Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15256
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張瑞益(Ray-I Chang)
dc.contributor.authorWel-Jie Liaoen
dc.contributor.author廖偉傑zh_TW
dc.date.accessioned2021-06-07T17:29:01Z-
dc.date.copyright2020-02-24
dc.date.issued2020
dc.date.submitted2020-02-19
dc.identifier.citation[1] 積極推動'生產力4.0發展方案',打造下世代智慧台灣基盤. (n.d.). Retrieved January 25, 2020, from https://iknow.stpi.narl.org.tw/post/Read.aspx?PostID=11629
[2] 詹長霖文章|【詹長霖】三張圖看懂各國工業4.0發展!-創新智庫暨企業大學. (n.d.). Retrieved January 25, 2020, from https://www.ceu.org.tw/proArticle_content.asp?ano=1586
[3] Edge AI助力智慧製造發展,2022年市場規模逼近3,700億美元. (2019, August 14). Retrieved January 25, 2020, from https://www.topology.com.tw/DataContent/release/Edge%20AI助力智慧製造發展,2022年市場規模逼近3,700億美元/486
[4] 資策會 40 週年專網|紡織業專題. (n.d.). Retrieved January 25, 2020, from https://40th.iii.org.tw/textile-industry
[5] 財團法人資訊工業策進會 . (n.d.). 台灣電路板協會、研華、迅得 聯手資策會及工研院共組PCB國家聯盟隊 推動共同通訊協定、智慧製造技術平台 促產業升級朝向工業4.0邁進: 本會新聞: 資策會. Retrieved January 25, 2020, from https://www.iii.org.tw/Press/NewsDtl.aspx?nsp_sqno=1964&fm_sqno=14
[6] Jacobson, I. (1993). Object-oriented software engineering: a use case driven approach. Pearson Education India.
[7] Cockburn, A. (2000). Writing effective use cases. Addison-Wesley Professional.
[8] Cockburn, A. (1998). Basic use case template. Humans and Technology, Technical Report, 96.
[9] Shearer, C. (2000). The CRISP-DM model: the new blueprint for data mining. Journal of data warehousing, 5(4), 13-22.
[10] Lee, J., Kao, H. A., & Yang, S. (2014). Service innovation and smart analytics for industry 4.0 and big data environment. Procedia Cirp, 16, 3-8.
[11] Lee, J., Bagheri, B., & Kao, H. A. (2015). A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manufacturing letters, 3, 18-23.
[12] Hinton, G. E. (1986, August). Learning distributed representations of concepts. In Proceedings of the eighth annual conference of the cognitive science society (Vol. 1, p. 12).
[13] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. In Advances in neural information processing systems (pp. 3111-3119).
[14] Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.
[15] Le, Q., & Mikolov, T. (2014, January). Distributed representations of sentences and documents. In International conference on machine learning (pp. 1188-1196).
[16] 謝秉璁(2016)。小型風力發電場之風機配置最佳化研究。國立臺灣大學機械工程學研究所碩士論文,台北市。 取自https://hdl.handle.net/11296/swgj2r
[17] Elman, J. L. (1990). Finding structure in time. Cognitive science, 14(2), 179-211.
[18] Britz, D. (2016, July 8). Recurrent Neural Networks Tutorial, Part 1 – Introduction to RNNs. Retrieved January 8, 2020, from http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
[19] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.
[20] Gers, F. A., & Schmidhuber, J. (2000, July). Recurrent nets that time and count. In Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium (Vol. 3, pp. 189-194). IEEE.
[21] Schuster, M., & Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing, 45(11), 2673-2681.
[22] Lee, J., Ardakani, H. D., Yang, S., & Bagheri, B. (2015). Industrial big data analytics and cyber-physical systems for future maintenance & service innovation. Procedia Cirp, 38, 3-7.
[23] 廖偉傑, 王佑鈞, 顧晨生, 吳伯彥, 林宣佑, & 張瑞益. (2018). 臺灣離岸風場巨量資料平台開發與智慧化管理. 中國造船暨輪機工程學刊, 37(3), 99-106.ISO 690
[24] Leitner, S. H., & Mahnke, W. (2006). OPC UA–service-oriented architecture for industrial applications. ABB Corporate Research Center, 48, 61-66.
[25] 黃黃家琳(2008)。利用田口方法建立模糊類神經網路於轉子故障診斷系統之研究。國立臺北科技大學自動化科技研究所碩士論文,台北市。 取自https://hdl.handle.net/11296/nryfx3
[26] 蔡中銘(2018)。高頻解調分析法於風力發電機齒輪箱故障診斷應用。南臺科技大學機械工程系碩士論文,台南市。 取自https://hdl.handle.net/11296/m99ncx
[27] Wang, L., & Alexander, C. A. (2016). Machine learning in big data. International Journal of Mathematical, Engineering and Management Sciences, 1(2), 52-61.
[28] Jia-Ying Lin, Chia-Yun Lee, Ray-I Chang, “Improve Quality and Efficiency of Textile Process using Data-driven Machine Learning in Industry 4.0,” International Symposium on Theory and Practice in IT, Engineering & Applied Sciences (TPIEA), February 22-23, 2018. (JAPAN)
[29] Lin, H. Y., Chiu, Y. H., Liao, W. C., & Chang, R. I. (2019, November). Service-Oriented Architecture for Intelligent Management with Data Analytics and Visualization. In 2019 IEEE 12th Conference on Service-Oriented Computing and Applications (SOCA) (pp. 73-78). IEEE.
[30] Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual web search engine. Computer networks and ISDN systems, 30(1-7), 107-117.
[31] 謝秉璁. (2016). 小型風力發電場之風機配置最佳化研究. 臺灣大學機械工程學研究所學位論文, (2016 年), 1-66.
[32] Li, P. H., Fu, T. J., & Ma, W. Y. Why Attention? Analyze BiLSTM Deficiency and Its Remedies in the Case of NER.
[33] Arena Solutions. (2019, July 26). What is a Bill of Materials (BOM). Retrieved January 25, 2020, from https://www.arenasolutions.com/resources/articles/creating-bill-of-materials/
[34] Wood, D. F. (2003). Problem based learning. Bmj, 326(7384), 328-330.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15256-
dc.description.abstract為了達到資源優化、品質提升、靈活生產,工業4.0希望能智慧轉型,以工業數據分析創造更高的價值。然而,不同的工廠有不同的工業數據分析需求,新的需求與技術也不斷發生,使得解決問題的專家十分稀缺。本研究探討如何使用智慧推薦技術,解決不同的工業數據分析需求。我們透過蒐集網路上的相關技術文獻,針對文獻的標題、摘要與關鍵字,使用深度學習中包括長短期記憶 (Long Short-Term Memory, LSTM)模型進行訓練,提出一個工業數據分析用例推薦系統。本研究參考虛實整合系統的5C架構 (Smart Connection Level、Data-to-Information Conversion Level、Cyber Level、Cognition Level、Configuration Level),實際建置一個巨量資料平台以蒐集工業數據,提供資料分析、資料視覺化與動態儀表板,當使用者輸入其問題需求之描述文字,本系統嘗試找出適合的用例,並自動推薦系統之相關資料分析模型;同時參考虛實整合系統的5C架構,提出一個工業設備知識關係流程,用以找出設備與設備間的知識關係,建立工業設備詞向量模型以利用例推薦。zh_TW
dc.description.abstractTo achieve resource optimization, quality improvement, and flexible production line, Industry 4.0 hopes to intelligently transform and create higher value through industrial data analysis. However, different factories have different requirements of industrial data analysis, new requirements are constantly occurring, and experts who can solve problems are scarce. This research explores how to provide users with an intelligent recommendation solution to meet different problem needs. We propose a use-case recommendation system of industrial data analysis by collecting academic papers (with titles, abstracts, and keywords) on the Internet and using deep learning (with the Long Short-Term Memory (LSTM) model). This study refers to the 5C architecture (Smart Connection Level, Data-to-Information Conversion Level, Cyber Level, Cognition Level, and Configuration Level) of the Cyber-Physical System, and builds a big data platform to collect industrial data, provide data analysis, data visualization, and dynamic dashboards. When users enter descriptive text of their problem, the system attempts to find out suitable use-cases and automatically recommend the relevant data analysis model of the system. According to the 5C architecture of the Cyber-Physical System, an industrial equipment knowledge relationship process is proposed to find out the knowledge relationship between equipment and equipment, and establishes a vector model of industrial equipment for use-case recommendation system.en
dc.description.provenanceMade available in DSpace on 2021-06-07T17:29:01Z (GMT). No. of bitstreams: 1
ntu-109-R06525111-1.pdf: 2060214 bytes, checksum: e71bab4670656102c632814bfddc8b19 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
目錄 iv
圖目錄 vi
表目錄 vii
第一章、 緒論 1
1.1 研究動機與目標 2
1.2 論文架構 3
第二章、 文獻探討 4
2.1 用例 4
2.2 跨產業資料探勘標準 7
2.3 虛實整合系統 8
2.4 詞向量 10
2.5 深度學習網路 12
第三章、 系統設計與流程 15
3.1 系統架構 15
3.2 資料蒐集模組 16
3.3 資料視覺化模組 16
3.4 用例推薦模組 17
3.5 資料分析模組 18
3.6 動態儀表板模組 19
3.7 對虛實整合系統的實踐 20
第四章、 研究方法與實驗結果 22
4.1 研究流程 22
4.1.1 資料蒐集 23
4.1.2 資料前處理 23
4.1.3 模型訓練 24
4.1.4 實驗評估 25
4.1.5 實驗結果分析 25
第五章、 結論與未來展望 29
REFERENCES 31
dc.language.isozh-TW
dc.subject用例zh_TW
dc.subject虛實整合系統zh_TW
dc.subject智慧推薦zh_TW
dc.subject深度學習zh_TW
dc.subjectCyber-Physical Systemen
dc.subjectUse-Caseen
dc.subjectDeep Learningen
dc.subjectIntelligent Recommendationen
dc.title使用深度學習與虛實整合系統之工業數據分析用例推薦zh_TW
dc.titleUse-Case Recommendation for Industry Data Analytics by Deep Learning and Cyber-Physical Systemen
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.coadvisor黃維信(Wei?Shien Hwang)
dc.contributor.oralexamcommittee林書宇,洪鈺欣
dc.subject.keyword虛實整合系統,智慧推薦,深度學習,用例,zh_TW
dc.subject.keywordCyber-Physical System,Intelligent Recommendation,Deep Learning,Use-Case,en
dc.relation.page33
dc.identifier.doi10.6342/NTU202000143
dc.rights.note未授權
dc.date.accepted2020-02-20
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-109-1.pdf
  未授權公開取用
2.01 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved