Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 昆蟲學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15216
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳岳隆(Yueh-Lung Wu)
dc.contributor.authorYi-Chi Chuangen
dc.contributor.author莊依奇zh_TW
dc.date.accessioned2021-06-07T17:28:36Z-
dc.date.copyright2021-02-22
dc.date.issued2021
dc.date.submitted2021-02-02
dc.identifier.citationAnderson AM, Bailetti AA, Rodkin E, De A, Bach EA. 2017. A genetic screen reveals an unexpected role for yorkie signaling in JAK/STAT-dependent hematopoietic malignancies in Drosophila melanogaster. G3: Genes, Genomes, Genetics 7:2427-2438.
Anderson RS, Holmes B, Good RA. 1973. Comparative biochemistry of phagocytizing insect hemocytes. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 46:595-602.
Ashida M, Brey PT. 1995. Role of the integument in insect defense: pro-phenol oxidase cascade in the cuticular matrix. Proceedings of the National Academy of Sciences 92:10698-10702.
Bajgar A, Kucerova K, Jonatova L, Tomcala A, Schneedorferova I, Okrouhlik J, Dolezal T. 2015. Extracellular adenosine mediates a systemic metabolic switch during immune response. PLoS Biol 13:e1002135.
Bao YY, Lv ZY, Liu ZB, Xue J, Xu YP, Zhang CX. 2010. Comparative analysis of Bombyx mori nucleopolyhedrovirus responsive genes in fat body and haemocyte of B. mori resistant and susceptible strains. Insect molecular biology 19:347-358.
Barghi N, Tobler R, Nolte V, Jakšić AM, Mallard F, Otte KA, Dolezal M, Taus T, Kofler R, Schlötterer C. 2019. Genetic redundancy fuels polygenic adaptation in Drosophila. PLoS biology 17:e3000128.
Bartholomay L, Fuchs J, Cheng LL, Beck E, Vizioli J, Lowenberger C, Christensen B. 2004a. Reassessing the role of defensin in the innate immune response of the mosquito, Aedes aegypti. Insect molecular biology 13:125-132.
Bartholomay LC, Cho W-L, Rocheleau TA, Boyle JP, Beck ET, Fuchs JF, Liss P, Rusch M, Butler KM, Wu RC-C. 2004b. Description of the transcriptomes of immune response-activated hemocytes from the mosquito vectors Aedes aegypti and Armigeres subalbatus. Infection and immunity 72:4114-4126.
Becker A, Schlöder P, Steele J, Wegener G. 1996. The regulation of trehalose metabolism in insects. Experientia 52:433-439.
Bergold G. 1947. Die isolierung des polyeder-virus und die natur der polyeder. Zeitschrift für Naturforschung B 2:122-143.
Bernal V, Carinhas N, Yokomizo AY, Carrondo MJ, Alves PM. 2009. Cell density effect in the baculovirus‐insect cells system: A quantitative analysis of energetic metabolism. Biotechnology and bioengineering 104:162-180.
Blandin S, Levashina EA. 2004. Thioester-containing proteins and insect immunity. Molecular immunology 40:903-908.
Boman HG. 1991. Antibacterial peptides: key components needed in immunity. Cell 65:205-207.
Brey PT, Hultmark D. 1998. Molecular mechanisms of immune responses in insects Chapman Hall, London.
Burgess S. 1977. Molecular weights of Lepidopteran baculovirus DNAs: derivation by electron microscopy. Journal of General Virology 37:501-510.
Croizier G, Croizier L, Argaud O, Poudevigne D. 1994. Extension of Autographa californica nuclear polyhedrosis virus host range by interspecific replacement of a short DNA sequence in the p143 helicase gene. Proceedings of the National Academy of Sciences 91:48-52.
Crozatier M, Ubeda J-M, Vincent A, Meister M. 2004. Cellular immune response to parasitization in Drosophila requires the EBF orthologue collier. PLoS Biol 2:e196.
Dracheva S, Koonin EV, Crute JJ. 1995. Identification of the primase active site of the herpes simplex virus type 1 helicase-primase. Journal of Biological Chemistry 270:14148-14153.
Ehlers D, Zosel B, Mohrig W, Kauschke E, Ehlers M. 1992. Comparison of in vivo and in vitro phagocytosis inGalleria mellonella L. Parasitology Research 78:354-359.
Fernie AR, Carrari F, Sweetlove LJ. 2004. Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport. Current opinion in plant biology 7:254-261.
Ferrandon D, Jung A, Criqui MC, Lemaitre B, Uttenweiler‐Joseph S, Michaut L, Reichhart JM, Hoffmann J. 1998. A drosomycin–GFP reporter transgene reveals a local immune response in Drosophila that is not dependent on the Toll pathway. The EMBO journal 17:1217-1227.
Friedman S. 1978. Trehalose regulation, one aspect of metabolic homeostasis.
Geng T, Lv D-D, Huang Y-X, Hou C-X, Qin G-X, Guo X-J. 2016. JAK/STAT signaling pathway-mediated immune response in silkworm (Bombyx mori) challenged by Beauveria bassiana. Gene 595:69-76.
Gillespie and JP, Kanost MR, Trenczek T. 1997. Biological mediators of insect immunity. Annual review of entomology 42:611-643.
Gomi S, Majima K, Maeda S. 1999. Sequence analysis of the genome of Bombyx mori nucleopolyhedrovirus. Journal of General Virology 80:1323-1337.
Granados RR, Lawler KA. 1981. In vivo pathway of Autographa californica baculovirus invasion and infection. Virology 108:297-308.
Groner A. 1986. Specificity and safety of baculoviruses.
Hagen H-E, Kläger SL, McKerrow JH, Ham PJ. 1997. Simulium damnosums. 1.: Isolation and Identification of Prophenoloxidase Following an Infection withOnchocercaspp. Using Targeted Differential Display. Experimental parasitology 86:213-218.
Hamamoto H, Tonoike A, Narushima K, Horie R, Sekimizu K. 2009. Silkworm as a model animal to evaluate drug candidate toxicity and metabolism. Comparative Biochemistry and Physiology Part C: Toxicology Pharmacology 149:334-339.
Huang H-R, Chen ZJ, Kunes S, Chang G-D, Maniatis T. 2010. Endocytic pathway is required for Drosophila Toll innate immune signaling. Proceedings of the National Academy of Sciences 107:8322-8327.
Iwanaga M, Shimada T, Kobayashi M, Kang W. 2007. Identification of differentially expressed host genes in Bombyx mori nucleopolyhedrovirus infected cells by using subtractive hybridization. Applied entomology and zoology 42:151-159.
Johansson KC, Metzendorf C, Söderhäll K. 2005. Microarray analysis of immune challenged Drosophila hemocytes. Experimental cell research 305:145-155.
Katou Y, Ikeda M, Kobayashi M. 2006. Abortive replication of Bombyx mori nucleopolyhedrovirus in Sf9 and High Five cells: defective nuclear transport of the virions. Virology 347:455-465.
Kingsolver MB, Huang Z, Hardy RW. 2013. Insect antiviral innate immunity: pathways, effectors, and connections. Journal of molecular biology 425:4921-4936.
Kondo A, Maeda S. 1991. Host range expansion by recombination of the baculoviruses Bombyx mori nuclear polyhedrosis virus and Autographa californica nuclear polyhedrosis virus. Journal of virology 65:3625-3632.
Kopácek P, Weise C, Götz P. 1995. The prophenoloxidase from the wax moth Galleria mellonella: purification and characterization of the proenzyme. Insect biochemistry and molecular biology 25:1081-1091.
Lackie AM. 1988. Haemocyte behaviour. Advances in Insect Physiology Elsevier. pp 85-178.
Lemaitre B, Hoffmann J. 2007. The host defense of Drosophila melanogaster. Annu. Rev. Immunol. 25:697-743.
Lemaitre B, Reichhart J-M, Hoffmann JA. 1997. Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proceedings of the National Academy of Sciences 94:14614-14619.
Leone P, Bischoff V, Kellenberger C, Hetru C, Royet J, Roussel A. 2008. Crystal structure of Drosophila PGRP-SD suggests binding to DAP-type but not lysine-type peptidoglycan. Molecular immunology 45:2521-2530.
Lin Y-H, Tai C-C, Brož V, Tang C-K, Chen P, Wu CP, Li C-H, Wu Y-L. 2020. Adenosine Receptor Modulates Permissiveness of Baculovirus (Budded Virus) Infection via Regulation of Energy Metabolism in Bombyx mori. Frontiers in immunology 11:763.
Maeda S, Kamita SG, Kondo A. 1993. Host range expansion of Autographa californica nuclear polyhedrosis virus (NPV) following recombination of a 0.6-kilobase-pair DNA fragment originating from Bombyx mori NPV. Journal of Virology 67:6234-6238.
Maeda S, Kawai T, Obinata M, Fujiwara H, Horiuchi T, Saeki Y, Sato Y, Furusawa M. 1985. Production of human α-interferon in silkworm using a baculovirus vector. Nature 315:592-594.
Marsden WL, Gray PP, Nippard GJ, Quinlan MR. 1982. Evaluation of the DNS method for analysing lignocellulosic hydrolysates. Journal of Chemical Technology and Biotechnology 32:1016-1022.
Martignoni ME. 1986. A catalog of viral diseases of insects, mites, and ticks US Department of Agriculture, Forest Service, Pacific Northwest Research Station.
Maynard ND, Gutschow MV, Birch EW, Covert MW. 2010. The virus as metabolic engineer. Biotechnology journal 5:686-694.
Moreno-Habel DA, Biglang-awa IM, Dulce A, Luu DD, Garcia P, Weers PM, Haas-Stapleton EJ. 2012. Inactivation of the budded virus of Autographa californica M nucleopolyhedrovirus by gloverin. Journal of invertebrate pathology 110:92-101.
Morishima I, Horiba T, Iketani M, Nishioka E, Yamano Y. 1995. Parallel induction of cecropin and lysozyme in larvae of the silkworm, Bombyx mori. Developmental Comparative Immunology 19:357-363.
Muta T, Iwanaga S. 1996. Clotting and immune defense in Limulidae. Invertebrate Immunology:154-189.
Mylonakis E, Podsiadlowski L, Muhammed M, Vilcinskas A. 2016. Diversity, evolution and medical applications of insect antimicrobial peptides. Philosophical Transactions of the Royal Society B: Biological Sciences 371:20150290.
Nicolas E, Nappi AJ, Lemaitre B. 1996. Expression of antimicrobial peptide genes after infection by parasitoid wasps in Drosophila. Developmental Comparative Immunology 20:175-181.
Palsson‐McDermott EM, O'neill LA. 2013. The Warburg effect then and now: from cancer to inflammatory diseases. Bioessays 35:965-973.
Panthee S, Paudel A, Hamamoto H, Sekimizu K. 2017. Advantages of the silkworm as an animal model for developing novel antimicrobial agents. Frontiers in microbiology 8:373.
Patterson RM, Selkirk JK, Merrick BA. 1995. Baculovirus and insect cell gene expression: review of baculovirus biotechnology. Environmental health perspectives 103:756-759.
Pech LL, Strand MR. 1996. Granular cells are required for encapsulation of foreign targets by insect haemocytes. Journal of cell science 109:2053-2060.
Rodrigues V, Cheah P, Ray K, Chia W. 1995. malvolio, the Drosophila homologue of mouse NRAMP‐1 (Bcg), is expressed in macrophages and in the nervous system and is required for normal taste behaviour. The EMBO Journal 14:3007-3020.
Russo LP, Bequette BW. 1995. Impact of process design on the multiplicity behavior of a jacketed exothermic CSTR. AIChE Journal 41:135-147.
Sakurai M, Shikata M, Sano Y, Hashimoto Y, Matsumoto T. 1998. Virulence of Autographs californica nucleopolyhedrovirus infection of non-permissive cultured cells of the silkworm, Bombyx mori. The Journal of Sericultural Science of Japan 67:211-216.
Schmittgen TD, Livak KJ. 2008. Analyzing real-time PCR data by the comparative C T method. Nature protocols 3:1101.
Smith GE, Summers MD, Fraser M. 1983. Production of human beta interferon in insect cells infected with a baculovirus expression vector. Molecular and cellular biology 3:2156-2165.
Steele J. 1982. Glycogen phosphorylase in insects. Insect Biochemistry 12:131-147.
Strand MR, Pech LL. 1995. Immunological basis for compatibility in parasitoid-host relationships. Annual review of entomology 40:31-56.
Thompson SN. 2003. Trehalose—the insect ‘blood’sugar. Advances in Insect Physiology 31:205-285.
Tzou P, Ohresser S, Ferrandon D, Capovilla M, Reichhart J-M, Lemaitre B, Hoffmann JA, Imler J-L. 2000. Tissue-specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia. Immunity 13:737-748.
Vail P, Sutter G, Jay D, Gough D. 1971. Reciprocal infectivity of nuclear polyhedrosis viruses of the cabbage looper and alfalfa looper. Journal of Invertebrate Pathology 17:383-388.
Van den Bossche J, O’Neill LA, Menon D. 2017. Macrophage immunometabolism: where are we (going)? Trends in immunology 38:395-406.
Vastag L, Koyuncu E, Grady SL, Shenk TE, Rabinowitz JD. 2011. Divergent effects of human cytomegalovirus and herpes simplex virus-1 on cellular metabolism. PLoS pathogens 7.
Wang L-L, Swevers L, Rombouts C, Meeus I, Van Meulebroek L, Vanhaecke L, Smagghe G. 2019. A metabolomics approach to unravel Cricket paralysis virus infection in silkworm Bm5 cells. Viruses 11:861.
Wang L-L, Swevers L, Van Meulebroek L, Meeus I, Vanhaecke L, Smagghe G. 2020. Metabolomic Analysis of Cricket paralysis virus Infection in Drosophila S2 Cells Reveals Divergent Effects on Central Carbon Metabolism as Compared with Silkworm Bm5 Cells. Viruses 12:393.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15216-
dc.description.abstract桿狀病毒為為雙股環狀DNA病毒,在自然界中可以感染多種節肢動物,而最主要的寄主則通常為鱗翅目幼蟲。加州苜蓿夜蛾核多角體病毒 (AcMNPV) 為目前研究最廣泛的桿狀病毒,並且可以感染多達39種的昆蟲,而家蠶核核多角體病毒 (BmNPV) 是一種對於家蠶有高度宿主專一性的桿狀病毒。這兩種桿狀病毒在序列及基因結構性具有高度相似性,但在寄主的範圍卻沒有任何重疊,BmNPV 只會感染家蠶 (Bombyx mori),而AcMNPV的允許寄主 (permissive host) -斜紋夜蛾 (Spodoptera litura) 則無法被BmNPV感染,這種寄主專一性的現象非常特別,前人研究著重於研究病毒基因對於寄主專一性所造成的影響,但寄主專一性可以被許多不同因素影響,本研究則從寄主生理代謝的變化方向去切入。在本研究所得到的結果指出,在病毒感染了非允許寄主 (non-permossive host) 後,寄主體內血淋巴中的海藻糖含量減少,而接著在海藻糖酶及糖原磷解酶的表現量上升代表了酵素的作用使得寄主體內儲存糖被分解成細胞可利用之葡萄糖,而也接連影響了脂肪體中葡萄糖的含量及糖解作用的改變,因病毒並不能在非允許寄主體內複製,我們推測這些能量上的改變可能是為了提供給昆蟲的免疫系統,實驗結果也證明了在感染病毒後,非允許寄主體內細胞性免疫的吞噬作用增加,參與體液性免疫的基因表現量也上升,非允許寄主體內體液性免疫最下游之抗菌肽的表現量也因為病毒的感染而增加,免疫系統的啟動可能是造成病毒無法在非允許寄主體內複製的原因之一,進而利用 2DG 抑制寄主的醣類代謝使寄主無法產生能量後,病毒感染非寄主的能力上升,也證明病毒的寄主專一性與寄主體內醣類代謝有一定的關聯。本研究利用探討病毒感染後寄主的生理代謝變化,證明了寄主自身生理代謝可能是影響病毒感染專一性的原因之一。zh_TW
dc.description.abstractBaculoviruses are double-stranded circular DNA viruses with genomes of approximately 80-180 kb. They can infect many arthropod species, with lepidoptera larvae being the most common host. Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV), which can infect 39 species of lepidoptera, is the most studied baculovirus to date. Bombyx mori nucleopolyhedrovirus (BmNPV) is a major silkworm pathogen which has developed high host specificity to Bombyx mori. These two viruses are very similar in genetic structure and sequence, but have no overlapping host range. BmNPV can only infect Bombyx mori, but Bombyx mori cannot be infected by AcMNPV. Similarly, Spodoptera litura, the permissive host of AcMNPV, cannot infected by BmNPV. Many previous studies have discussed the conditions which affect the host specificity of these two viruses. Our study found that when AcMNPV and BmNPV infect their non-permissive hosts, the blood sugar composition of the host will be changes, thus causing changes in carbohydrate metabolism. We believe that these changes in energy flow may induce the immune response of non-permissive hosts. Our research has confirmed that after infection with non-permissive viruses, both cellular and humoral immunity are enhanced. Humoral response involves the production of various antimicrobial peptides (AMPs). Our results show that gloverin, a kind of antimicrobial peptides, may be an important factor that influences baculovirus infection. The activation of the immune system may be one of the reasons why the virus cannot replicate in non-permissive hosts.en
dc.description.provenanceMade available in DSpace on 2021-06-07T17:28:36Z (GMT). No. of bitstreams: 1
U0001-0202202113250800.pdf: 2477312 bytes, checksum: bc12b9678a70a443cdf2a5560a1e7a7e (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents中文摘要 i
Abstract ii
目錄 iii
圖次 v
壹、 前言 1
貳、 往昔研究 4
2.1 桿狀病毒 (Baculovirus) 4
2.2 加州苜蓿蛾核多角體病毒 (AcMNPV) 及家蠶核多角體病毒 (BmNPV) 4
2.3 影響桿狀病毒產生寄主專一性的因素 5
2.4 昆蟲體內能量代謝:醣類代謝 5
2.5 昆蟲免疫 6
參、 材料與方法 9
3.1 斜紋夜蛾與家蠶飼養 9
3.2 細胞與病毒純化 9
3.3 蟲體注射 9
3.4 分離斜紋夜蛾及家蠶血淋巴 (hemolymph) 和脂肪體 (fat body) 10
3.5 海藻糖 (trehalose) 含量測定 10
3.6 糖原 (glycogen) 含量測定 10
3.7 葡萄糖 (glucose) 含量測定 11
3.8 核酸萃取 11
3.9 即時定量聚合酶連鎖反應 12
3.10 病毒核酸萃取 12
3.11 吞噬作用測定 (phagocytosis assay) 13
3.12 統計分析 13
肆、 結果 15
4.1 病毒感染非允許寄主後之醣類代謝變化 15
4.1.1 海藻糖含量變化 (Trehalose assay) 15
4.1.2 脂肪體中糖原 (glycogen) 濃度變化 16
4.1.3 昆蟲血淋巴及脂肪體中儲存糖的催化酵素變化 16
4.1.4 葡萄糖含量變化 (Glucose Assay) 17
4.1.5 糖解作用的影響 18
4.2 寄主感染非允許病毒後之免疫反應之變化 19
4.2.1 細胞性免疫 19
4.2.2 感染病毒後免疫途徑之基因表現量變化 20
4.2.3 病毒感染後寄主體內抗菌肽 gloverin 表現量變化 22
4.3 以2DG處理SL1A細胞株及BmN細胞株後病毒滴度 (titer) 的變化 23
伍、 討論 25
陸、 參考文獻 50
柒、 附錄 58
dc.language.isozh-TW
dc.subject醣類代謝zh_TW
dc.subject桿狀病毒zh_TW
dc.subject寄主專一性zh_TW
dc.subjectBaculovirusesen
dc.subjectcarbohydrate metabolismen
dc.subjecthost specificityen
dc.title醣類代謝差異影響桿狀病毒感染專一性之研究zh_TW
dc.titleStudy the effect of carbohydrate metabolism on the specificity of baculovirus infectionen
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.oralexamcommittee黃榮南(Rong-Nan Huang), 李松泰(Song-Tay Lee),吳宗遠(Tzong-Yuan Wu),乃育昕(Yu-Shin Nai)
dc.subject.keyword桿狀病毒,寄主專一性,醣類代謝,zh_TW
dc.subject.keywordBaculoviruses,host specificity,carbohydrate metabolism,en
dc.relation.page63
dc.identifier.doi10.6342/NTU202100371
dc.rights.note未授權
dc.date.accepted2021-02-03
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept昆蟲學研究所zh_TW
顯示於系所單位:昆蟲學系

文件中的檔案:
檔案 大小格式 
U0001-0202202113250800.pdf
  未授權公開取用
2.42 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved