請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15188完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周信宏 | |
| dc.contributor.author | Pu Kuo | en |
| dc.contributor.author | 郭璞 | zh_TW |
| dc.date.accessioned | 2021-06-07T17:28:23Z | - |
| dc.date.copyright | 2020-07-15 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-06-03 | |
| dc.identifier.citation | Andoy, Sarkar, Wang, Panda, Benítez, Kalininskiy, and Chen. 2009. “Single-Molecule Study of Metalloregulator CueR-DNA Interactions Using Engineered Holliday Junctions.” Biophysical Journal 97 (3): 844–52. doi:10.1016/j.bpj.2009.05.027.
Ansari, Bradner, and O’Halloran. 1995. “DNA-Bend Modulation in a Repressor-to-Activator Switching Mechanism.” Nature 374 (6520): 371–75. doi:10.1038/374370a0. Argüello, Raimunda, and Padilla-Benavides. 2013. “Mechanisms of Copper Homeostasis in Bacteria.” Frontiers in Cellular and Infection Microbiology 4 (NOV): 1–14. doi:10.3389/fcimb.2013.00073. Balogh, Gyurcsik, Hunyadi-Gulyás, Christensen, and Jancsó. 2016. “Advanced Purification Strategy for CueR, a Cysteine Containing Copper(I) and DNA Binding Protein.” Protein Expression and Purification 123 (July): 90–96. doi:10.1016/j.pep.2016.03.012. Baranauskiene, Petrikaite, Matuliene, and Matulis. 2009. “Titration Calorimetry Standards and the Precision of Isothermal Titration Calorimetry Data.” International Journal of Molecular Sciences 10 (6): 2752–62. doi:10.3390/ijms10062752. Bereza-Malcolm, Mann, and Franks. 2015. “Environmental Sensing of Heavy Metals Through Whole Cell Microbial Biosensors: A Synthetic Biology Approach.” ACS Synthetic Biology 4 (5): 535–46. doi:10.1021/sb500286r. Bontidean, Berggren, Johansson, Csöregi, Mattiasson, Lloyd, Jakeman, and Brown. 1998. “Detection of Heavy Metal Ions at Femtomolar Levels Using Protein-Based Biosensors.” Analytical Chemistry 70 (19): 4162–69. doi:10.1021/ac9803636. Boudker, and Oh. 2015. “Isothermal Titration Calorimetry of Ion-Coupled Membrane Transporters.” Methods 76: 171–82. doi:10.1016/j.ymeth.2015.01.012. Brown, Stoyanov, Kidd, and Hobman. 2003. “The MerR Family of Transcriptional Regulators.” FEMS Microbiology Reviews 27 (2–3): 145–63. doi:10.1016/S0168-6445(03)00051-2. Byrd, Berger, McMillin, Wright, Hamer, and Winge. 1988. “Characterization of the Copper-Thiolate Cluster in Yeast Metallothionein and Two Truncated Mutants.” The Journal of Biological Chemistry 263 (14): 6688–94. Changela, Chen, Xue, Holschen, Outten, O’Halloran, and Mondragón. 2003. “Molecular Basis of Metal-Ion Selectivity and Zeptomolar Sensitivity by CueR.” Science 301 (5638): 1383–87. doi:10.1126/science.1085950. Chen, Kui, Yuldasheva, Penner-Hahn, and O’Halloran. 2003. “An Atypical Linear Cu(I)-S2 Center Constitutes the High-Affinity Metal-Sensing Site in the CueR Metalloregulatory Protein.” Journal of the American Chemical Society 125 (40): 12088–89. doi:10.1021/ja036070y. Chen, Peng, and He. 2004. “A General Strategy to Convert the MerR Family Proteins into Highly Sensitive and Selective Fluorescent Biosensors for Metal Ions.” Journal of the American Chemical Society 126 (3): 728–29. doi:10.1021/ja0383975. Crothers, Gartenberg, and Shrader. 1991. “DNA Bending in Protein-DNA Complexes.” Methods in Enzymology 208 (C): 118–46. doi:10.1016/0076-6879(91)08011-6. Gireesh-Babu, and Chaudhari. 2012. “Development of a Broad-Spectrum Fluorescent Heavy Metal Bacterial Biosensor.” Molecular Biology Reports 39 (12): 11225–29. doi:10.1007/s11033-012-2033-x. Goodrich, and Kugel. 