Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 海洋研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/1377
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭本垣
dc.contributor.authorChung-Hung Loen
dc.contributor.author羅仲宏zh_TW
dc.date.accessioned2021-05-12T09:37:37Z-
dc.date.available2018-08-19
dc.date.available2021-05-12T09:37:37Z-
dc.date.copyright2018-08-19
dc.date.issued2018
dc.date.submitted2018-08-14
dc.identifier.citationAbercrombie Rachel E. (1995). Earthquake source scaling relationships from −1 to 5 ML using seismograms recorded at 2.5-km depth. Journal of Geophysical Research: Solid Earth, 100(B12), 24015-24036.
Aki, K., and P. G. Richards (1980), Quantitative Seismology, W. H. Freeman, New York.
Andersen, T. B., & Austrheim, H. (2006). Fossil earthquakes recorded by pseudotachylytes in mantle peridotite from the Alpine subduction complex of Corsica. Earth and Planetary Science Letters, 242(1-2), 58-72.
Anderson, J. G., & Hough, S. E. (1984). A model for the shape of the fourier amplitude spectrum of acceleration at high frequencies. Bulletin of the Seismological Society of America, 74(5), 1969-1993.
Beresnev, I. A. (2002). Source parameters observable from the corner frequency of earthquake spectra. Bulletin of the Seismological Society of America, 92(5), 2047-2048.
Boatwright, J. (1980). A spectral theory for circular seismic sources; simple estimates of source dimension, dynamic stress drop, and radiated seismic energy. Bulletin of the Seismological Society of America, 70(1), 1-27.
Boatwright, J., & Fletcher, J. B. (1984). The partition of radiated energy between P and S waves. Bulletin of the Seismological Society of America, 74(2), 361-376.
Brune, J. N. (1970). Tectonic stress and the spectra of seismic shear waves from earthquakes. Journal of Geophysical Research, 75(26), 4997-5009.
Deseta, N., Ashwal, L. D., & Andersen, T. B. (2014). Initiating intermediate-depth earthquakes: Insights from a HP–LT ophiolite from Corsica. Lithos, 206, 127-146.
Dobson, D. P., Meredith, P. G., & Boon, S. A. (2002). Simulation of subduction zone seismicity by dehydration of serpentine. Science, 298(5597), 1407-1410.
Eshelby, J. D. (1957), The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. R. Soc. London, Ser. A, 241,376–396,
Ferris, A., Abers, G. A., Christensen, D. H., & Veenstra, E. (2003). High resolution image of the subducted Pacific (?) plate beneath central Alaska, 50–150 km depth. Earth and Planetary Science Letters, 214(3), 575-588.
Green, H. W., & Houston, H. (1995). The mechanics of deep earthquakes. Annual Review of Earth and Planetary Sciences, 23(1), 169-213.
Goes, S., Capitanio, F. A., & Morra, G. (2008). Evidence of lower-mantle slab penetration phases in plate motions. Nature, 451, 981.
Hacker, B. R., Peacock, S. M., Abers, G. A., & Holloway, S. D. (2003). Subduction factory 2. Are intermediate‐depth earthquakes in subducting slabs linked to metamorphic dehydration reactions?. Journal of Geophysical Research: Solid Earth, 108(B1).
Hanks, T. C., & Kanamori, H. (1979). A moment magnitude scale. Journal of Geophysical Research: Solid Earth, 84(B5), 2348-2350.
Haskell, N. A. (1964). Total energy and energy spectral density of elastic wave radiation from propagating faults. Bulletin of the Seismological Society of America, 54(6A), 1811-1841.
Hayes, G. P., Wald, D. J., & Johnson, R. L. (2012). Slab1. 0: A three‐dimensional model of global subduction zone geometries. Journal of Geophysical Research: Solid Earth, 117(B1).
Hiramatsu Yoshihiro, Hiroshi, Y., Keiichi, T., Kin′ya, N., & Shiro, O. (2002). Scaling law between corner frequency and seismic moment of microearthquakes: Is the breakdown of the cube law a nature of earthquakes? Geophysical Research Letters, 29(8), 52-51-52-54.
Hoek, E. (1968). Brittle fracture of rock. Rock mechanics in engineering practice, 130.
Ide, S., & Beroza, G. C. (2001). Does apparent stress vary with earthquake size?. Geophysical Research Letters, 28(17), 3349-3352.
Jiyao, L., A., A. G., YoungHee, K., & Douglas, C. (2013). Alaska megathrust 1: Seismicity 43 years after the great 1964 Alaska megathrust earthquake. Journal of Geophysical Research: Solid Earth, 118(9), 4861-4871.
Jung, H., Green Ii, H. W., & Dobrzhinetskaya, L. F. (2004). Intermediate-depth earthquake faulting by dehydration embrittlement with negative volume change. Nature, 428(6982), 545.
Kanamori, Hiroo & Emily, E. B. (2004). The physics of earthquakes. Reports on Progress in Physics, 67(8), 1429.
Kanamori, Hiroo & Rivera, L. (2006). Energy partitioning during an earthquake.
Kanamori, H. (1977). The energy release in great earthquakes. Journal of geophysical research, 82(20), 2981-2987.
Ko, J. Y.-T., & Kuo, B.-Y. (2016). Low radiation efficiency of the intermediate-depth earthquakes in the Japan subduction zone. Geophysical Research Letters, 43(22), 11,611-611,619.
Ko, Y.-T., Kuo, B.-Y., & Hung, S.-H. (2012). Robust determination of earthquake source parameters and mantle attenuation. Journal of Geophysical Research: Solid Earth, 117(B4).
Lio, Y. L., Padgett, W. J., & Yu, K. F. (1986). On the asymptotic properties of a kernel type quantile estimator from censored samples. Journal of Statistical Planning and Inference, 14(2), 169-177.
Madariaga, R. (1976). Dynamics of an expanding circular fault. Bulletin of the Seismological Society of America, 66(3), 639-666.
Mueller, C. S. (1985). Source pulse enhancement by deconvolution of an empirical Green's function. Geophysical Research Letters, 12(1), 33-36.
Ohta, Y., Freymueller, J. T., Hreinsdóttir, S., & Suito, H. (2006). A large slow slip event and the depth of the seismogenic zone in the south central Alaska subduction zone. Earth and Planetary Science Letters, 247(1), 108-116.
Park, S. C., & Mori, J. (2008). Rupture velocity estimation of large deep‐focus earthquakes surrounding Japan. Journal of Geophysical Research: Solid Earth, 113(B8).
Peacock, S. M. (2001), Are lower planes of double-seismic zones caused by serpentine dehydration in subducting oceanic mantle?, Geology,29, 299–302.
Peacock, S. M., and K. Wang (1999), Seismic consequences of warm versus cool subduction metamorphism: Examples from southwest and northeast Japan, Science, 286, 937–939.
Prieto, G. A., Shearer, P. M., Vernon, F. L., & Kilb, D. (2004). Earthquake source scaling and self‐similarity estimation from stacking P and S spectra. Journal of Geophysical Research: Solid Earth, 109(B8).
Prieto, G. A., Parker, R. L., Thomson, D. J., Vernon, F. L., & Graham, R. L. (2007). Reducing the bias of multitaper spectrum estimates. Geophysical Journal International, 171(3), 1269-1281.
Prieto, G. A., Beroza, G. C., Barrett, S. A., López, G. A., & Florez, M. (2012). Earthquake nests as natural laboratories for the study of intermediate-depth earthquake mechanics. Tectonophysics, 570, 42-56.
Prieto, A. G., Manuel, F., A., B. S., C., B. G., Patricia, P., Faustino, B. J., & Esteban, P. (2013). Seismic evidence for thermal runaway during intermediate-depth earthquake rupture. Geophysical Research Letters, 40(23), 6064-6068.
