Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15313
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor牟中原(Chung-Yuan Mou)
dc.contributor.authorChia-I Linen
dc.contributor.author林佳儀zh_TW
dc.date.accessioned2021-06-07T17:32:47Z-
dc.date.copyright2020-07-27
dc.date.issued2020
dc.date.submitted2020-07-23
dc.identifier.citationRaman, C. V.; Krishnan, K. S., A New Type of Secondary Radiation. Nature 1928, 121 (3048), 501-502.
Moura, C. C.; Tare, R. S.; Oreffo, R. O. C.; Mahajan, S., Raman spectroscopy and coherent anti-Stokes Raman scattering imaging: prospective tools for monitoring skeletal cells and skeletal regeneration. Journal of The Royal Society Interface 2016, 13 (118), 20160182.
Fleischmann, M.; Hendra, P. J.; McQuillan, A. J., Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters 1974, 26 (2), 163-166.
Jeanmaire, D. L.; Van Duyne, R. P., Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1977, 84 (1), 1-20.
Albrecht, M. G.; Creighton, J. A., Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 1977, 99 (15), 5215-5217.
Moskovits, M., Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals. The Journal of Chemical Physics 1978, 69 (9), 4159-4161.
Creighton, J. A.; Blatchford, C. G.; Albrecht, M. G., Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics 1979, 75 (0), 790-798.
Stiles, P. L.; Dieringer, J. A.; Shah, N. C.; Duyne, R. P. V., Surface-Enhanced Raman Spectroscopy. Annual Review of Analytical Chemistry 2008, 1 (1), 601-626.
Campion, A.; Kambhampati, P., Surface-enhanced Raman scattering. Chemical Society Reviews 1998, 27 (4), 241-250.
Ding, S.-Y.; You, E.-M.; Tian, Z.-Q.; Moskovits, M., Electromagnetic theories of surface-enhanced Raman spectroscopy. Chemical Society Reviews 2017, 46 (13), 4042-4076.
Zong, C.; Xu, M.; Xu, L.-J.; Wei, T.; Ma, X.; Zheng, X.-S.; Hu, R.; Ren, B., Surface-Enhanced Raman Spectroscopy for Bioanalysis: Reliability and Challenges. Chemical Reviews 2018, 118 (10), 4946-4980.
Ding, S.-Y.; Yi, J.; Li, J.-F.; Ren, B.; Wu, D.-Y.; Panneerselvam, R.; Tian, Z.-Q., Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nature Reviews Materials 2016, 1 (6), 16021.
Cardinal, M. F.; Vander Ende, E.; Hackler, R. A.; McAnally, M. O.; Stair, P. C.; Schatz, G. C.; Van Duyne, R. P., Expanding applications of SERS through versatile nanomaterials engineering. Chemical Society Reviews 2017, 46 (13), 3886-3903.
Kambhampati, P.; Child, C. M.; Foster, M. C.; Campion, A., On the chemical mechanism of surface enhanced Raman scattering: Experiment and theory. The Journal of Chemical Physics 1998, 108 (12), 5013-5026.
Lu, X.; Rycenga, M.; Skrabalak, S. E.; Wiley, B.; Xia, Y., Chemical Synthesis of Novel Plasmonic Nanoparticles. Annual Review of Physical Chemistry 2009, 60 (1), 167-192.
Sonntag, M. D.; Klingsporn, J. M.; Zrimsek, A. B.; Sharma, B.; Ruvuna, L. K.; Van Duyne, R. P., Molecular plasmonics for nanoscale spectroscopy. Chemical Society Reviews 2014, 43 (4), 1230-1247.
Jain, P. K.; El-Sayed, M. A., Noble Metal Nanoparticle Pairs: Effect of Medium for Enhanced Nanosensing. Nano Lett. 2008, 8 (12), 4347-4352.
Kim, K.; Han, H. S.; Choi, I.; Lee, C.; Hong, S.; Suh, S.-H.; Lee, L. P.; Kang, T., Interfacial liquid-state surface-enhanced Raman spectroscopy. Nature Communications 2013, 4 (1), 2182.
Liu, S.; Chen, N.; Li, L.; Pang, F.; Chen, Z.; Wang, T., Fabrication of Ag/Au core-shell nanowire as a SERS substrate. Optical Materials 2013, 35 (3), 690-692.
Park, J.-E.; Lee, Y.; Nam, J.-M., Precisely Shaped, Uniformly Formed Gold Nanocubes with Ultrahigh Reproducibility in Single-Particle Scattering and Surface-Enhanced Raman Scattering. Nano Lett. 2018, 18 (10), 6475-6482.
Yuan, H.; Liu, Y.; Fales, A. M.; Li, Y. L.; Liu, J.; Vo-Dinh, T., Quantitative Surface-Enhanced Resonant Raman Scattering Multiplexing of Biocompatible Gold Nanostars for in Vitro and ex Vivo Detection. Analytical Chemistry 2013, 85 (1), 208-212.
Yan, J.; Han, X.; He, J.; Kang, L.; Zhang, B.; Du, Y.; Zhao, H.; Dong, C.; Wang, H.-L.; Xu, P., Highly Sensitive Surface-Enhanced Raman Spectroscopy (SERS) Platforms Based on Silver Nanostructures Fabricated on Polyaniline Membrane Surfaces. ACS Applied Materials Interfaces 2012, 4 (5), 2752-2756.
Hao, F.; Nehl, C. L.; Hafner, J. H.; Nordlander, P., Plasmon Resonances of a Gold Nanostar. Nano Lett. 2007, 7 (3), 729-732.
Jana, D.; Gorunmez, Z.; He, J.; Bruzas, I.; Beck, T.; Sagle, L., Surface Enhanced Raman Spectroscopy of a Au@Au Core–Shell Structure Containing a Spiky Shell. The Journal of Physical Chemistry C 2016, 120 (37), 20814-20821.
Wang, A. X.; Kong, X., Review of Recent Progress of Plasmonic Materials and Nano-Structures for Surface-Enhanced Raman Scattering. Materials 2015, 8 (6), 3024-3052.
Liu, Y.; Pedireddy, S.; Lee, Y. H.; Hegde, R. S.; Tjiu, W. W.; Cui, Y.; Ling, X. Y., Precision Synthesis: Designing Hot Spots over Hot Spots via Selective Gold Deposition on Silver Octahedra Edges. Small 2014, 10 (23), 4940-4950.
Goh, M. S.; Lee, Y. H.; Pedireddy, S.; Phang, I. Y.; Tjiu, W. W.; Tan, J. M. R.; Ling, X. Y., A Chemical Route To Increase Hot Spots on Silver Nanowires for Surface-Enhanced Raman Spectroscopy Application. Langmuir 2012, 28 (40), 14441-14449.
Song, L.; Huang, Y.; Nie, Z.; Chen, T., Macroscopic two-dimensional monolayer films of gold nanoparticles: fabrication strategies, surface engineering and functional applications. Nanoscale 2020, 12 (14), 7433-7460.
Wang, K.; Sun, D.-W.; Pu, H.; Wei, Q.; Huang, L., Stable, Flexible, and High-Performance SERS Chip Enabled by a Ternary Film-Packaged Plasmonic Nanoparticle Array. ACS Applied Materials Interfaces 2019, 11 (32), 29177-29186.
Chen, H.-Y.; Lin, M.-H.; Wang, C.-Y.; Chang, Y.-M.; Gwo, S., Large-Scale Hot Spot Engineering for Quantitative SERS at the Single-Molecule Scale. J. Am. Chem. Soc. 2015, 137 (42), 13698-13705.
Zhu, W.; Han, Y.; An, L., Silver nanoparticles synthesized from mesoporous Ag/SBA-15 composites. Microporous and Mesoporous Materials 2005, 80 (1), 221-226.
Zhu, J.; Kónya, Z.; Puntes, V. F.; Kiricsi, I.; Miao, C. X.; Ager, J. W.; Alivisatos, A. P.; Somorjai, G. A., Encapsulation of Metal (Au, Ag, Pt) Nanoparticles into the Mesoporous SBA-15 Structure. Langmuir 2003, 19 (10), 4396-4401.
Davidson, M.; Ji, Y.; Leong, G. J.; Kovach, N. C.; Trewyn, B. G.; Richards, R. M., Hybrid Mesoporous Silica/Noble-Metal Nanoparticle Materials—Synthesis and Catalytic Applications. ACS Applied Nano Materials 2018, 1 (9), 4386-4400.
Innocenzi, P.; Malfatti, L., Mesoporous materials as platforms for surface-enhanced Raman scattering. TrAC Trends in Analytical Chemistry 2019, 114, 233-241.
Lai, Y.-H.; Chen, S.-W.; Hayashi, M.; Shiu, Y.-J.; Huang, C.-C.; Chuang, W.-T.; Su, C.-J.; Jeng, H.-C.; Chang, J.-W.; Lee, Y.-C.; Su, A.-C.; Mou, C.-Y.; Jeng, U.-S., Mesostructured Arrays of Nanometer-spaced Gold Nanoparticles for Ultrahigh Number Density of SERS Hot Spots. Advanced Functional Materials 2014, 24 (17), 2544-2552.
Tian, C.; Deng, Y.; Zhao, D.; Fang, J., Plasmonic Silver Supercrystals with Ultrasmall Nanogaps for Ultrasensitive SERS-Based Molecule Detection. Advanced Optical Materials 2015, 3 (3), 404-411.
Gutierrez, L. F.; Hamoudi, S.; Belkacemi, K., Synthesis of Gold Catalysts Supported on Mesoporous Silica Materials: Recent Developments. Catalysts 2011, 1 (1), 97-154.
Yang, C.-M.; Lin, H.-A.; Zibrowius, B.; Spliethoff, B.; Schüth, F.; Liou, S.-C.; Chu, M.-W.; Chen, C.-H., Selective Surface Functionalization and Metal Deposition in the Micropores of Mesoporous Silica SBA-15. Chemistry of Materials 2007, 19 (13), 3205-3211.
Sun, J.; Ma, D.; Zhang, H.; Liu, X.; Han, X.; Bao, X.; Weinberg, G.; Pfänder, N.; Su, D., Toward Monodispersed Silver Nanoparticles with Unusual Thermal Stability. J. Am. Chem. Soc. 2006, 128 (49), 15756-15764.
Wang, Y.-W.; Kao, K.-C.; Wang, J.-K.; Mou, C.-Y., Large-Scale Uniform Two-Dimensional Hexagonal Arrays of Gold Nanoparticles Templated from Mesoporous Silica Film for Surface-Enhanced Raman Spectroscopy. The Journal of Physical Chemistry C 2016, 120 (42), 24382-24388.
Huo, Z. Y.; Tsung, C. K.; Huang, W. Y.; Zhang, X. F.; Yang, P. D., Sub-two nanometer single crystal Au nanowires. Nano Lett. 2008, 8 (7), 2041-2044.
Yang, J. L.; Mou, C. Y., Ordered mesoporous Au/TiO2 nanospheres for solvent-free visible-light-driven plasmonic oxidative coupling reactions of amines. Appl. Catal. B-Environ. 2018, 231, 283-291.
Kao, K. C.; Lin, C. H.; Chen, T. Y.; Liu, Y. H.; Mou, C. Y., A General Method for Growing Large Area Mesoporous Silica Thin Films on Flat Substrates with Perpendicular Nanochannels. J. Am. Chem. Soc. 2015, 137 (11), 3779-3782.
Michota, A.; Bukowska, J., Surface-enhanced Raman scattering (SERS) of 4-mercaptobenzoic acid on silver and gold substrates. Journal of Raman Spectroscopy 2003, 34 (1), 21-25.
Lu, J.; Cai, Z.; Zou, Y.; Wu, D.; Wang, A.; Chang, J.; Wang, F.; Tian, Z.; Liu, G., Silver Nanoparticle-Based Surface-Enhanced Raman Spectroscopy for the Rapid and Selective Detection of Trace Tropane Alkaloids in Food. ACS Applied Nano Materials 2019, 2 (10), 6592-6601.
Meng, X.; Wang, H.; Chen, N.; Ding, P.; Shi, H.; Zhai, X.; Su, Y.; He, Y., A Graphene–Silver Nanoparticle–Silicon Sandwich SERS Chip for Quantitative Detection of Molecules and Capture, Discrimination, and Inactivation of Bacteria. Analytical Chemistry 2018, 90 (9), 5646-5653.
Yang, S.; Dai, X.; Stogin, B. B.; Wong, T.-S., Ultrasensitive surface-enhanced Raman scattering detection in common fluids. Proceedings of the National Academy of Sciences 2016, 113 (2), 268-273.
Hu, B.; Sun, D.-W.; Pu, H.; Wei, Q., Rapid nondestructive detection of mixed pesticides residues on fruit surface using SERS combined with self-modeling mixture analysis method. Talanta 2020, 217, 120998.
Chen, X.; Nguyen, T. H. D.; Gu, L.; Lin, M., Use of Standing Gold Nanorods for Detection of Malachite Green and Crystal Violet in Fish by SERS. Journal of Food Science 2017, 82 (7), 1640-1646.
Malvano, F.; Albanese, D.; Pilloton, R.; Di Matteo, M.; Crescitelli, A., A New Label-Free Impedimetric Affinity Sensor Based on Cholinesterases for Detection of Organophosphorous and Carbamic Pesticides in Food Samples: Impedimetric Versus Amperometric Detection. Food and Bioprocess Technology 2017, 10 (10), 1834-1843.
Culp, S. J.; Beland, F. A., Malachite Green: A Toxicological Review. Journal of the American College of Toxicology 1996, 15 (3), 219-238.
Zhang, Y.; Wang, Z.; Wu, L.; Pei, Y.; Chen, P.; Cui, Y., Rapid simultaneous detection of multi-pesticide residues on apple using SERS technique. Analyst 2014, 139 (20), 5148-5154.
Andersen, W. C.; Turnipseed, S. B.; Roybal, J. E., Quantitative and Confirmatory Analyses of Malachite Green and Leucomalachite Green Residues in Fish and Shrimp. Journal of Agricultural and Food Chemistry 2006, 54 (13), 4517-4523.
Yu, Y.; Zeng, P.; Yang, C.; Gong, J.; Liang, R.; Ou, Q.; Zhang, S., Gold-Nanorod-Coated Capillaries for the SERS-Based Detection of Thiram. ACS Applied Nano Materials 2019, 2 (1), 598-606.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15313-
dc.description.abstract金屬奈米粒子陣列在表面增強拉曼散射 (SERS) 領域具有諸多應用,例如:分析物微量檢測、醫學檢測等。拉曼訊號的增強主要是通過表面電漿共振耦合效應,使金屬奈米結構能產生更強的熱點效應,藉此提升分子的拉曼訊號。因此,如何設計出具備高 SERS 活性之基板受到廣泛關注。本研究中分別使用中孔洞二氧化矽奈米顆粒 (mesoporous silica nanoparticles, MSNs) 與中孔洞二氧化矽薄膜 (mesoporous silica thin film, MSTF) 作為模板,利用一種簡單、快速且不需要額外添加金屬形貌保護劑的合成方法,來製備尺寸均勻、排列規則緊密的金、銀奈米粒子陣列,並將其應用於拉曼訊號的增強上。主要研究內容如下:
(1) 利用調變擴孔劑的種類合成出具有不同孔洞大小的中孔洞二氧化矽模板,通過模板的形貌調控從而控制所製備出的金奈米粒子陣列之顆粒大小與粒子間間距。為了探討基板之 SERS 效能,我們利用4-巰基苯甲酸 (4-mercaptobenzoic acid, 4-MBA) 作為探測分子。結果顯示,金奈米顆粒尺寸為 5.1 nm、粒子間間距為 1.9 nm 的 MSN-Au 基板具有最佳之 SERS 活性。通過優化實驗條件,基板對 4-MBA 分子的最低偵測極限低至 10-10 M,且具有良好的訊號均勻性 (訊號強度相對標準偏差為 12%) 和訊號穩定性,基板保存於室溫環境下三個月後仍能維持穩定高效的訊號強度。此外,將 MSN-Au_5 nm 基板應用至實際檢測果汁中與果皮上的農藥殘留,檢測極限低於法規標準的農藥濃度表現出顯著的 SERS 增強特性,於檢測微量農藥殘留方面具有極大的應用潛力。
(2) 利用硫代硫酸銀作為 Ag 前驅物製備出之銀奈米粒子陣列 (MSN-Ag_5 nm) 基板,結果顯示,銀奈米顆粒尺寸為 5 nm、粒子間間距為 1.9 nm。由 SERS 活性探討中顯示,銀基板局部表現出優於金奈米粒子陣列之顯著的 SERS 增強特性。然而,由於表面上之硫元素的殘留會影響到分子吸附至基板表面的過程,進而影響到基板之 SERS 效能表現,因此銀奈米粒子陣列基板之訊號均勻性還需進一步優化。
zh_TW
dc.description.abstractMetal nanoparticle arrays have been developed for various surface-enhanced Raman scattering applications, such as trace detection of analytes and medical-ingredients. The basic concept of the SERS effect is that the Raman scattering cross-section of molecules located in nanogaps among metallic nanostructures can be tremendously enhanced by the amplification of electromagnetic fields resulted from the excited localized surface plasmon resonances (LSPR). Herein, the extremely uniform-sized single-layer gold nanoparticle arrays and silver nanoparticle arrays embed in well-ordered mesoporous silica (MSNs and MSTF) on silicon wafer were fabricated via a surfactant-free method for SERS applications. The main research contents are as follow:
(1) The MSNs and MSTF act as hosts to confine the size and uniformity of metal NPs. The pore size and nanogaps of metal NPs can be precisely controlled by tuning the pore size and pore to pore distance of MSNs and MSTF hosts. As a result, the MSN-Au_5 nm substrate achieved the outstanding SERS activities with an enhancement factor 2.8×108. Under the optimal conditions, this SERS substrate exhibited a low detection limit (10–10 M for 4-mercaptobenzoic) and excellent enhancement uniformity (relative standard deviation, RSD = 12%) and long-term storage stability for more than 3 months. Furthermore, the detection of the pesticide residue both in fruit juice and fruit peel showing the excellent SERS signals under the natural environment. These results indicate that MSN-Au_5 nm as a SERS substrate own great potential in the application of trace level pesticide detection.
(2) MSN-Ag_5 nm substrate prepared by using silver thiosulfate as precursor. The results show that the residual sulfur on the surface of the substrate will affect the adsorption process of molecules to the substrate surface, and then affect the SERS performance of the substrate.
en
dc.description.provenanceMade available in DSpace on 2021-06-07T17:32:47Z (GMT). No. of bitstreams: 1
U0001-0607202010384200.pdf: 7903237 bytes, checksum: 28f50af3debde8e1dc0d104a00936e99 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents謝辭 I
摘要 II
Abstract IV
目錄 VI
圖目錄 VIII
表目錄 XII
第一章 緒論 1
1.1 表面增強拉曼散射 (Surface-Enhanced Raman Scattering, SERS) 1
1.1.1 拉曼散射基本原理 1
1.1.2 表面增強拉曼散射之發展與增強機制 2
1.1.3 表面增強拉曼散射之熱點效應 4
1.2 表面增強拉曼散射基材之發展 6
1.4 研究動機 14
第二章 實驗方法 15
2.1 化學藥品 15
2.2 材料製備 17
2.2.1 中孔洞二氧化矽材料之合成 17
2.2.1.1 中孔洞二氧化矽奈米顆粒 (MSNs) 之合成 17
2.2.1.2 中孔洞二氧化矽薄膜 (MSTF) 之合成 18
2.2.3 中孔洞二氧化矽材料之表面官能基化與負載金屬奈米粒子合成 19
2.2.3.1 中孔洞二氧化矽材料之表面官能基化 19
2.2.3.2 官能基化之中孔洞二氧化矽材料負載金奈米粒子 19
2.2.3.1.1 中孔洞二氧化矽奈米顆粒負載金奈米粒子 (MSN-Au) 19
2.2.3.1.2 中孔洞二氧化矽薄膜負載金奈米粒子 (MSTF-Au) 20
2.2.3.3 官能基化之中孔洞二氧化矽材料負載銀奈米粒子 20
2.2.3.2.1 中孔洞二氧化矽奈米顆粒負載銀奈米粒子 (MSN-Ag) 20
2.3 材料鑑定之儀器與方法 22
2.3.1 掃描式電子顯微鏡 (Scanning Electron Microscopy, SEM) 22
2.3.2 穿透式電子顯微鏡 (Transmission Electron Microscopy, TEM) 22
2.3.3 氮氣吸附-脫附等溫曲線 (N2 Adsorption-desorption Isotherm) 22
2.3.4 低掠角小角度 X 光散射 (Grazing Incidence Small Angle X-ray Scattering, GISAXS) 23
2.3.5 界面電位分析儀 (Zeta Potential Analyzer) 23
2.3.6 X光光電子能譜儀 (X-ray Photoelectron Spectroscopy, XPS) 23
2.3.7 反射式紫外-可見光光譜儀 (Diffused Reflectance UV-Vis Spectroscopy) 23
2.3.8 顯微拉曼光譜儀 (Raman Microscope) 24
2.4 拉曼與 SERS 光譜量測方法 24
第三章 中孔洞二氧化矽材料負載金奈米粒子之鑑定與 SERS 性能研究 28
3.1 材料鑑定 28
3.1.1 中孔洞二氧化矽奈米顆粒負載金奈米粒子 (MSN-Au) 28
3.1.2 中孔洞二氧化矽薄膜負載金奈米粒子 (MSTF-Au) 40
3.2 表面增強拉曼散射基板應用於分子探針之研究 46
3.2.1 基板表面前處理對於 SERS 訊號強度之影響 46
3.2.2 基板浸泡分析溶液不同時間所得之 SERS 訊號強度探討 48
3.2.3 基板之 SERS 活性探討 50
3.2.4 基板之 SERS 訊號強度均勻性與穩定性探討 55
3.3 表面增強拉曼散射基板應用於檢測環境中汙染物之研究 59
3.3.1 基板應用於水溶液中之水產禁藥與農藥檢測 59
3.3.2 基板應用於水果中之農藥檢測 61
3.3.3 基板應用於雙成分農藥之分析 64
3.4 基板應用於分子探針與檢測環境中汙染物之研究結論 65
第四章 中孔洞二氧化矽材料負載銀奈米粒子之鑑定與其 SERS 性能研究 67
4.1 中孔洞二氧化矽奈米顆粒負載銀奈米粒子 (MSN-Ag) 之材料鑑定 67
4.2 銀奈米粒子基板之 SERS 效應評估 70
4.3 銀奈米粒子基板鑑定與 SERS 性能探討之研究結論 75
第五章 總結 76
參考文獻 78
dc.language.isozh-TW
dc.subject局域性表面電漿共振zh_TW
dc.subject金奈米粒子陣列zh_TW
dc.subject銀奈米粒子陣列zh_TW
dc.subject中孔洞二氧化矽zh_TW
dc.subject表面增強拉曼散射zh_TW
dc.subjectSurface-enhanced Raman scatteringen
dc.subjectlocalized surface plasmon resonanceen
dc.subjectgold nanoparticle arraysen
dc.subjectsilver nanoparticle arraysen
dc.subjectmesoporous silicaen
dc.title金屬奈米粒子陣列的組裝及其表面增強拉曼散射活性之研究zh_TW
dc.titleConstruction of Ordered Metal Nanoparticle Arrays for Surface-Enhanced Raman Scatteringen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張玉明(Yu-Ming Chang),江建文(Kien Voon Kong),呂宥蓉(Yu-Jung Lu)
dc.subject.keyword金奈米粒子陣列,銀奈米粒子陣列,中孔洞二氧化矽,表面增強拉曼散射,局域性表面電漿共振,zh_TW
dc.subject.keywordgold nanoparticle arrays,silver nanoparticle arrays,mesoporous silica,Surface-enhanced Raman scattering,localized surface plasmon resonance,en
dc.relation.page84
dc.identifier.doi10.6342/NTU202001333
dc.rights.note未授權
dc.date.accepted2020-07-23
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
U0001-0607202010384200.pdf
  未授權公開取用
7.72 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved