Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15320
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃光裕(Kuang-Yuh Huang)
dc.contributor.authorChung-Hsiang Chengen
dc.contributor.author鄭仲翔zh_TW
dc.date.accessioned2021-06-07T17:32:51Z-
dc.date.copyright2020-07-17
dc.date.issued2020
dc.date.submitted2020-07-06
dc.identifier.citation[1] Alexander, S., Hellemans, L., Marti, O., Schneir, J., Elings, V., Hansma, P. K., … Gurley, J. (1989). An atomic‐resolution atomic‐force microscope implemented using an optical lever. Journal of Applied Physics, 65(1), 164–167. doi: 10.1063/1.342563.
[2] Hwu, E.-T., Hung, S.-K., Yang, C.-W., Hwang, I.-S., Huang, K.-Y. (2007). Simultaneous detection of translational and angular displacements of micromachined elements. Applied Physics Letters, 91(22), 221908. doi: 10.1063/1.2817750.
[3] Park Systems. Park NX-Hivac, Brochures.
[4] Bruker Corporation. (2014). Bruker AFMs Help Boise State University Students Perform Unique DNA Project CS502.
[5] Nanosurf. NaioAFM, Brochure.
[6] Binnig, G., Rohrer, H., Gerber, C., Weibel, E. (1982). Surface Studies by Scanning Tunneling Microscopy. Physical Review Letters, 49(1), 57-61. doi: 10.1103/ physrevlett.49.57
[7] Binnig, G., Rohrer, H., Gerber, C., Weibel, E. (1983). 7 × 7 Reconstruction on Si(111) Resolved in Real Space. Physical Review Letters, 50(2), 120–123. doi: 10.1103/physrevlett.50.120
[8] Binnig, G., Rohrer, H. (1983). Scanning Tunneling Microscopy. Surface Science, 126(1–3), 236–244. doi: 10.1016/0039-6028(83)90716-1.
[9] Binnig, G., Rohrer, H. (1985). Scanning Tunneling Microscopy. Surface Science, 152–153(1), 17–26. doi: 10.1016/0039-6028(85)90120-7.
[10] Matey, J. R. Blanc, J. (1985). Scanning Capacitance Microscopy. Journal of Applied Physics 57(5), 1437–1444. doi: 10.1063/1.334506.
[11] Bugg, C. D. King, P. J. (1988). Scanning Capacitance Microscopy. Journal of Physics E: Scientific Instruments, 21(2), 147–151.
[12] Williams, C. C., Hough, W. P., Rishton, S. A. (1989). Scanning Capacitance Microscopy on a 25 nm Scale. Applied Physics Letters, 55(2), 203–205. doi: 10.1063/1.102096.
[13] Binnig, G., Quate, C. F. Gerber, Ch. (1986). Atomic Force Microscope. Physical Review Letters, 56(9), 930–933.
[14] Martin, Y., Wickramasinghe, H. K. (1987). Magnetic imaging by ‘‘force microscopy’’ with 1000 Å resolution. Applied Physics Letters , 50(20), 1455 – 1457. doi: 10.1063/1.97800.
[15] Rugar, D., Mamin, H. J., Guethner, P., Lambert, S. E., Stern, J. E., Mcfadyen, I., Yogi, T. (1990). Magnetic force microscopy: General principles and application to longitudinal recording media. Journal of Applied Physics, 68(3), 1169–1183. doi: 10.1063/1.346713.
[16] Mate, C. M., Mcclelland, G. M., Erlandsson, R., Chiang, S. (1987). Atomic-scale friction of a tungsten tip on a graphite surface. Physical Review Letters, 59(17), 1942–1945. doi: 10.1103/physrevlett.59.1942.
[17] Martin, Y., Abraham, D. W., Wickramasinghe, H. K. (1988). High‐resolution capacitance measurement and potentiometry by force microscopy. Applied Physics Letters, 52(13), 1103–1105. doi: 10.1063/1.99224.
[18] Maivald, P., Butt, H. J., Gould, S. A. C., Prater, C. B., Drake, B., Gurley, J. A., … Hansma, P. K. (1991). Using force modulation to image surface elasticities with the atomic force microscope. Nanotechnology, 2(2), 103–106. doi: 10.1088/0957-4484/2/2/004.
[19] Martin, Y., Williams, C. C., Wickramasinghe, H. K. (1987). Atomic force microscope–force mapping and profiling on a sub 100‐Å scale. Journal of Applied Physics, 61(10), 4723–4729. doi: 10.1063/1.338807.
[20] Sarid, D., Bell, L. S., Iams, D., Weissenberger, V. (1988). Compact scanning-force microscope using a laser diode. Optics Letters, 13(12), 1057. doi: 10.1364/ol.13.001057.
[21] Meyer, G., Amer, N. M. (1988). Erratum: Novel optical approach to atomic force microscopy [Appl. Phys. Lett. 53, 1045 (1988)]. Applied Physics Letters, 53(24), 2400–2402. doi: 10.1063/1.100425.
[22] Jung, P., Yaniv, D. (1993). Novel stationary-sample atomic force microscope with beam-tracking lens. Electronics Letters, 29(3), 264. doi: 10.1049/el:19930181.
[23] Hansma, P. K., Drake, B., Grigg, D., Prater, C. B., Yashar, F., Gurley, G., … Lal, R. (1994). A new, optical‐lever based atomic force microscope. Journal of Applied Physics, 76(2), 796–799. doi: 10.1063/1.357751.
[24] Günther, P., Fischer, U. Ch. Dransfeld, K. (1989). Scanning Near-Field Acoustic Microscopy, Applied Physics B Photophysics and Laser Chemistry, 48(1), 89–92 (1989). doi: 10.1007/BF00694423.
[25] Edwards, H., Taylor, L., Duncan, W., Melmed, A. J. (1997). Fast, high-resolution atomic force microscopy using a quartz tuning fork as actuator and sensor. Journal of Applied Physics, 82(3), 980–984. doi: 10.1063/1.365936.
[26] Akiyama, T., Staufer, U., Rooij, N. D. (2003). Self-sensing and self-actuating probe based on quartz tuning fork combined with microfabricated cantilever for dynamic mode atomic force microscopy. Applied Surface Science, 210(1-2), 18–21. doi: 10.1016/s0169-4332(02)01471-x.
[27] Tortonese, M., Barrett, R. C., Quate, C. F. (1993). Atomic resolution with an atomic force microscope using piezoresistive detection. Applied Physics Letters, 62(8), 834–836. doi: 10.1063/1.108593.
[28] Itoh, T., Suga, T. (1993). Development of a force sensor for atomic force microscopy using piezoelectric thin films. Nanotechnology, 4(4), 218–224. doi: 10.1088/0957-4484/4/4/007.
[29] Itoh, T., Suga, T. (1996). Self-excited force-sensing microcantilevers with piezoelectric thin films for dynamic scanning force microscopy. Sensors and Actuators A: Physical, 54(1-3), 477–481. doi: 10.1016/s0924-4247(97)80007-6.
[30] Sulchek, T. Hsieh, R., Adams, J. D., Minne, S. C., Quate, C. F. Adderton, D. M. (2000). High-speed atomic force microscopy in liquid. Review of Scientific Instruments 71(5), 2097–2099. doi: 10.1063/1.1150586.
[31] Ando, T., Kodera, N., Takai, E., Maruyama, D., Saito, K., Toda, A. (2001). A high-speed atomic force microscope for studying biological macromolecules. Proceedings of the National Academy of Sciences, 98(22), 12468–12472. doi: 10.1073/pnas.211400898.
[32] Kodera, N., Yamashita, H., Ando, T. (2005). Active damping of the scanner for high-speed atomic force microscopy. Review of Scientific Instruments, 76(5), 053708. doi: 10.1063/1.1903123.
[33] Ando, T. (2012). High-speed atomic force microscopy coming of age. Nanotechnology, 23(6), 062001. doi: 10.1088/0957-4484/23/6/062001.
[34] Lin, S., Lee, C.-K., Lee, S.-Y., Kao, C.-L., Lin, C.-W., Wang, A.-B., … Huang, L.-S. (2005). Surface ultrastructure of SARS coronavirus revealed by atomic force microscopy. Cellular Microbiology, 7(12), 1763–1770. doi: 10.1111/j.1462-5822.2005.00593.x.
[35] Quercioli, F., Tiribilli, B., Ascoli, C., Baschieri, P., Frediani, C. (1999). Monitoring of an atomic force microscope cantilever with a compact disk pickup. Review of Scientific Instruments, 70(9), 3620–3624. doi: 10.1063/1.1149969.
[36] Huang, K.-Y., Hwu, E.-T., Chow, H.-Y., Hung, S.-K. (n.d.). Development of an optical pickup system for measuring the displacement of the micro cantilever in scanning probe microscope. IEEE International Conference on Mechatronics, 2005. ICM 05. doi: 10.1109/icmech.2005.1529345.
[37] Hwu, E.-T., Huang, K.-Y., Hung, S.-K., Hwang, I.-S. (2006). Measurement of Cantilever Displacement Using a Compact Disk/Digital Versatile Disk Pickup Head. Japanese Journal of Applied Physics, 45(3B), 2368–2371. doi: 10.1143/jjap.45.2368.
[38] Hwu, E.-T., Hung, S.-K., Yang, C.-W., Huang, K.-Y., Hwang, I.-S. (2008). Real-time detection of linear and angular displacements with a modified DVD optical head. Nanotechnology, 19(11), 115501. doi: 10.1088/0957-4484/19/11/115501.
[39] Hwu, E.-T. (2006). Design and Development of a Multiaxial Astigmatic Displacement Measuring System, 國立台灣大學機械工程學研究所博士論文。
[40] Hwu, E.-T., Illers, H., Jusko, L., Danzebrink, H.-U. (2009). A hybrid scanning probe microscope (SPM) module based on a DVD optical head. Measurement Science and Technology, 20(8), 084005. doi: 10.1088/0957-0233/20/8/084005.
[41] Wang, W.-M., Cheng, C.-H., Molnar, G., Hwang, I.-S., Huang, K.-Y., Danzebrink, H.-U., Hwu, E.-T. (2016). Optical imaging module for astigmatic detection system. Review of Scientific Instruments, 87(5), 053706. doi: 10.1063/1.4952438.
[42] Chen, C.-H., Cheng, C.-H., Juang, B.-J., Ko, H.-C., Hwang, I.-S., Huang, K.-Y. Hwu, E.-T. (2013). Measurement of thermal vibration of microcantilevers with blue-ray DVD pick-up unit. The 5th International Conference of Asian Society for Precision Engineering and Nanotechnology (ASPEN2013).
[43] Liao, H.-S., Huang, K.-Y., Hwang, I.-S., Chang, T.-J., Hsiao, W. W., Lin, H.-H., … Chang, C.-S. (2013). Operation of astigmatic-detection atomic force microscopy in liquid environments. Review of Scientific Instruments, 84(10), 103709. doi: 10.1063/1.4826494.
[44] Liao, H.-S., Chen, Y.-H., Ding, R.-F., Huang, H.-F., Wang, W.-M., Hwu, E.-T., … Hwang, I.-S. (2014). High-speed atomic force microscope based on an astigmatic detection system. Review of Scientific Instruments, 85(10), 103710. doi: 10.1063/1.4898019.
[45] Kimura, Y., Sugama, S., Ono, Y. (1988). Compact optical head using a holographic optical element for CD players. Applied Optics, 27(4), 668. doi: 10.1364/ao.27.000668.
[46] Juang, B.-J., Huang, K.-Y., Liao, H.-S., Leong, K.-C., Hwang, I.-S. (2010). AFM pickup head with holographic optical element (HOE). 2010 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. 442–446. doi: 10.1109/aim.2010.5695758.
[47] Chang, T.-J. (2012). Design and Development of a Holographic Optical Element Atomic Force Microscope in Liquid, 國立台灣大學機械工程學研究所碩士論文。
[48] Juang, B.-J. (2015). Design and Development of HOE-based Atomic Force Microscope with Translational and Angular measurements, 國立台灣大學機械工程學研究所博士論文。
[49] Armstrong, T. R., Fitzgerald, M. P. (1992). An autocollimator based on the laser head of a compact disc player. Measurement Science and Technology, 3(11), 1072–1076. doi: 10.1088/0957-0233/3/11/009.
[50] Quercioli, F., Mannoni, A., Tiribilli, B. (1998). Laser Doppler velocimetry with a compact disc pickup. Applied Optics, 37(25), 5932–5937. doi: 10.1364/ao.37.005932.
[51] Chu, C.-L., Lin, C.-H. (2005). Development of an optical accelerometer with a DVD pick-up head. Measurement Science and Technology, 16(12), 2498–2502. doi: 10.1088/0957-0233/16/12/014.
[52] Quercioli, F., Tiribilli, B., Bartoli, A. (1999). Interferometry with optical pickups. Optics Letters, 24(10), 670–672. doi: 10.1364/ol.24.000670
[53] Hwu, E.-T., Cheng, C.-H., Chen, C.-H., Wang, W.-M., Chen, H.-H. (2015). Ultra-High Precision Measurement and Positioning System, 科儀新知, 203, 61–71.
[54] Hwu, E. E.-T., Boisen, A. (2018). Hacking CD/DVD/Blu-ray for Biosensing. ACS Sensors, 3(7), 1222–1232. doi: 10.1021/acssensors.8b00340.
[55] Hwang, I.-S. (2005). Scanning Probe Microscopy Principles and Applications, 科儀新知, 26(4), 7–17.
[56] Thorlabs, Inc. (2011). AE0203D04F Piezoelectric Actuator specification sheet.
[57] Thorlabs, Inc. (2011). AE0203D08F Piezoelectric Actuator specification sheet.
[58] Tricore corporation. (2018). Stepping motor SRM1509009, Tricore Product Catalog, 25–36.
[59] National Instruments Corporation. (2018). myRIO-1950 Embedded Device, User Guide and Specifications.
[60] MikroMasch. (2020). SPM Probes Test Structures, MikroMasch Product Catalogue.
[61] NT-MDT Spectrum Instruments Ltd. TGQ1 test grating, AFM Probes Accessories Catalogue, 44–57.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15320-
dc.description.abstract原子力顯微鏡(Atomic Force Microscope, AFM)應用領域含括奈米量測、材料科學與生醫工程等。現今,AFM更朝檢測環境控制或動態檢測發展,如:水溶液環境、超高真空或即時動態觀測。因此,AFM一直是學術研發的重點項目之一。
新型離焦式原子力顯微鏡(Defocus Atomic Force Microscope, DeF-AFM)係利用光碟機讀取頭(Optical Pick-up Unit, OPU)作為開發核心元件,大幅提升系統穩定性與可靠度。運用光碟機讀取頭內部雷射搭配光學透鏡與光檢測器(Photodiode IC, PDIC),建構高斯光束(Gaussian beam)縱向強度量測系統,再藉由解析入射懸臂之匯聚光束於光軸上的指數強度變化量,獲得懸臂位移。高斯光束縱向量測機制具有兩區域線性量測範圍並對稱於焦點且各為8 μm。不同於以往光學量測系統操作之焦點位置,本系統於量測時僅需操作於其中一區域,因此構成本文之離焦式原子力顯微鏡。
光學量測系統性能取決於量測光源的穩定程度,因此本研究進行雷射波長飄移對離焦式量測系統的影響分析與討論。利用光譜儀測得本研究使用之光碟機讀取頭的雷射波長飄移量為1.7 nm,同調長度為179.1 μm。上述數值會造成匯聚光位置偏移302.6 nm。而本系統架構下的線性量測範圍為8 μm,因此操作於輕敲式(Tapping mode)下,將可免於匯聚光位置偏移影響。此外,雷射之同調長度遠大於線性量測範圍,因此於垂直式光路下之光學干涉現象將無可避免。
本研究亦設計DeF-AFM之配套控制器,XYZ三軸動態量測範圍可達13410.9 nm、12714.9 nm與1400 nm,並分別具備橫向解析度為3.3 nm與3.1 nm以及縱向解析能力為0.34 nm。經實驗結果證實,本論文所發展之新型離焦式原子力顯微鏡DeF-AFM具有獲得石墨單層原子台階之解析能力。
zh_TW
dc.description.abstractThe application fields of Atomic Force Microscope including the nano-measurement, material science, and biomedical engineering, etc. Nowadays, the development of the AFM towards inspection environment control or dynamic detection such as in the solution environment, in the ultra-high vacuum, or the real-time observation. Therefore, AFM is always one of the crucial items in academic study.
This novel AFM is named Defocus Atomic Force Microscope (DeF-AFM), which applies the optical pick-up unit (OPU) as the core component, dramatically improves the stability and the reliability of the system. A Gaussian beam intensity measuring system is built by the laser diode, the optical lens, and the photodiode IC (PDIC) inside the OPU. The displacement of the cantilever is acquired through analyzing the exponential intensity change along the optic axis focusing on the cantilever. There are two sections of the linear measuring region, which are bilateral symmetry from the focus with 8 μm range, in this Gaussian beam intensity measuring mechanism. Different from the focus position in the traditional optical measuring system, this measuring mechanism needs only one section of the linear measuring region. Therefore, the Def-AFM in this dissertation is constructed.
The performance of the optical measuring system depends on the stability of the light source. Therefore, the influence of the wavelength drift of the laser is analyzed and discussed in this study. The values of the wavelength drift and the coherent length are measured by a spectrometer to be 1.7 nm and 179.1 μm, respectively. The position of the focused laser will then be deviated about 302.6 nm by the values. However, the linear measuring range is 8 μm in this system, therefore, the deviation won’t be affected under operating in the tapping mode. Besides, the interference of the vertical optical path will be inevitable, because the coherent length is greater than the linear measuring range.
The support controller for the DeF-AFM is also designed and manufactured in this study. The dynamic measuring ranges in X, Y, and Z-axis are 13410.9 nm, 12714.9 nm, and 1400 nm with the horizontal resolution of 3.3 nm, 3.1 nm, and the vertical resolution 0.34 nm, respectively. The resolving ability of this new type of DeF-AFM is verified by resolving the single atomic step on the highly ordered pyrolytic graphite (HOPG).
en
dc.description.provenanceMade available in DSpace on 2021-06-07T17:32:51Z (GMT). No. of bitstreams: 1
U0001-0407202015193300.pdf: 16213063 bytes, checksum: db4514a48e94b79043b0b9aa163ad426 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iii
目錄 v
圖目錄 viii
表目錄 xiii
符號說明 xiv
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 4
1.3 文獻回顧 5
1.3.1 SPM發展過程與趨勢 5
1.3.2 原子力顯微鏡原理 14
1.3.3 光碟機讀取頭(Optical Pick-up Unit, OPU)應用於原子力顯微鏡 20
1.3.4 原子力顯微鏡之懸臂量測機制發展回顧與比較 29
1.4 論文架構 30
第二章 量測系統之基礎理論 32
2.1 高斯光束(Gaussian beam) 32
2.1.1 高斯光束之橫向強度分佈 33
2.1.2 聚焦光斑尺寸與景深 35
2.1.3 高斯光束之縱向量測原理 37
2.2 光碟機讀取頭光路架構與偵測原理 40
2.3 離焦式原子力顯微鏡DeF-AFM系統簡介 43
第三章 離焦式原子力顯微鏡DeF-AFM之量測模組設計分析 45
3.1 高斯光束之縱向量測法應用於離焦式原子力顯微鏡之架構 45
3.2 高斯光束縱向量測法光路之模擬分析 47
3.2.1 入射光匯聚現象對靈敏度之影響 50
3.2.2 量測訊號動態量測範圍分析探討 52
3.2.3 高斯光束之變化對光檢測器PDIC之量測光斑影響與分析探討 56
3.2.4 波長飄移對量測誤差之影響 60
3.2.5 光檢測器PDIC之複合高斯縱向訊號對量測性能之影響 63
3.3 高斯光束縱向量測模組之設計與開發 67
第四章 控制器設計及其量測與系統致動性能分析探討 68
4.1 量測模組電路設計與性能分析 68
4.1.1 光學干涉現象與高頻調製電路C_HFM 70
4.1.2 高速光檢測器PDIC之驅動電路C_PDICD 70
4.2 雷射驅動與高壓傳輸電路設計與性能分析 72
4.2.1 雷射自動功率控制電路C_APC 74
4.2.2 高斯訊號處理電路C_GSP 75
4.2.3 下針模組極限位置偵測電路C_LPD 76
4.3 DeF-AFM主控制器設計 78
4.3.1 音圈馬達控制與驅動電路C_VCMD 81
4.3.2 輕敲模式振幅計算電路C_TMC與非輕敲模式訊號處理電路C_NTMC 84
4.3.3 電源供應轉換電路C_PSC 89
4.3.4 三軸撓性壓電致動器與壓電驅動電路C_PZD 91
4.3.5 懸臂激振電路C_ESG 93
4.3.6 下針模組驅動電路C_SMD 95
4.3.7 量測訊號擷取裝置 96
第五章 離焦式原子力顯微鏡DeF-AFM性能驗證 97
5.1 DeF-AFM之橫向解析能力驗證 97
5.2 DeF-AFM之縱向解析能力驗證 101
5.2.1 形貌回饋致動性能之驗證 101
5.2.2 DeF-AFM量測靈敏度之測試 102
5.3 DeF-AFM系統之掃描量測性能驗證 105
第六章 結論與未來展望 108
6.1 結論 108
6.2 未來展望 111
參考文獻 114
附錄 121
dc.language.isozh-TW
dc.subject原子台階zh_TW
dc.subject原子力顯微鏡zh_TW
dc.subject離焦式zh_TW
dc.subject雷射二極體zh_TW
dc.subject高斯光束zh_TW
dc.subject縱向量測zh_TW
dc.subject光碟機讀取頭zh_TW
dc.subjectDefocusen
dc.subjectAtomic Stepen
dc.subjectOptical Pick-up Uniten
dc.subjectAxial Intensity Measuringen
dc.subjectGaussian Beamen
dc.subjectLaser Diodeen
dc.subjectAtomic Force Microscopeen
dc.title高斯光束縱向解析原理應用於新型離焦式原子力顯微鏡之研發zh_TW
dc.titleAxial Intensity Measuring Principle of Gaussian Beam for Developing a Novel Defocus Atomic Force Microscopeen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree博士
dc.contributor.oralexamcommittee廖先順(Hsien-Shun Liao),張若軒(Jo-Hsuan Chang),楊志文(Chih-Wen Yang),莊博景(Bo-Jing juang)
dc.subject.keyword原子力顯微鏡,離焦式,雷射二極體,高斯光束,縱向量測,光碟機讀取頭,原子台階,zh_TW
dc.subject.keywordAtomic Force Microscope,Defocus,Laser Diode,Gaussian Beam,Axial Intensity Measuring,Optical Pick-up Unit,Atomic Step,en
dc.relation.page125
dc.identifier.doi10.6342/NTU202001312
dc.rights.note未授權
dc.date.accepted2020-07-07
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
U0001-0407202015193300.pdf
  未授權公開取用
15.83 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved