請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/1367
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林法勤(Far-Ching Lin) | |
dc.contributor.author | Jun-Jie Zeng | en |
dc.contributor.author | 曾君傑 | zh_TW |
dc.date.accessioned | 2021-05-12T09:37:21Z | - |
dc.date.available | 2019-08-19 | |
dc.date.available | 2021-05-12T09:37:21Z | - |
dc.date.copyright | 2018-08-19 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-08-14 | |
dc.identifier.citation | 王松永 (1993) 木材物理學。國立編譯館。816頁。
王彥棋 (2011) 應用蒸煮程序處理都市廢棄物及其生質物回收再利用之研究。國立臺灣大學環境工程學研究所,碩士論文。134頁。 行政院環保署網,https://www.epa.gov.tw/ (accessed July, 2018) 林怡秀 (2011) 以蒸煮程序處理生質廢棄物對其減積及再利用之影響。國立臺灣大學環境工程學研究所,碩士論文。168頁。 林裕仁 (2009) 生質能源利用新寵兒-木質顆粒。林業研究專訊 16(6):17-19頁。 吳耿東、李宏台 (2007) 全球生質能源應用現況與未來展望。林業研究專訊 14(3):5-9頁。 許國恩、朱敬平、鍾裕仁、林法勤 (2012) 生質物造粒特性分析。中興工程 (114):5-12頁。 陳宥任 (2010) 應用紙漿模塑材料特性於產品永續設計。國立臺北科技大學創新設計研究所,碩士論文。161頁。 陳品秀、林若蓁、左峻德、鄭柏萱、劉家豪、廖偉辰 (2015) 生質能產業國際發展現況與我國推動潛力研析。臺灣經濟研究月刊 38(8):120-128頁。 陳載永、陳佳蕙、賴建興 (1998) 臺灣地區中密度纖維板與粒片板之物理性質分析。林產工業 17(4):723-736頁。 張慶源 (2011) 都市生活廢棄物蒸煮處理技術之研究。2011年海峽兩岸氣候變遷與能源永續發展論壇。6頁。 黃清吟 (2009) 木材燃燒面面觀。林業研究專訊 16(6):20-25頁。 黃耀富、藍浩繁 (1998) 蔗渣與木質纖維複合之纖維板製造。林產工業 17(2):359-374頁。 經濟部能源局 (2007) 能源科技研究發展白皮書。118頁。 經濟部能源局網,https://www.moeaboe.gov.tw/ (accessed July, 2018) 經濟部標準檢驗局 (2014) CNS 9909中密度纖維板試驗法。28頁。 經濟部標準檢驗局 (2005) CNS 4713木材中乙醇甲苯萃取物試驗法。2頁。 經濟部標準檢驗局 (2002) CNS 6948紙漿用天然纖維原料之全纖維素試驗法(亞氯酸鹽法)。3頁。 經濟部標準檢驗局 (1992) CNS 11212物理試驗用手抄紙抄造法。9頁。 經濟部標準檢驗局 (2013) CNS 456木材抗拉試驗法。7頁。 經濟部標準檢驗局 (2005) CNS 14907木材中酸不溶性木質素試驗法。2頁。 蔡佳儒、吳耿東、顏翊卉、陳朝羿 (2011) 木質顆粒焙稍試驗之分析。 2011年海峽兩岸氣候變遷與能源永續發展論壇。4頁。 羅渝然、俞書勤、張祖德、姚天揚、高盤良 (2010) 再談什麼是活化能- Arrhenius活化能的定義、解釋以及容易混淆的物理量。大學化學 25(3):35-42頁。 Aue, J., Picard, K. and G., Kevin (2003) Fiber recovery from waste paper: A breakthrough in re-pulping technology. TAPPI 2003 fall technical conference, 11pp. Bergman, P. C. A., A. R. Boersma, R. W. R. Zwart, and J. H. A. Kiel (2005) Torrefaction for biomass co-firing in existing coal-fired power stations. Biocoal, ECN, ECN-C-05-013. 70pp. Bergman, P.C.A. (2005) Combined torrefaction and pelletisation: the TOP process. Biocoal, ECN, ECN-C-05-073. 29pp. Eshraghi, A. and H. Khademieslam (2011) Waste paperboard in composition panels. Cellulose chemistry and technology. 46(9-10): 637-642. Farjas, J. and Roura, P. (2014) Exact analytical solution for the Kissinger equation: Determination of the peak temperature and general properties of thermally activated transformations. Thermochimica Acta. 598 (2014): 51-58. Gasparovic. L., Z. Korenova and L. Jelemensky (2010) Kinetic study of wood chips decomposition by TGA. Chemical Papers 64(2): 174-181. Katarzyna, S., P. Bartocci and F. Fantozzi (2011) Thermogravimetric analysis and Kinetic study of poplar wood pyrolysis. Third International Conference on Applied Energy, 12pp. Lv, G. J., S. B. Wu and R. Lou (2010) Kinetic study of the thermal decomposition of hemicellulose isolated from corn stalk. BioResources 5(2): 1281-1291. Ledakowicz, S. and P. Stolarek (2002) Kinetic of biomass thermal decomposition. Chemical Papers 56(6): 378-381. Mengeloglu, F. and K. Karakus (2008) Thermal Degradation, mechanical properties and morphology of wheat straw flour filled recycled thermoplastic composites. Sensors 2008(8): 500-519. Órfão, J. J. M., Antunes, F. J. A., and Figueiredo, J. L. (1999) Pyrolysis kinetics of lignocellulosic materials-three independent reactions model. Fuel 78(3): 349-358. Roberto, Q., Xavir, G., Gara, V., Raquel, B., Ana, G., Jorge, T. and X. Font (2014) The application of LCA to alternative methods for treating the organic fiber produced from autoclaving unsorted municipal solid waste: case study of Catalonia. Journal of Cleaner Production 107(2015): 516-528. Roger, L. B. and H. E. Kissinger (2012) Homer Kissinger and the Kissinger equation. Thermochimica Acta. 540(2012): 1-6. Tsamba, A. J. (1964) Fundamental Study of two selected tropical biomasses for energy : coconut and cashew nut shells. Doctoral thesis in KTH Royal Institute of Technology. 71pp. Várhegyi, G., and Antal, M. J. J. (1989). Kinetics of the thermal decomposition of cellulose, hemicellulose, and sugar cane bagasse. Energy & Fuels 3(3): 329-335. Wang, G., Li, W., and Li, B. Q. (2008). TG study on pyrolysis of biomass and its three components under syngas. Fuel 87(4-5), 552-558. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/handle/123456789/1367 | - |
dc.description.abstract | 臺灣生活垃圾中有近40 %有機纖維,包含無法回收紙類廢棄物與庭園廢棄物,本研究選用都市常見之生活垃圾與廢棄之稻草為材料,將都市生活垃圾透過蒸煮,取出其中有機纖維之成分,一方面藉由焙燒(Torrefaction)提升其能源密度,一方面抄造成板,探討後續多元化利用;廢棄稻草則同樣經由焙燒來提升其能源密度,並將發酵後稻草與都市生活垃圾中取出的有機纖維混合抄造成板。另本研究亦利用基辛格法(Kissinger method)、大澤法(Ozawa method)及直接藉由阿瑞尼士(Arrhenius)反應速率關係式,探討稻草焙燒前後之活化能差異,以瞭解產物之熱穩定性。
焙燒為經過250-290 °C等不同溫度處理,並持溫60-90 min。生質物經焙燒處理後可視為生質煤,接續進行元素分析(Ultimate analysis)及熱值(High heating value, HHV)和熱重分析(Thermogravimetric analysis, TGA)等。造粒(Pelletization)方式採環模式擠壓造粒機進行,抄造紙板則採用CNS11212物理試驗用手抄紙方式,利用手抄紙機混合不同比例之垃圾與發酵後稻草抄造成垃圾纖維板,並檢測纖維板之物理強度。 本研究結果發現,垃圾纖維中之纖維素含量將近70 %,木質素含量則≦10 %,如此組成分影響造粒,致使顆粒堅牢度(Pellet durability index, PDI)不符一般使用需求。由元素分析結果觀之,焙燒後各種生質物碳含量增加、氫及氧含量降低,使生質物性質趨近燃煤,尤其在270 °C、持溫60-75 min效果最好,在提升能源密度及節省成本之考量上,均為最佳條件。而透過基辛格法、大澤法與阿瑞尼士反應速率關係式等3種方式計算活化能,前兩者結果相近,但後者則有顯著差異。抄造成纖維板後,其力學表現除內聚強度外,抗彎強度、螺釘保持力及抗拉強度皆隨著稻草纖維比例的增加而下降。 | zh_TW |
dc.description.abstract | Nearly 40 % of organic fibers in urban waste in Taiwan, contains unrecoverable paper waste and garden waste. In this study, urban waste and waste straw were used as materials. Organic fibers were taken out by autoclaving, then made to fiberboards. On the other hand, the energy density was increased by torrefaction. Waste straw also enhances its energy density through autoclaving, and mixes the fermented straw with the organic fibers taken out from urban waste to make fiberboards. In addition, this study also uses the Kissinger method, Ozawa method and the Arrhenius equation to investigate the difference in activation energy after autoclaving of waste straw to understand the thermal stability of the product.
The torrefection is taken at temperatures of 250 to 290 °C, and maintaine the temperature for 60 to 90 minutes. The biomass can be regarded as raw coal after torrefection, and subsequent experiment with ultimate analysis, high heating value and thermogravimetric analysis. The pellets were manufactured by ring die pellet mill, and the fiberboards is made according to CNS11212 which is the method of preparation of handsheets for physical testing. The fiberboards were mixed with different proportions of urban waste and fermented straw, and the physical strength of them were detected. The results showed that the cellulose content in the waste fiber is nearly 70 %, and the lignin content was below then 10 %. Such composition affected the pelletization, resulting in the pellet durability index did not meet the general needs. According to the results of elemental analysis, the carbon content increased while the hydrogen and oxygen content decreased after torrefection, and the properties of biomass were approached to coal, especially at 270 °C that remains 60 to 75 minutes, and the energy density was improved as well. Also it was the best condition for cost-saving. The activation energy was calculated by three methods, Kissinger method, Ozawa method and Arrhenius equation. The results of first two were almost the same, but the results of Arrhenius equation were significantly different. The mechanical properties like bending strength, screw holding capacity and tensile strength decreased as the amount of straw fibers increase, only internal bond strength shows the opposite way. | en |
dc.description.provenance | Made available in DSpace on 2021-05-12T09:37:21Z (GMT). No. of bitstreams: 1 ntu-107-R01625051-1.pdf: 2944420 bytes, checksum: f0733dcb944b1dd80cd5df846b7b43f9 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 目錄
謝誌.....i 摘要.....ii ABSTRACT.....iii 目錄.....v 圖目錄.....viii 表目錄.....xiii 符號說明.....xv 縮寫說明.....xvi 第1章 前言.....1 第2章 文獻回顧.....4 2.1生質能.....4 2.1.1生質能轉換技術.....5 2.1.2生質能的發展.....5 2.1.3 生質能產業國際發展趨勢.....6 2.1.4我國生質能產業發展現況.....9 2.2垃圾蒸煮.....11 2.2.1臺灣都市垃圾狀況暨現行處理方式.....11 2.2.2蒸煮處理技術.....12 2.2.3蒸煮技術之優點.....13 2.3焙燒.....14 2.3.1焙燒處理的優點.....15 2.3.2焙燒處理產物.....16 2.3.3 焙燒分解機制.....16 2.4造粒.....19 2.5活化能.....21 2.5.1阿瑞尼士反應速率關係式.....21 2.5.2生質物熱重分析.....22 2.5.3 基辛格法與大澤法.....25 2.6回收纖維抄紙.....30 第3章 材料與方法.....33 3.1試驗架構.....33 3.2試驗材料.....35 3.2.1垃圾蒸煮物.....35 3.2.2稻草、蒸爆後稻草及發酵後稻草.....35 3.3垃圾纖維造粒試驗.....37 3.4 焙燒處理.....38 3.5性質測定.....40 3.5.1元素分析.....40 3.5.2木化分析.....41 3.5.3熱值.....42 3.5.4熱重分析.....44 3.5.5 抄板試驗.....44 3.5.6檢測紙板物理性質.....46 3.5.6.1密度試驗.....46 3.5.6.2內聚強度試驗.....46 3.5.6.3抗彎強度試驗.....47 3.5.6.4螺釘保持力試驗.....48 3.5.6.5抗拉強度試驗.....49 第4章 結果與討論.....50 4.1造粒試驗.....50 4.2木化分析.....51 4.3元素分析.....51 4.4熱值分析.....53 4.5焙燒.....54 4.6活化能.....55 4.6.1基辛格法活化能.....55 4.6.2大澤法活化能.....59 4.7抄板試驗.....66 4.7.1 纖維板內聚強度.....68 4.7.2 纖維板抗彎強度.....69 4.7.3 纖維板螺釘保持力.....70 4.7.4 纖維板抗拉強度.....71 4.7.5物理性質綜整.....72 第5章 結論.....74 參考文獻.....75 附錄 活化能原始數據.....78 | |
dc.language.iso | zh-TW | |
dc.title | 回收蒸煮處理纖維之性質與再利用 | zh_TW |
dc.title | The Properties and Re-Utilization of Recycled Autoclaving Fiber | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張家驥,羅盛峰,柯淳涵 | |
dc.subject.keyword | 垃圾蒸煮,焙燒,造粒,纖維板,活化能,基辛格法,大澤法, | zh_TW |
dc.subject.keyword | autoclaving,torrefaction,pelletization,fiberboard,activation energy,Kissinger method,Ozawa method, | en |
dc.relation.page | 85 | |
dc.identifier.doi | 10.6342/NTU201803454 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2018-08-15 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
顯示於系所單位: | 森林環境暨資源學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf | 2.88 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。