The Crop Journal 5, 21-31.
Yano, K., Yoshida, S., Müller, J., Singh, S., Banba, M., Vickers, K., Markmann, K., White, C., Schuller, B., and Sato, S. (2008). CYCLOPS, a mediator of symbiotic intracellular accommodation. Proceedings of the National Academy of Sciences 105, 20540-20545.
Yu, N., Luo, D., Zhang, X., Liu, J., Wang, W., Jin, Y., Dong, W., Liu, J., Liu, H., and Yang, W. (2014). A DELLA protein complex controls the arbuscular mycorrhizal symbiosis in plants. Cell Research 24, 130-133.
Zanetti, M.E., Rípodas, C., and Niebel, A. (2017). Plant NF-Y transcription factors: Key players in plant-microbe interactions, root development and adaptation to stress. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms 1860, 645-654.
Zanetti, M.E., Blanco, F.A., Beker, M.P., Battaglia, M., and Aguilar, O.M. (2010). A C subunit of the plant nuclear factor NF-Y required for rhizobial infection and nodule development affects partner selection in the common bean–Rhizobium etli symbiosis. The Plant Cell 22, 4142-4157.
Zhang, J., Zhou, X., Yan, W., Zhang, Z., Lu, L., Han, Z., Zhao, H., Liu, H., Song, P., Hu, Y., Shen, G., He, Q., Guo, S., Gao, G., Wang, G., and Xing, Y. (2015a). Combinations of the Ghd7, Ghd8 and Hd1 genes largely define the ecogeographical adaptation and yield potential of cultivated rice. New Phytologist 208, 1056-1066.
Zhang, X., Pumplin, N., Ivanov, S., and Harrison, M.J. (2015b). EXO70I is required for development of a sub-domain of the periarbuscular membrane during arbuscular mycorrhizal symbiosis. Current Biology 25, 2189-2195.
Zhao, H., Wu, D., Kong, F., Lin, K., Zhang, H., and Li, G. (2017). The Arabidopsis thaliana Nuclear Factor Y transcription factors. Frontiers in Plant Science 7, 2045.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15394-
dc.description.abstract叢枝菌根菌共生(arbuscular mycorrhizal (AM) symbiosis)是一種古老且廣泛存在於植物與叢枝菌根真菌之間的生命現象,許多重要的作物皆可與菌根菌建立共生關係,例如水稻、小麥、玉米、番茄等等。菌根菌的菌絲在共生過程中會在根內沿著植物細胞間隙(apoplast)生長,並且藉由特化之菌絲結構arbuscule進行營養互換。在叢枝菌根菌共生過程中,植物細胞的轉錄體會進行一系列大規模的改變,前人研究已在多種植物中發現上百個差異表現之基因,但是大多數的功能都還未知。本篇研究發現了一個保守存在於菌根菌宿主植物的轉錄因子基因NF-YC3,其蛋白質產物為核因子C型次單元蛋白(C subunit of nuclear factor Y),在番茄中正向調控叢枝菌根菌共生。此基因在番茄根部會被菌根菌大幅誘導表現,無真菌共生時則幾乎不表現。此基因之表現可能被順式作用元件(cis-regulatory element)GCC-box調控,大部分表現在含有arbuscule的皮層(cortex)細胞中。在nf-yc3基因靜默(gene silencing)之根部中,所有根內菌根菌結構的量會顯著地降低,且大型arbuscule出現的比率也減少了,顯示NF-YC3可能藉由支持根內菌絲(intraradical hyphae)生長以及arbuscule生成,進而正向調控叢枝菌根菌共生。相對地,過量表現NF-YC3-GFP並不會影響菌根菌的型態與多寡,顯示內源NF-YC3已足夠完全支持叢枝菌根菌共生。我們接著發現四個可能位於NF-YC3下游的基因:NF-YB3a(核因子B型次單元蛋白基因)、Exo70I(EXOCYST complex次單元蛋白基因)、RAD1(GRAS轉錄因子基因)以及Solyc02g088310 (AP2/ERF轉錄因子基因)。Exo70I和RAD1在苜蓿中的功能皆與arbuscule生成有正相關,和nf-yc3基因靜默的結果相符。總結來說,番茄中的NF-YC3可能藉由誘導NF-YB3a、Exo70I、RAD1和Solyc02g088310表現,支持根內菌絲生長以及arbuscule生成,進而正向調控叢枝菌根菌共生。zh_TW
dc.description.abstractArbuscular mycorrhizal (AM) symbiosis is an ancient and widespread plant-fungi association, and many agronomically important crops can be colonized by AM fungi, such as rice, maize, wheat, tomato, etc. AM fungi hyphae can extend through root apoplast and promote bidirectional nutrient exchange through a specialized hyphal structure called arbuscule. During AM symbiosis, plant cells undergo a set of large-scale transcriptional reprogramming. Hundreds of differentially expressed genes have been identified in plenty of plant species, while most of them are functionally unknown. Here, we demonstrated that a phylogenetically conserved transcription factor gene Nuclear Factor YC3 (SlNF-YC3), which encodes a C subunit of nuclear factor Y (NF-Y), positively regulates AM symbiosis in tomato. Its expression was barely detectable in roots without AM colonization but was strongly induced following the progression of AM symbiosis. The spatial expression of NF-YC3 was observed in cortical cells containing arbuscule, probably via the cis-regulatory element GCC-boxes. The abundance of all intraradical AM fungal structures, including arbuscule, vesicle and intraradical hyphae, was significantly reduced in nf-yc3 RNAi roots. Formation of larger arbuscules in nf-yc3 RNAi roots was also hindered. These results suggest that NF-YC3 positively regulates AM symbiosis, probably via supporting AM intraradical fungal growth and arbuscule formation. By contrast, no phenotype was observed in NF-YC3-GFP overexpression roots compared to the control groups, suggesting that endogenous NF-YC3 is able to fully support AM symbiosis. Subsequently, we identified four candidate genes, NF-YB3a (B subunit of NF-Y), Exo70I (EXOCYST complex subunit), RAD1 (GRAS transcription factor) and Solyc02g088310 (AP2/ERF transcription factor), which may act downstream of NF-YC3. Evidence supports that both Exo70I and RAD1 are responsible for arbuscule formation in Medicago truncatula, which coincides with the phenotype of nf-yc3 RNAi roots. Taken together, SlNF-YC3 was found positively regulating AM symbiosis in tomato, probably via inducing NF-YB3a, Exo70I, RAD1 and Solyc02g088310 to support AM intraradical fungal growth and arbuscule formation.en
dc.description.provenanceMade available in DSpace on 2021-06-07T17:33:42Z (GMT). No. of bitstreams: 1
U0001-0202202114530600.pdf: 8844308 bytes, checksum: 6a61128474cf2bac3b9047ddd9910b77 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員會審定書 i
Acknowledgement ii
中文摘要 iii
Abstract iv
List of Abbreviations vi
Table of Contents vii
List of Figures ix
List of Supplementary Figures x
List of Supplementary Tables xi
Chapter 1 Introduction 1
1.1 The widespread biological phenomena: arbuscular mycorrhizal symbiosis 1
1.2 The transcriptional regulation in AM symbiosis 3
1.3 The evolutionary conserved transcription factor Nuclear Factor Y 7
1.4 Nuclear Factor Y subunits involve in regulating AM symbiosis 10
Chapter 2 Materials and Methods 13
2.1 Plant material, growth and AM inoculation conditions 13
2.2 Construct generation 14
2.3 Genotyping of rice mutant 3A-18183R 16
2.4 Root staining and quantification of AM colonization level 16
2.5 RNA extraction, cDNA synthesis and real-time RT-PCR 17
2.6 Phylogenetic analysis and protein alignment 17
2.7 Tomato hairy root generation and transformation 18
2.8 Promoter-GUS assay and wheat germ agglutinin staining 18
2.9 Yeast two-hybrid approach 19
2.10 Accession numbers 20
Chapter 3 Results 22
3.1 OsNF-YB11 and OsNF-YC3 are upregulated during AM symbiosis in rice 22
3.2 OsNF-YB11 might play positive roles in regulating AM symbiosis in rice 22
3.3 The orthologous gene Solyc04g054150 (SlNF-YB3a) and Solyc08g007960 (SlNF-YC3) are upregulated during AM symbiosis in tomato 23
3.4 The N-terminal region, G41 and K60 may be crucial to the function of SlNF-YC3 24
3.5 SlNF-YC3 is induced mainly in arbusculated cells and the induction might need GCC-boxes 26
3.6 SlNF-YC3 is required for AM symbiosis in tomato 27
3.7 Knockdown of SlNF-YC3 reduced the size of arbuscules 29
3.8 SlNF-YB3a, SlExo70I, SlRAD1 and Solyc02g088310 may be downstream to SlNF-YC3 during AM symbiosis in tomato 30
3.9 No SlNF-YA interacts with SlNF-YC3 in yeast-two hybrid system 33
Chapter 4 Discussion 34
4.1 OsNF-YB11/SlNF-YB3a and OsNF-YC3/SlNF-YC3 may positively regulate AM symbiosis 34
4.2 SlNF-YC3 is phylogenetically conserved in AM hosts 35
4.3 SlNF-YC3 is induced mainly in arbusculated cells, probably via the cis-regulatory element GCC-box 36
4.4 SlNF-YC3 is required for AM intraradical fungal growth 39
4.5 SlNF-YC3 may positively regulate the initiation of the arbuscule development 40
4.6 SlNF-YC3 may form a non-canonical NF-Y complex regulating SlNF-YB3a, SlExo70I, SlRAD1 and Solyc02g083310 44
Figures 48
Supplementary figures 59
Supplementary tables 71
References 77
dc.language.isoen
dc.title番茄核因子次單元蛋白SlNF-YC3正向調控叢枝菌根菌共生zh_TW
dc.titleTomato NF-Y transcription factor subunit SlNF-YC3 positively regulates arbuscular mycorrhizal symbiosis in tomatoen
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.oralexamcommittee吳克強(Ke-Qiang Wu),劉瑞芬(Ruey-Fen Liou),馬麗珊(Lay-Sun Ma)
dc.subject.keyword叢枝菌根菌共生,轉錄因子,核因子,NF-YC3,GCC-box,zh_TW
dc.subject.keywordarbuscular mycorrhizal (AM) symbiosis,transcription factor,nuclear factor Y (NF-Y),NF-YC3,GCC-box,en
dc.relation.page85
dc.identifier.doi10.6342/NTU202100383
dc.rights.note未授權
dc.date.accepted2021-02-03
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
顯示於系所單位:植物科學研究所

文件中的檔案:
檔案 大小格式 
U0001-0202202114530600.pdf
  目前未授權公開取用
8.64 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved