請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15232完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳世芳(Shih-Fang Chen) | |
| dc.contributor.author | Jun-Han Xie | en |
| dc.contributor.author | 謝竣翰 | zh_TW |
| dc.date.accessioned | 2021-06-07T17:28:45Z | - |
| dc.date.copyright | 2020-03-05 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-03-02 | |
| dc.identifier.citation | 中國科學院植物研究所。2020。CVH中國數字植物標本館。網址:http://www.cvh.ac.cn/search/%E5%BD%93%E5%BD%92?page=1&searchtype=1&n=2。上網日期:2020-02-19。
行政院衛生福利部。2017。食品中殘留農藥檢驗方法-多重殘留分析方法(五)。106.08.31部授食字第1061901690號公告修正。 行政院衛生署臺灣中藥典編修小組。2013。臺灣中藥典(第二版)。臺北:行政院衛生署中醫藥委員會。 沈明來。2007。實用多變數分析。第二版,452-457。台北:九州圖書文物有限公司。. 邱秀麗、楊榮季。2012。黃耆研究及應用。藥學雜誌 28(4): 54-57。 陳儀驊、徐雅慧、劉宜祝、羅吉方。2011。中藥之農藥殘留檢驗(VII)。食品藥物研究年報 (2): 323-334。 徐田鋒、彭彥昆、李永玉、翟晨。2014。基於拉曼光譜技術檢測菠菜的毒死蜱殘留。食品安全質量檢測學報 (3): 707-711。 張季平。1996。當歸-現代醫學之研究。藥學雜誌 12(3): 94-102。 張宏意、羅連、餘意、邱珏、胡志堅、廖文波。2009。當歸種質資源調查研究。中藥材 32(3): 335-337。 張智勇。2016。黃耆栽培管理方法。特種經濟動植物 19(4): 37-39。 黃竣吉、陳世銘、楊翕雯、陳加增。2004。近紅外光技術應用於穿山甲中藥成份之檢測。農業機械學刊 13(3): 37-52。 程春松、劉智祖、譚天琪、黃清文、崔顥、李玖簷、劉良、周華。2016。採用現代及歷史的地理及氣候信息研究黃耆道地產區變遷的脅迫因素。世界科學技術: 中醫藥現代化 (1): 11-17。 運立媛、張民、朱振元。2018。不同產地黃芪多醣降血糖活性的比較研究。食品研究與開發 39(19): 20-25。 萬益群、李申傑、付貴琴。2007。中草藥中有機磷及氨基甲酸酯類農藥殘留量的GC-MS測定。分析試驗室 26(6): 81-84。 楊序綱、吳琪琳。2008。拉曼光譜的分析與應用。初版,14。北京:國防工業。 楊長花、程芬、李慧、胡亞剛。2019。4 個主要黃耆產地黃耆質量比較。西部中醫藥 32(1): 27-31。 趙奎君、鐘萌、俊大。2007。不同產地當歸中阿魏酸、藁本內酯及總多醣含量比較。中國中醫藥信息雜誌 14(12): 37-38。 趙穎、劉瑜、金雁、蔣施、徐宜宏、鐘鈺、李梅。2011。氣相色譜-質譜法同時檢測中草藥保健食品中41種有機磷和氨基甲酸酯類農藥殘留。分析試驗室 30(12): 59-65。 蔡宗宏、楊進。2005。中藥黃耆的現代研究與應用。中華推拿與現代康復科學雜誌 2(1): 33-38。 蔡苡娸。2016。探討金奈米立方體自組裝基板之表面增強拉曼散射效應於農藥檢測之應用。碩士論文。臺北:國立臺灣科技大學化學工程系。 劉潔、佟玲、孟文婷、趙雲麗、於治國。2015。固相萃取-超快速液相色譜-串聯質譜法測定當歸中135種農藥及其代謝物殘留。色譜 33(12): 1257-1268。 衛生福利部中醫藥司。2019。中藥材進口統計資料。台北:衛生福利部。網址:https://dep.mohw.gov.tw/DOCMAP/cp-3237-7819-108.html。上網日期:2019-12-15。 戴興德、王芳。2012。不同產地當歸中氨基酸含量的測定。衛生職業教育 30(7): 118-119。 聶春林、吳海、梁逸曾。2008。中草藥中40種農藥殘留的氣相色譜-質譜分析。精細化工中間體 38(4): 59-65。 Anastassiades, M., and W. Schwack. 1998. Analysis of carbendazim, benomyl, thiophanate methyl and 2, 4-dichlorophenoxyacetic acid in fruits and vegetables after supercritical fluid extraction. J. Chromatogr. A. 825(1): 45-54. Albuquerque, C. D., and R. J. Poppi. 2015. Detection of malathion in food peels by surface-enhanced Raman imaging spectroscopy and multivariate curve resolution. Anal. Chim. Acta. 879:24-33. Barnes, R. J., M. S. Dhanoa, and S. J. Lister. 1989. Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Appl. Spectrosc. 43(5): 772-777. Burges, C. J. 1998. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 2(2): 121-167. Breiman, L. 2001. Random forests. M. L. 45(1): 5-32. Barlas, N., G. Selmanoglu, A. Kockaya, and S. Songür. 2002. Effects of carbendazim on rat thyroid, parathyroid, pituitary and adrenal glands and their hormones. Hum. Exp. Toxicol. 21(4): 217-221. Cover, T. M., P. and Hart. 1967. Nearest neighbor pattern classification. IEEE Transs Inf. Theory 13(1): 21-27. Colaianni, S. M., and O. F. Nielsen. 1995. Low-frequency Raman spectroscopy. J. Mol. Struct. 347: 267-283. Cialla, D., A. März, R Böhme, F. Theil, K. Weber, M. Schmitt, and all. 2012. Surface-enhanced Raman spectroscopy (SERS): progress and trends. Anal. Bioanal. Chem. 403(1): 27-54. Chuang, Y. K., S. Chen, Y. M. Lo, I. C. Yang, Y. F. Cheng, C. Y. Wang, and all. 2013. Quantification of bioactive gentiopicroside in the medicinal plant Gentiana scabra Bunge using near infrared spectroscopy. J. Food Drug Anal. 21(3): 317-324. Chen, Z., L. Yongyu, P. Yankun, and X. Tianfeng. 2015. Detection of chlorpyrifos in apples using gold nanoparticles based on surface enhanced Raman spectroscopy. Int. J. Agric. Biol. Eng. 8(5): 113-120. Edwards, H. G. M., T. Munshi, amd K. Page. 2007. Analytical discrimination between sources of ginseng using Raman spectroscopy. Anal. Bioanal. Chem. 389(7-8): 2203-2215. Furini, L. N., S. Sanchez‐Cortes, I. López‐Tocón, J. C. Otero, R. F. Aroca, and C. J. L. Constantino. 2015. Detection and quantitative analysis of carbendazim herbicide on Ag nanoparticles via surface‐enhanced Raman scattering. J. Raman Spectrosc. 46(11): 1095-1101. Goldman, J. M., G. L. Rehnberg, R. L. Cooper, L. E. Gray Jr, J. F. Hein, and W. K. McElroy. 1989. Effects of the benomyl metabolite, carbendazim, on the hypothalamic-pituitary reproductive axis in the male rat. Toxicol. 57(2): 173-182. Hu, L., X. Chen, J. Yang, and L. Guo. 2019. Geographic authentication of the traditional Chinese medicine Atractylodes macrocephala Koidz.(Baizhu) using stable isotope and multielement analyses. Rapid C. Mass Spectrom. 33(22): 1703-1710. Isaksson, T. and Næs T. 1988. The effect of multiplicative scatter correction (MSC) and linearity improvement in NIR spectroscopy. Appl. Spectrosc. 42(7): 1273-1284. Lu, G. H., K. Chan, K. Leung, C. L. Chan, Z. Z. Zhao, and Z. H. Jiang. 2005. Assay of free ferulic acid and total ferulic acid for quality assessment of Angelica sinensis. J. Chromatogr. A. 1068(2):209-219. Li, N., Y. Wang, and K. Xu. 2006. Fast discrimination of traditional Chinese medicine according to geographical origins with FTIR spectroscopy and advanced pattern recognition techniques. Opt. Express. 14(17): 7630-7635. Le Ru, E. C., and P. G. Etchegoin. 2008. Principles of Surface-Enhanced Raman Spectroscopy: and Related Plasmonic Effects. 1st ed. Amsterdam: Elsevier. pp. 185-263. Larkin, P. 2011. Infrared and Raman Spectroscopy: Principles and Spectral Interpretation. 1st ed. Amsterdam: Elsevier. pp. 1-5. Li, B., Y. Wei, H. Duan, L. Xi, and X. Wu. 2012. Discrimination of the geographical origin of Codonopsis pilosula using near infrared diffuse reflection spectroscopy coupled with random forests and k-nearest neighbor methods. Vib. Spectrosc. 62: 17-22. Liu, B., P. Zhou, X. Liu, X. Sun, H. Li, and M. Lin. 2013. Detection of pesticides in fruits by surface-enhanced Raman spectroscopy coupled with gold nanostructures. Food Bioprocess Technol. 6(3): 710-718. Lv, X., Y. Li, C. Tang, Y. Zhang, J. Zhang, and G. Fan. 2016. Integration of HPLC-based fingerprint and quantitative analyses for differentiating botanical species and geographical growing origins of Rhizoma coptidis. Pharm. Boil. 54(12): 3264-3271. McCreery, R. L. 2000. Raman spectroscopy for chemical analysis. 1st ed. Hoboken: John Wiley & Sons. pp. 10-12. Mojet, B. L., S. D. Ebbesen, and L. Lefferts. 2010. Light at the interface: the potential of attenuated total reflection infrared spectroscopy for understanding heterogeneous catalysis in water. Chem. Soc. Rev. 39(12): 4643-4655. Ma, C. H., J. Zhang, Y. C. Hong, Y. R. Wang, and X. Chen. 2015. Determination of carbendazim in tea using surface enhanced Raman spectroscopy. Chin. Chem. Lett. 26(12): 1455-1459. Ming, J., L. Chen, Y. Cao, C. Yu, B. S. Huang, and K. L. Chen. 2019. Rapid Identification of Nine Easily Confused Mineral Traditional Chinese Medicines Using Raman Spectroscopy Based on Support Vector Machine. J. Spectrosc. 2019. Ni, Y., B. Li, and S. Kokot, 2012. Discrimination of Radix Paeoniae varieties on the basis of their geographical origin by a novel method combining high-performance liquid chromatography and Fourier transform infrared spectroscopy measurements. Anal. Methods. 4(12): 4326-4333. Qin, T., J. Chen, D. Wang, Y. Hu, M. Wang, J. Zhang, T. L. Nguyen, C. Liu, X. Liu. 2013. Optimization of selenylation conditions for Chinese angelica polysaccharide based on immune-enhancing activity. Carbohydr. polym. 92(1): 645-650. Raman, C. V., and K. S. Krishnan. 1928. A new type of secondary radiation. Nat. 121(3048): 501-502. Rajapandiyan, P., and J. Yang. 2012. Sensitive cylindrical SERS substrate array for rapid microanalysis of nucleobases. Anal. chem. 84(23): 10277-10282. Ren, S., H. Zhang, Y. Mu, M. Sun, and P. Liu. 2013. Pharmacological effects of Astragaloside IV: a literature review. J. Tradit. Chinese Med. 33(3): 413-416. Thien, N. D., N. Q. Hoa, N. N. Tu, S. C. Doanh, and N. N. Long. 2019. Detection of Carbendazim by SERS Technique Using Silver Nanoparticles Decorated SiO2 Opal Crystal Substrates. J. Electron. Mater. 1-7. Tsen, C. M., C. W. Yu, W. C. Chuang, M. J. Chen, S. K. Lin, T. H. Shyu, Y. H. Wang, C. C. Li, W. C. Chao, and C. Y. Chuang. 2019. A simple approach for the ultrasensitive detection of paraquat residue in adzuki beans by surface-enhanced Raman scattering. Analyst. 144(2): 426-438. Wei, W. Y., and I. M. White. 2012. A simple filter-based approach to surface enhanced Raman spectroscopy for trace chemical detection. Analyst. 137(5): 1168-1173. Wang, C., X. Wu, P. Dong, J. Chen, and R. Xiao. 2016. Hotspots engineering by grafting Au@ Ag core-shell nanoparticles on the Au film over slightly etched nanoparticles substrate for on-site paraquat sensing. Biosens Bioelectron. 86: 944-950. Wang, C. H., C. Y. Lin, J. S. Chen, C. L. Ho, K. M. Rau, J. T. Tsai, C. S. Chang, S. P. Yeh, C. F. Cheng, and Y. L Lai. 2019. Karnofsky performance status as a predictive factor for cancer-related fatigue treatment with astragalus polysaccharides (pg2) injection—A double blind, multi-center, randomized phase iv study. Cancers 11(2): 128. Yang, I. C., C. Y. Tsai, K. W. Hsieh, C. W. Yang, F. Ouyang, Y. M. Lo, and S. Chen. 2013. Integration of SIMCA and near-infrared spectroscopy for rapid and precise identification of herbal medicines. J. Food Drug Anal. 21(3): 268-278. Yande, L., Z. Yuxiang, W. Haiyang, and Y. Bing. 2016. Detection of pesticides on navel orange skin by surface-enhanced Raman spectroscopy coupled with Ag nanostructures. Int. J. Agric. Biol. Eng. 9(2): 179-185. Zhang, Z. M., S. Chen, and Y. Z. Liang. 2010. Baseline correction using adaptive iteratively reweighted penalized least squares. Analyst. 135(5): 1138-1146. Zhao, L. H., Z. X. Ma, J. Zhu, X. H. Yu, and D. P. Weng, 2011. Characterization of polysaccharide from Astragalus radix as the macrophage stimulator. Cell. Immunol. 271(2): 329-334. Zhai, C., Y. Peng, Y. Li, Y. Yang, K. Chao, and J. Qin. 2016. Nondestructive detection of carbendazim residue in apples by using surface-enhanced Raman spectroscopy. In '2016 ASABE Annual International Meeting', p. 1. St. Joseph, IM: Am. Soc. Agric. Bio. Eng. 9(2): 179-185. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15232 | - |
| dc.description.abstract | 在中藥材所種植產地,會因其生長環境,進而影響其有效比例的組成,而道地的藥材不論藥性或價格,都有所其差異性。另一方面,台灣的中藥材以進口為主,官方為維護中藥的食品安全,故衛生福利部設立邊境查驗制度,目前使用的農藥殘留檢驗設備精確度佳,但儀器昂貴及檢驗流程耗時等缺點,使其無法普及於大量樣本檢測,而振動光譜(Vibrational spectroscopy)可用於快速對於樣本進行定性或定量分析。
本研究透過振動光譜技術,分別使用近紅外光譜(Near infrared spectroscopy, NIR)、傅立葉轉換紅外光譜(Fourier-transform infrared spectroscopy, FTIR)和表面增強拉曼(Surface enhanced Raman spectroscopy, SERS)結合多變量分析,對於中藥材進行產地判別,並利用SERS建立農藥特徵之拉曼光譜圖庫,對其進行農藥殘留量之半定量分析。產地判別產地判別選用黃耆樣本產地包含四川、內蒙古、甘肅,及山西亦共55件;當歸樣本產於陝西、甘肅與四川共55件。農藥殘留芬選擇試驗對象為常見農藥之殺菌劑貝芬替,分析中藥材樣本選用黃耆。 產地判別結果中,以隨機森林(Random forest, RF)搭配FTIR,於黃耆和當歸產地中,皆得100%準確度,然測試樣本較少,因此持保留看法。而K-近鄰演算法(K-nearest neighbor algorithm, KNN)和支持向量機(Support vector machine, SVM)可得較客觀分析結果,於黃耆產地判別中,SERS模型分辨結果最佳,得79-82%之準確度,而在當歸產地判別中,由FTIR建立模型最佳,得73-76%之準確度。在農藥殘留檢驗上,可判別出貝芬替之七支特徵峰值位置,分別位於624, 771, 1003, 1222, 1269, 1459和1514 cm-1處。而於貝芬替殘留於黃耆之複合樣本中,以3.34, 4.29, 8.75及13.41 ppm等四種農藥殘留濃度之樣本進行測試,可於771, 1003, 1222及1269 cm-1等四峰值位置建立濃度檢量線。本研究成功透過振動光譜於黃耆和當歸進行產地判別,並使用表面增強拉曼光譜以黃耆中之貝芬替殘留量進行試驗,成功確認該殺菌劑之拉曼指紋圖譜、特徵峰值位置,及建立藥劑殘留之半定量濃度檢量線。此方法有機會為中藥材中之農藥殘留檢驗,提供一較快速且降低檢驗成本的替代方案。 | zh_TW |
| dc.description.abstract | Chinese herb medicines from different origins may be priced differently due to the active ingredients, which affects the medicinal properties. On the other hand, most of the herbs in Taiwan are imported. To ensure the safety of imported herbs, the Ministry of Health and Welfare inspects pesticide residues of the herbs using high-end instrument. Although the inspection can detect pesticide accurately, it cannot be applied to large number of samples because of long processing time and high operation cost. Vibrational spectroscopy can be effectively used for qualitative or quantitative analysis.
In this study, near-infrared spectroscopy (NIR), Fourier-transform infrared spectroscopy (FTIR), and surface enhanced Raman spectroscopy (SERS) were combined with multivariate analysis respectively to identify Chinese herb medicines origins. Besides, SERS was used to develop a preliminary semi-quantification methods for screening pesticide residuals of imported herbs. Two herbs, Astragalus and Angelica were selected as the testing objects. Astragalus samples were cultivated in four China provinces (Sichuan, Inner Mongoria, Gansu, and Shanxi) and Angelica samples were cultivated in in three China provinces (Shaanxi, Gansu, and Sichuan). In pesticide residual analysis, Astragalus was selected as the testing object and carbendazim was used as the examinable target of pesticide. In the section of origin identification, FTIR combined with random forest (RF) in the origins identification shown the best performance of Astragalus and Angelica, and both of the identification rates reached 100%. However, the number of samples in the testing sets were small so that the result was reserved. The objective analysis results were obtained by K-nearest neighbor algorithm (KNN) and support vector machine (SVM). SERS shown the best performance in the origins identification of Astragalus, and identification rates were in the range of 79-82%. FTIR is the best one in the origins identification of Angelica, and identification rates were in the range of 73-76%. In the section of pesticide residual analysis, seven characteristic peak positions of carbendazim were identified, which were located at 624, 771, 1003, 1222, 1269, 1459, and 1514 cm-1, respectively. Based on the test result from four concentrations of 3.34, 4.29, 8.75 and 13.41 ppm of carbendazim-astragalus mixed samples, there were four peaks – 771, 1003, 1222, and 1269 cm-1, could be selected to develop the calibration curves to semi-quantify the carbendazim residues in astragalus. This study successfully applied vibrational spectroscopies to identify astragalus, and angelica origins, and applied SERS to develop Raman fingerprint spectra for carbendazim, identify its characteristic peaks, and build the calibration curves for the residue semi-quantification in astragalus. It is a promising method to provide a faster and lower cost way to examine the pesticide residues in Chinese herb medicines. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T17:28:45Z (GMT). No. of bitstreams: 1 ntu-109-R06631029-1.pdf: 2128458 bytes, checksum: 4b5df48f76f9d71091f266e792c477a6 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iv 目錄 vi 圖目錄 viii 表目錄 ix 中英文名詞暨縮寫對照 x 第一章 緒論 11 1.1研究背景 11 1.2研究目的 11 第二章 文獻回顧 13 2.1黃耆與當歸之簡介 13 2.1.1產地與成分 13 2.1.2藥劑殘留 15 2.2振動光譜(Vibrational spectroscopy)之原理與應用 17 2.2.1近紅外光譜(Near infrared spectroscopy, NIR) 17 2.2.2傅立葉轉換紅外光譜(Fourier-transform infrared spectroscopy, FTIR) 18 2.2.3拉曼散射光譜(Raman scatter spectroscopy) 19 2.2.4近紅外光譜、傅立葉轉換紅光譜和拉曼散射光譜三者比較 20 第三章 黃耆與當歸產地判別分析方法與結果 22 3.1實驗樣本、藥品與設備 22 3.1.1實驗樣本與藥品 22 3.1.2實驗設備 22 3.2樣本光譜量測方法 23 3.3光譜數據分析方法 24 3.3.1光譜預處理 24 3.3.2多變量分析 28 3.3.3軟體分析 32 3.4黃耆與當歸產地分析判別結果 33 3.4.1主成分分析(Principal component analysis, PCA)之分析結果 33 3.4.1.1黃耆於主成分分析結果 33 3.4.1.2當歸於主成分分析結果 34 3.4.2 K-近鄰演算法(K-nearest neighbor, KNN)、支持向量機(Support vector machine, SVM)、隨機森林(Random forest, RF)三種模型之分析結果 35 3.4.2.1 黃耆於KNN、RF與SVM三種分類器結果 35 3.4.2.1 當歸於KNN、RF與SVM三種分類器結果 38 第四章 貝芬替-黃耆之複合樣本殘留量分析方法與結果 40 4.1實驗樣本、藥品與設備 40 4.2拉曼圖譜建立方法 41 4.3光譜數據分析方法 42 4.3.1光譜基線校正 42 4.3.2農藥半定量分析 45 4.4拉曼指紋圖譜建立 46 4.4.1貝芬替拉曼指紋圖譜建立 46 4.4.2貝芬替-黃耆之複合樣本拉曼指紋圖譜建立 48 4.5貝芬替-黃耆之複合樣本半定量分析 49 4.6陶斯松、馬拉松、賽達松與貝芬替-當歸之複合樣本拉曼指紋圖譜 50 第五章 結論與建議 55 5.1結論 55 5.2建議 56 參考文獻 57 | |
| dc.language.iso | zh-TW | |
| dc.subject | 產地判別 | zh_TW |
| dc.subject | 振動光譜 | zh_TW |
| dc.subject | 農藥殘留 | zh_TW |
| dc.subject | 中藥材 | zh_TW |
| dc.subject | origin discrimination | en |
| dc.subject | Chinese herb medicines | en |
| dc.subject | vibrational spectroscopy | en |
| dc.subject | pesticide | en |
| dc.title | 振動光譜技術於黃耆、當歸之產地判別與農藥殘留分析之應用 | zh_TW |
| dc.title | Analyses of Origin Discrimination and Pesticide Residues in Astragalus and Angelica Using Vibrational Spectroscopies | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳世銘(Suming Chen),謝博全(Bo-Chuan Hsieh),林連雄(Lian-Hsiung Lin) | |
| dc.subject.keyword | 振動光譜,農藥殘留,中藥材,產地判別, | zh_TW |
| dc.subject.keyword | vibrational spectroscopy, pesticide,Chinese herb medicines,origin discrimination, | en |
| dc.relation.page | 63 | |
| dc.identifier.doi | 10.6342/NTU202000603 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-03-02 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物機電工程學系 | zh_TW |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-109-1.pdf 未授權公開取用 | 2.08 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