2007. Binding and Kinetics for Molecular Biologists. Cold Spring Harbor Laboratory Press. Gu, Mitchell, and Kim. 2004. “Whole-Cell-Based Biosensors for Environmental Biomonitoring and Application.” Advances in Biochemical Engineering/Biotechnology 87: 269–305. doi:10.1007/b13533. Guo, Chen, Lin, Chen, Lee, and Yeh. 2018. “Determination of Gold Ions in Human Urine Using Genetically Engineered Microorganisms on a Paper Device.” ACS Sensors 3 (4): 744–48. doi:10.1021/acssensors.7b00931. Hobman. 2007. “MerR Family Transcription Activators: Similar Designs, Different Specificities.” Molecular Microbiology 63 (5): 1275–78. doi:10.1111/j.1365-2958.2007.05608.x. Humbert, Rasia, Checa, and Soncini. 2013. “Protein Signatures That Promote Operator Selectivity among Paralog MerR Monovalent Metal Ion Regulators.” Journal of Biological Chemistry 288 (28): 20510–19. doi:10.1074/jbc.M113.452797. Ibáñez, Cerminati, Checa, and Soncini. 2013. “Dissecting the Metal Selectivity of MerR Monovalent Metal Ion Sensors in Salmonella.” Journal of Bacteriology 195 (13): 3084–92. doi:10.1128/JB.00153-13. Ibáñez, Checa, and Soncini. 2015. “A Single Serine Residue Determines Selectivity to Monovalent Metal Ions in Metalloregulators of the MerR Family.” Edited by J. S. Parkinson. Journal of Bacteriology 197 (9): 1606–13. doi:10.1128/JB.02565-14. Jian, Wasinger, Lockard, Chen, and He. 2009. “Highly Sensitive and Selective Gold(I) Recognition by a Metalloregulator in Ralstonia Metallidurans.” Journal of the American Chemical Society 131 (31): 10869–71. doi:10.1021/ja904279n. Kang, Lee, Kim, Jang, Kim, and Yoon. 2018. “Enhancing the Copper-Sensing Capability of Escherichia Coli-Based Whole-Cell Bioreporters by Genetic Engineering.” Applied Microbiology and Biotechnology 102 (3): 1513–21. doi:10.1007/s00253-017-8677-7. Kao. 2018. “Characterization of the Metal Specificity of the CueR Metal-Binding Domain by Saturation Mutagenesis.” National Taiwan University. doi:10.6342/NTU201803632. LiCata, and Wowor. 2008. “Applications of Fluorescence Anisotropy to the Study of Protein-DNA Interactions.” Methods in Cell Biology 84 (07): 243–62. doi:10.1016/S0091-679X(07)84009-X. Liu, Hu, Yang, Huang, Wei, Chen, He, et al. 2019. “Selective Cadmium Regulation Mediated by a Cooperative Binding Mechanism in CadR.” Proceedings of the National Academy of Sciences of the United States of America 116 (41): 20398–403. doi:10.1073/pnas.1908610116. MacArthur, and Thornton. 1991. “Influence of Proline Residues on Protein Conformation.” Journal of Molecular Biology 218 (2): 397–412. doi:10.1016/0022-2836(91)90721-H. Martell, Joshi, Gaballa, Santiago, Chen, Jung, Helmann, and Chen. 2015. “Metalloregulator CueR Biases RNA Polymerase’s Kinetic Sampling of Dead-End or Open Complex to Repress or Activate Transcription.” Proceedings of the National Academy of Sciences 112 (44): 13467–72. doi:10.1073/pnas.1515231112. O’Halloran, Frantz, Shin, Ralston, and Wright. 1989. “The MerR Heavy Metal Receptor Mediates Positive Activation in a Topologically Novel Transcription Complex.” Cell 56 (1): 119–29. doi:10.1016/0092-8674(89)90990-2. Outten, Huffman, Hale, and O’Halloran. 2001. “The Independent Cue and Cus Systems Confer Copper Tolerance during Aerobic and Anaerobic Growth in Escherichia Coli.” Journal of Biological Chemistry 276 (33): 30670–77. doi:10.1074/jbc.M104122200. Outten, Outten, Hale, and O’Halloran. 2000. “Transcriptional Activation of an Escherichia Coli Copper Efflux Regulon by the Chromosomal MerR Homologue, CueR.” Journal of Biological Chemistry 275 (40): 31024–29. doi:10.1074/jbc.M006508200. Philips, Canalizo-Hernandez, Yildirim, Schatz, Mondragon, and O’Halloran. 2015. “Allosteric Transcriptional Regulation via Changes in the Overall Topology of the Core Promoter.” Science 349 (6250): 877–81. doi:10.1126/science.aaa9809. R Core Team. 2018. “R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL Https://Www.R-Project.Org/.” Rao, Cui, and Xu. 2010. “Electronic Properties and Desolvation Penalties of Metal Ions plus Protein Electrostatics Dictate the Metal Binding Affinity and Selectivity in the Copper Efflux Regulator.” Journal of the American Chemical Society 132 (51): 18092–102. doi:10.1021/ja103742k. Rensing, and Grass. 2003. “Escherichia Coli Mechanisms of Copper Homeostasis in a Changing Environment.” FEMS Microbiology Reviews 27 (2–3): 197–213. doi:10.1016/S0168-6445(03)00049-4. Reyes-Caballero, Campanello, and Giedroc. 2011. “Metalloregulatory Proteins: Metal Selectivity and Allosteric Switching.” Biophysical Chemistry 156 (2–3): 103–14. doi:10.1016/j.bpc.2011.03.010. Saboury. 2003. “Application of a New Method for Data Analysis of Isothermal Titration Calorimetry in the Interaction between Human Serum Albumin and Ni2+.” Journal of Chemical Thermodynamics 35 (12): 1975–81. doi:10.1016/j.jct.2003.08.006. Schmidt, and Skerra. 2007. “The Strep-Tag System for One-Step Purification and High-Affinity Detection or Capturing of Proteins.” Nature Protocols 2 (6): 1528–35. doi:10.1038/nprot.2007.209. Schneider, Rasband, and Eliceiri. 2012. “NIH Image to ImageJ: 25 Years of Image Analysis.” Nature Methods 9 (7): 671–75. doi:10.1038/nmeth.2089. Stoyanov, Hobman, and Brown. 2001. “CueR (YbbI) of Escherichia Coli Is a MerR Family Regulator Controlling Expression of the Copper Exporter CopA.” Molecular Microbiology 39 (2): 502–12. doi:10.1046/j.1365-2958.2001.02264.x. Szunyogh, Szokolai, Thulstrup, Larsen, Gyurcsik, Christensen, Stachura, Hemmingsen, and Jancsó. 2015. “Specificity of the Metalloregulator CueR for Monovalent Metal Ions: Possible Functional Role of a Coordinated Thiol?” Angewandte Chemie International Edition 54 (52): 15756–61. doi:10.1002/anie.201508555. Tseng, Tsai, Yen, Chen, and Yeh. 2014. “A Fluorescence-Based Microbial Sensor for the Selective Detection of Gold.” Chemical Communications 50 (14): 1735–37. doi:10.1039/c3cc48028c. Waldron, and Robinson. 2009. “How Do Bacterial Cells Ensure That Metalloproteins Get the Correct Metal?” Nature Reviews Microbiology 7 (1): 25–35. doi:10.1038/nrmicro2057. Wegner, Okesli, Chen, and He. 2007. “Design of an Emission Ratiometric Biosensor from MerR Family Proteins: A Sensitive and Selective Sensor for Hg2+.” Journal of the American Chemical Society 129 (12): 3474–75. doi:10.1021/ja068342d. Wei, Liu, Sun, Wang, Zhu, Hong, Mao, and Zhao. 2014. “Simple Whole-Cell Biodetection and Bioremediation of Heavy Metals Based on an Engineered Lead-Specific Operon.” Environmental Science & Technology 48 (6): 3363–71. doi:10.1021/es4046567. Williams. 1990. “Bio-Inorganic Chemistry: Its Conceptual Evolution.” Coordination Chemistry Reviews 100 (C): 573–610. doi:10.1016/0010-8545(90)85020-S. Wiseman, Williston, Brandts, and Lin. 1989. “Rapid Measurement of Binding Constants and Heats of Binding Using a New Titration Calorimeter.” Analytical Biochemistry 179 (1): 131–37. doi:10.1016/0003-2697(89)90213-3. Zammit, Quaranta, Gibson, Zaitouna, Ta, Brugger, Lai, Grass, and Reith. 2013. “A Whole-Cell Biosensor for the Detection of Gold.” Edited by Vipul Bansal. PLoS ONE 8 (8): e69292. doi:10.1371/journal.pone.0069292. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15188 | - |
| dc.description.abstract | 生物必須維持體內金屬離子的恆定。在大腸桿菌中,為保持細胞質內的單價銅離子恆定,一種名為CueR的MerR蛋白家族轉錄因子為關鍵之一。CueR 對單價銅離子有高親和性,並且與銀離子和金離子皆會結合。透過隨機突變CueR金屬結合域的胺基酸, 前人研究發現S117P及D116P 突變型皆相較野生型對金離子更加具有選擇性。我利用凝膠電泳遷移率實驗及等溫滴定量熱法,剖析影響S117P及D116P的金屬選擇性之生化機制,並發現金屬離子誘發的啟動子DNA構形改變是造成S117P對金離子有高選擇性的主要因子。除了研究CueR突變種的生化特性以外,我嘗試以CueR-S117P以及大腸桿菌改造株製作成全細胞的生物感測器。此生物感測器對金離子有優秀的選擇性,並且在金離子濃度為0.1至2 µM之間有線性的反應曲線。總結而言,本研究增進了學界對蛋白質金屬選擇性的理解,並且為金屬生物感測器的發展作出貢獻。 | zh_TW |
| dc.description.abstract | Maintaining the homeostasis of metal ions is crucial for living organisms. In Escherichia coli, a MerR family transcription factor named CueR is critical for copper homeostasis in the cytosol. CueR has high affinity to monovalent copper and binds to silver or gold ions as well. Previous mutagenesis of the CueR metal-binding domain demonstrated that mutations S117P and D116P were more selective to gold than the wild-type (WT). I aimed to dissect the biochemical mechanisms underlying the gold specificity of S117P and D116P by the electrophoretic mobility shift assay and isothermal titration calorimetry. I found that the relative conformational change of PcopA, a cueR-regulated promoter, correlated with the level of transcriptional activation by CueR-WT and the two mutants. In addition to studying the biochemical properties of CueR mutants, I used the CueR-S117P and an E. coli strain with compromised metal homeostasis to develop a whole-cell biosensor for gold cations. This biosensor had high selectivity for gold and a linear response range between 0.1 and 2 µM. Collectively, my work provided mechanistic insights into the cation selectivity of a metalloprotein and contributed to the development of a gold biosensor. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T17:28:23Z (GMT). No. of bitstreams: 1 ntu-109-R06b21020-1.pdf: 4147331 bytes, checksum: 745e2c30f3e1a656dc61ade4f9689038 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iii Abstract iv Contents v Figures vi Tables viii List of abbreviations ix Chapter I. Introduction 1 Chapter II. Biochemical characterization of gold-specific CueR mutants 7 Summary 7 Introduction 7 Materials and methods 9 Results 13 2.1. Expression and purification of CueR 13 2.2 Binding affinity of CueR and PcopA 15 2.3 Measuring the affinity of CueR protein and metal cations by isothermal titration calorimetry 20 2.4 Metal-induced conformational change of the CueR-PcopA complex 25 Discussion 30 References 33 Chapter III. CueR-S117P as a potential biosensor 38 Introduction 38 Materials and Methods 39 Results 41 Discussion 43 References 45 Chapter IV. Conclusion & Future Perspectives 48 | |
| dc.language.iso | en | |
| dc.subject | 金屬蛋白 | zh_TW |
| dc.subject | 凝膠電泳遷移率實驗 | zh_TW |
| dc.subject | 等溫滴定量熱法 | zh_TW |
| dc.subject | CueR | zh_TW |
| dc.subject | MerR蛋白質家族 | zh_TW |
| dc.subject | 生物感測器 | zh_TW |
| dc.subject | biosensor | en |
| dc.subject | CueR | en |
| dc.subject | Metalloprotein | en |
| dc.subject | EMSA | en |
| dc.subject | ITC | en |
| dc.subject | MerR family | en |
| dc.title | 金選擇性生物感測器之特徵描述及發展 | zh_TW |
| dc.title | Characterization and development of gold-selective biosensors | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鄭貽生,葉怡均 | |
| dc.subject.keyword | 金屬蛋白,凝膠電泳遷移率實驗,等溫滴定量熱法,CueR,MerR蛋白質家族,生物感測器, | zh_TW |
| dc.subject.keyword | Metalloprotein,EMSA,ITC,CueR,MerR family,biosensor, | en |
| dc.relation.page | 49 | |
| dc.identifier.doi | 10.6342/NTU202000935 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-06-04 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生命科學系 | zh_TW |
| 顯示於系所單位: | 生命科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-109-1.pdf 未授權公開取用 | 4.05 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