Roth, E. G., Wiens, D. A., Dorman, L. M., Hildebrand, J., & Webb, S. C. (1999). Seismic attenuation tomography of the Tonga‐Fiji region using phase pair methods. Journal of Geophysical Research: Solid Earth, 104(B3), 4795-4809.
Ruppert, N. A., & Hansen, R. A. (2010). Temporal and Spatial Variations of Local Magnitudes in Alaska and Aleutians and Comparison with Body-Wave and Moment Magnitudes. Bulletin of the Seismological Society of America, 100(3), 1174-1183.
Sambridge, M. (1999a). Geophysical inversion with a neighbourhood algorithm—I. Searching a parameter space. Geophysical Journal International, 138(2), 479-494.
Sambridge, M. (1999b). Geophysical inversion with a neighbourhood algorithm—II. Appraising the ensemble. Geophysical Journal International, 138(3), 727-746.
Sambridge, M. (2001). Finding acceptable models in nonlinear inverse problems using a neighbourhood algorithm. Inverse Problems, 17(3), 387.
Shearer, P. M. (2009). Introduction to Seismology (2 ed.). Cambridge: Cambridge University Press.
Shito, A., Karato, S. I., & Park, J. (2004). Frequency dependence of Q in Earth's upper mantle inferred from continuous spectra of body waves. Geophysical research letters, 31(12).
Slepian D. (1978). Prolate Spheroidal Wave Functions, Fourier Analysis, and Uncertainty—V: The DiPCRete Case. Bell System Technical Journal, 57(5), 1371-1430.
Stachnik, J. C., Abers, G. A., & Christensen, D. H. (2004). Seismic attenuation and mantle wedge temperatures in the Alaska subduction zone. Journal of Geophysical Research: Solid Earth, 109(B10).
St‐Onge, A. (2011). Akaike information criterion applied to detecting first arrival times on microseismic data SEG Technical Program Expanded Abstracts 2011 (pp. 1658-1662).
Tajima, R., & Tajima, F. (2007). Seismic scaling relations and aftershock activity from the sequences of the 2004 mid Niigata and the 2005 west off Fukuoka earthquakes (Mw 6.6) in Japan. Journal of Geophysical Research: Solid Earth, 112(B10).
Thielmann, M. (2017). Grain size assisted thermal runaway as a nucleation mechanism for continental mantle earthquakes: Impact of complex rheologies. Tectonophysics.
Thielmann, M., Rozel, A., Kaus, B. J. P., & Ricard, Y. (2015). Intermediate-depth earthquake generation and shear zone formation caused by grain size reduction and shear heating. Geology, 43(9), 791-794.
Thomson, D. J. (1982). Spectrum estimation and harmonic analysis. Proceedings of the IEEE, 70(9), 1055-1096.
Thomson, E. S., Gill, S. S., & Doughty, D. (1990). Stereotactic multiple arc radiotherapy. The British Journal of Radiology, 63(754), 745-751.
Venkataraman Anupama & Kanamori Hiroo (2004a). Observational constraints on the fracture energy of subduction zone earthquakes. Journal of Geophysical Research: Solid Earth, 109(B5).
Venkataraman Anupama & Kanamori Hiroo (2004b). Effect of directivity on estimates of adiated seismic energy. Journal of Geophysical Research: Solid Earth, 109(B4).
Viegas, G., Abercrombie, R. E., & Kim, W. Y. (2010). The 2002 M5 Au Sable Forks, NY, earthquake sequence: Source scaling relationships and energy budget. Journal of Geophysical Research: Solid Earth, 115(B7).
Yin, J., Denolle, M. A., & Yao, H. (2018). Spatial and Temporal Evolution of Earthquake Dynamics: Case Study of the Mw 8.3 Illapel Earthquake, Chile. Journal of Geophysical Research: Solid Earth, 123(1), 344-367.
YoungHee, K., A., A. G., Jiyao, L., Douglas, C., Josh, C., & Stéphane, R. (2014). Alaska Megathrust 2: Imaging the megathrust zone and Yakutat/Pacific plate interface in the Alaska subduction zone. Journal of Geophysical Research: Solid Earth, 119(3), 1924-1941.
Zhao Dapeng, Douglas, C., & Hans, P. (1995). Tomographic imaging of the Alaska subduction zone. Journal of Geophysical Research: Solid Earth, 100(B4), 6487-6504.
柯彥廷,2010,沖繩海槽與北台灣的地幔楔衰減特性及其與歐亞岩石圈之關係,國立臺灣大學地質科學研究所碩士論文,共87頁。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/handle/123456789/1377-
dc.description.abstract斷層在中深部 (50 - 300 km) 高岩壓環境下的破裂機制目前尚有爭論。溫度、壓力與區域應力場的差別,均會對破裂機制產生不同的影響,進而決定斷層的破裂行為。連續深度剖面的震源參數提供了解不同深度破裂機制的機會。本研究分析地震波頻譜,計算深層地震包含拐角頻率、地震矩、應力降、地震波輻射能量、地震波幅射效率在內的震源參數,嘗試為深層地震的發生機制提供約束。
本研究利用群組地震法大幅減少逆推過程中的未知參數,有效分拐角頻率與路徑衰減對頻譜的影響。群組地震法的核心概念為建構多重震源-測站對能嚴謹地定義共同路徑Q與各自震源的fc,由觀測的資料同時決定震源與路徑衰減,以解決在頻譜上拐角頻率與路徑衰減之間的非線性關係。
本研究擷取IRIS資料中心144個分布於阿拉斯加隱沒帶的地震,規模介於3到5之間,震源深度90到170 km,並計算中深部地震動態與靜態的震源參數。結果顯示,拐角頻率與地震矩呈現清楚的逆相關,鞏固了逆推架構與結果的可信度。而拐角頻率、應力降、地震波輻射能量等各個震源參數的計算結果,符合地震理論的自我相似性規範。
阿拉斯加隱沒帶的震源特性具有高應力降 (18.34 ± 1.1 MPa) 與低地震波輻射效率 (0.27) 的特徵。暗示或許在阿拉斯加隱沒帶,深層地震的發生機制主導於熱失控模型。脫水脆化作用釋放出的水可能為熱失控模型的催化劑,而在地震波研究上僅看得出熱失控模型的特徵。本論文認為兩者是相輔相成的關係,共同為中深部地震的發生機制。
zh_TW
dc.description.abstractThe Alaska subduction zone is known as an active subduction zone where earthquakes occur at high rate and widespread along the trench and down dip of the slab. In recent years, increasing numbers of seismic arrays have been installed in Alaska region that significantly increased aperture of observations. It provides an opportunity to systematically investigate depth-varying seismic source characteristics in subduction zone. The source characteristics can reflect the rupture behaviors of fault, but the differences in rupture behaviors as a function of depth are still notably debated. In this study, we employed a cluster-event method (CEM) to constrain the source parameters as well as along-path attenuation in the Alaska subduction zone. Neighborhood algorithm is applied to solve the nonlinear inverse problem. Using 40 stations from IRIS data management center, we analyzed 144 Alaska local earthquakes spreading over a depth range from surface to several hundred kilometers and a seismic magnitude range from 3 to 5 in 2012~2017. These source parameters are then converted to stress drop and radiated energy at different depths. The fc’s satisfy a self-similar scaling relationship with seismic moment of f_c∝〖M_0〗^(-3) with a mean stress drop of 18.34 ± 1.10 MPa in Madariaga’s form (Vs model). The lower radiation efficiency and higher stress drop might imply the shear heating instability and dehydration embrittlement as the same important faulting mechanisms for intermediate-depth earthquakes.en
dc.description.provenanceMade available in DSpace on 2021-05-12T09:37:37Z (GMT). No. of bitstreams: 1
ntu-107-R05241304-1.pdf: 15436705 bytes, checksum: 0363696af25529b990dfd6243f4c7d46 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 iv
圖目錄 vii
表目錄 ix
第一章 緒論 1
1.1 中深部地震成因之假說 1
1.2 拐角頻率與時間的制衡關係 (fc-t* trade-off) 2
1.3 阿拉斯加隱沒帶概述 3
第二章 研究方法 5
2.1 群組地震法 (Cluster-Event Method, CEM) 5
2.2 fc、t*與地震波頻譜估計 7
2.3 鄰域演算法 (Neighborhood Algorithm, NA) 10
第三章 資料處理與分析 13
3.1 資料來源 13
3.2 資料處理流程 14
3.2.1資料前處理-P 波到時 14
3.2.2資料篩選標準- SNR、PCR 16
3.3 地震群組組成 18
3.4 CEM-NA的殘差值計算 20
第四章 逆推結果與震源參數 23
4.1 CEM-NA之逆推結果 23
4.1.1資料擬合 23
4.1.2 CEM-NA的逆推範例地震 24
4.1.3跨群組事件的fc 26
4.2 靜態震源參數計算 27
4.2.1地震矩 (Seismic moment, M0) 27
4.2.2靜態應力降 (Stress drop, Δσ) 30
4.3動態震源參數計算 32
4.3.1地震體波輻射能 (Radiated Energy, ER) 32
4.3.2地震波輻射效率 (Radiation Efficiency, ηR) 34
第五章 討論 36
5.1 CEM群組組成辨析 36
5.1.1 群組組成的極端例子 36
5.1.2 ST近似 (ST Asymptotic) 41
5.2逆推參數測試 43
5.2.1 殘差值權重設定 43
5.2.2 fc上限值設定 45
5.3 阿拉斯加隱沒帶之震源參數討論 46
5.3.1應力降與深度 46
5.3.2比例能量與深度 48
5.3.3地震波輻射效率與深度 49
5.3.4震源參數計算常數之假設 51
5.3.5阿拉斯加隱沒帶中深部地震的可能機制 52
5.4 阿拉斯加隱沒帶之本質衰減趨勢 53
第六章 結論 55
參考資料 56
附錄A 鄰域演算法 60
A.1最佳化問題 60
A.2基本名詞解釋 61
A.3 NA計算效率 69
A.4 NA邊界決定 (Intersection) 70
A.5 NA控制參數 (nr、ns) 71
附錄B 多重視窗頻譜法 73
B.1 窗函數 (Window Function ; Taper) 73
B.2 橢球窗函數 (Slepian sequences) 75
B.3 多重視窗頻譜法 (Multi-taper) 76
附錄C 選用地震與測站資訊 78
附錄D 波形擬合展示 84
dc.language.isozh-TW
dc.subject中深部地震破裂機制zh_TW
dc.subject群組地震法zh_TW
dc.subject鄰域演算法zh_TW
dc.subject震源參數zh_TW
dc.subjectneighborhood algorithmen
dc.subjectsource parameteren
dc.subjectfaulting mechanisms for intermediate-depth earthquakesen
dc.subjectcluster event methoden
dc.title利用群組地震法探討阿拉斯加隱沒帶的震源特性zh_TW
dc.titleThe Seismic Source Characteristics in the Alaska Subduction Zone Determined by the Cluster Event Methoden
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.coadvisor喬凌雲
dc.contributor.oralexamcommittee梁文宗,曾泰琳,黃信樺
dc.subject.keyword群組地震法,鄰域演算法,震源參數,中深部地震破裂機制,zh_TW
dc.subject.keywordcluster event method,neighborhood algorithm,source parameter,faulting mechanisms for intermediate-depth earthquakes,en
dc.relation.page107
dc.identifier.doi10.6342/NTU201803102
dc.rights.note同意授權(全球公開)
dc.date.accepted2018-08-15
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept海洋研究所zh_TW
顯示於系所單位:海洋研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf15.07 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved