Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用數學科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/1359
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王偉仲(Weichung Wang)
dc.contributor.authorYEN-CHEN CHENen
dc.contributor.author陳彥禎zh_TW
dc.date.accessioned2021-05-12T09:37:09Z-
dc.date.available2019-08-18
dc.date.available2021-05-12T09:37:09Z-
dc.date.copyright2018-08-18
dc.date.issued2018
dc.date.submitted2018-08-15
dc.identifier.citation[1] B.E.Bejnordi,M.Veta,P.J.vanDiest,B.vanGinneken,N.Karssemeijer,G.Litjens, J. A. van der Laak, M. Hermsen, Q. F. Manson, M. Balkenhol, et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. Jama, 318(22):2199–2210, 2017. 

[2] W.S.BushandJ.H.Moore.Genome-wideassociationstudies.PLoScomputational biology, 8(12):e1002822, 2012. 

[3] D. C. Cireşan, A. Giusti, L. M. Gambardella, and J. Schmidhuber. Mitosis detection in breast cancer histology images with deep neural networks. In International Con- ference on Medical Image Computing and Computer-assisted Intervention, pages 411–418. Springer, 2013. 

[4] A. Cruz-Roa, A. Basavanhally, F. González, H. Gilmore, M. Feldman, S. Ganesan, N. Shih, J. Tomaszewski, and A. Madabhushi. Automatic detection of invasive ductal carcinoma in whole slide images with convolutional neural networks. In Medical Imaging 2014: Digital Pathology, volume 9041, page 904103. International Society for Optics and Photonics, 2014. 

[5] O. J. del Toro, M. Atzori, S. Otálora, M. Andersson, K. Eurén, M. Hedlund, P. Rönnquist, and H. Müller. Convolutional neural networks for an automatic classi- fication of prostate tissue slides with high-grade gleason score. In Medical Imaging 2017: Digital Pathology, volume 10140, page 101400O. International Society for Optics and Photonics, 2017. 

[6] R. Farjam, H. Soltanian-Zadeh, K. Jafari-Khouzani, and R. A. Zoroofi. An image analysis approach for automatic malignancy determination of prostate pathological images. Cytometry Part B: Clinical Cytometry, 72(4):227–240, 2007. 

[7] C. Gao, D. Meng, Y. Yang, Y. Wang, X. Zhou, and A. G. Hauptmann. Infrared patch-image model for small target detection in a single image. IEEE Transactions on Image Processing, 22(12):4996–5009, 2013. 

[8] J. González-Domínguez, B. Schmidt, J. C. Kässens, and L. Wienbrandt. Hybrid cpu/gpu acceleration of detection of 2-snp epistatic interactions in gwas. In European Conference on Parallel Processing, pages 680–691. Springer, 2014. 

[9] A. Gummeson, I. Arvidsson, M. Ohlsson, N. C. Overgaard, A. Krzyzanowska, A. Heyden, A. Bjartell, and K. Aström. Automatic gleason grading of h and e stained microscopic prostate images using deep convolutional neural networks. In Medical Imaging 2017: Digital Pathology, volume 10140, page 101400S. International So- ciety for Optics and Photonics, 2017. 

[10] M. N. Gurcan, L. E. Boucheron, A. Can, A. Madabhushi, N. M. Rajpoot, and B. Yener. Histopathological image analysis: A review. IEEE reviews in biomed- ical engineering, 2:147–171, 2009. 

[11] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016. 

[12] L. Hou, D. Samaras, T. M. Kurc, Y. Gao, J. E. Davis, and J. H. Saltz. Patch-based convolutional neural network for whole slide tissue image classification. In Proceed- ings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2424–2433, 2016. 

[13] A. M. Khan, N. Rajpoot, D. Treanor, and D. Magee. A nonlinear mapping approach to stain normalization in digital histopathology images using image-specific color deconvolution. IEEE Transactions on Biomedical Engineering, 61(6):1729–1738, 2014.
[14] N. Kumar, R. Verma, A. Arora, A. Kumar, S. Gupta, A. Sethi, and P. H. Gann. Convolutional neural networks for prostate cancer recurrence prediction. In Medi- cal Imaging 2017: Digital Pathology, volume 10140, page 101400H. International Society for Optics and Photonics, 2017. 

[15] A.Laurinavicius,A.Laurinaviciene,D.Dasevicius,N.Elie,B.Plancoulaine,C.Bor, and P. Herlin. Digital image analysis in pathology: benefits and obligation. Analyt- ical cellular pathology, 35(2):75–78, 2012. 

[16] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. van der Laak, B. van Ginneken, and C. I. Sánchez. A survey on deep learning in medical image analysis. Medical image analysis, 42:60–88, 2017. 

[17] Y. Liu, K. Gadepalli, M. Norouzi, G. E. Dahl, T. Kohlberger, A. Boyko, S. Venu- gopalan, A. Timofeev, P. Q. Nelson, G. S. Corrado, et al. Detecting cancer metastases on gigapixel pathology images. arXiv preprint arXiv:1703.02442, 2017. 

[18] A. Madabhushi. Digital pathology image analysis: opportunities and challenges. 2009. 

[19] P. Naylor, M. Laé, F. Reyal, and T. Walter. Nuclei segmentation in histopathology images using deep neural networks. In Biomedical Imaging (ISBI 2017), 2017 IEEE 14th International Symposium on, pages 933–936. IEEE, 2017. 

[20] M. Nielsen. Neural network and deep learning, 2015. 

[21] K. Paeng, S. Hwang, S. Park, and M. Kim. A unified framework for tumor prolifer- ation score prediction in breast histopathology. In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, pages 231–239. Springer, 2017. 

[22] H. Pan, Z. Xu, and J. Huang. An effective approach for robust lung cancer cell de- tection. In International Workshop on Patch-based Techniques in Medical Imaging, pages 87–94. Springer, 2015. 

[23] K. Sikorska, E. Lesaffre, P. F. Groenen, and P. H. Eilers. Gwas on your notebook: fast semi-parallel linear and logistic regression for genome-wide association studies. BMC bioinformatics, 14(1):166, 2013. 

[24] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014. 

[25] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van- houcke, A. Rabinovich, et al. Going deeper with convolutions. Cvpr, 2015. 

[26] W.D.Travis,E.Brambilla,M.Noguchi,A.G.Nicholson,K.R.Geisinger,Y.Yatabe, D. G. Beer, C. A. Powell, G. J. Riely, P. E. Van Schil, et al. International association for the study of lung cancer/american thoracic society/european respiratory society international multidisciplinary classification of lung adenocarcinoma. Journal of thoracic oncology, 6(2):244–285, 2011. 

[27] K.-L. Tseng, Y.-L. Lin, W. Hsu, and C.-Y. Huang. Joint sequence learning and cross-modality convolution for 3d biomedical segmentation. arXiv preprint arXiv:1704.07754, 2017. 

[28] D. Wang, A. Khosla, R. Gargeya, H. Irshad, and A. H. Beck. Deep learning for identifying metastatic breast cancer. arXiv preprint arXiv:1606.05718, 2016. 

[29] S. Wang, J. Yao, Z. Xu, and J. Huang. Subtype cell detection with an accelerated deep convolution neural network. In International Conference on Medical Image Computing and Computer-Assisted Intervention, pages 640–648. Springer, 2016. 

[30] A. Wibmer, H. Hricak, T. Gondo, K. Matsumoto, H. Veeraraghavan, D. Fehr, J. Zheng, D. Goldman, C. Moskowitz, S. W. Fine, et al. Haralick texture analy- sis of prostate mri: utility for differentiating non-cancerous prostate from prostate cancer and differentiating prostate cancers with different gleason scores. European radiology, 25(10):2840–2850, 2015.
[31] Y. Xu, Y. Li, M. Liu, Y. Wang, M. Lai, I. Eric, and C. Chang. Gland instance segmentation by deep multichannel side supervision. In International Conference on Medical Image Computing and Computer-Assisted Intervention, pages 496–504. Springer, 2016. 

[32] Y. Xu, T. Mo, Q. Feng, P. Zhong, M. Lai, I. Eric, and C. Chang. Deep learning of feature representation with multiple instance learning for medical image analy- sis. In Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on, pages 1626–1630. IEEE, 2014. 

[33] J.Yao,S.Wang,X.Zhu,andJ.Huang.Imagingbiomarkerdiscoveryforlungcancer survival prediction. In International Conference on Medical Image Computing and Computer-Assisted Intervention, pages 649–657. Springer, 2016. 

[34] N.Zhou,A.Fedorov,F.Fennessy,R.Kikinis,andY.Gao.Largescaledigitalprostate pathology image analysis combining feature extraction and deep neural network. arXiv preprint arXiv:1705.02678, 2017.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/handle/123456789/1359-
dc.description.abstract本論文是由兩個研究主題構成,兩個主題皆以圖形處理器分析大量醫學資料。第一部分:本研究以計算基因組關聯分析為中心,發展出一個新的演算法,並實作在圖形處理器上。基因組關聯分析廣泛的被運用在研究基因組和性狀間的關係。本研究在圖形處理器上之實作可以大幅加速基因組關聯分析的運算,並且擁有極佳的可擴展性。本研究的核心在加速基因組關聯分析中最耗費時間的 P 值計算。利用此新演算法加速的圖形處理器實作程式將提供基因研究員一個更好的工具,在數分鐘內能完成數以百億組基因組關聯分析,並且由於其擁有高度可擴展性,此演算法能夠在多片圖形處理器系統上計算更龐大的資料。第二部分:病理切片是從病人患病處切下之組織細胞所做成的切片,病理切片在癌症診斷中佔據著非常重要的地位,然而由於病理切片沒有特定形狀、顏色,加上其判斷規則之繁複以及影像之大、資料收集之困難,如何讓電腦自動判斷病理切片至今仍是一項困難的挑戰。本研究利用低解析度的影像片段作為判斷標的,利用深度學習最後達成在判斷前列腺病理切片格里森分數 3+3 及 4+4 有 95% 的準確率。zh_TW
dc.description.abstractThis thesis is a combination of two pieces of research; both make use of the Graphics Processing Unit (GPU) for calculation and both deals with large medical data. Part I. We develop a fast algorithm as long as a CUDA code for GWAS (Genome-Wide Associate Studies) to find the relation between genomes and targeted traits. This algorithm can work efficiently on GPU and has high scalability. The core of the algorithm is an accurate and fast p-value calculating method, which accelerates the most time-consuming part of GWAS problems. With the algorithm, researchers can now deal with tens of billions of SNP to trait pair in only a few minutes. Even better, since this algorithm is highly scalable, users can increase the problem size as long as one has enough computing power. Part II. Pathology images are whole slide images of patient tissues, and such images provide one critical tool for cancer diagnosis. Despite its importance, how artificial intelligence can automatic the Gleason scores grading remain a challenge. The challenge is due to the large size of digital whole slide image (around giga-pixels), the variation of stained color, cell texture,..., and limited labeled data. We propose a low-resolution method instead of existed patch-based methods and achieved an accuracy of 95 percent on classifying prostate pathology images with 3+3 or 4+4 Gleason scores.en
dc.description.provenanceMade available in DSpace on 2021-05-12T09:37:09Z (GMT). No. of bitstreams: 1
ntu-107-R05246002-1.pdf: 102538954 bytes, checksum: 391a237a57fb88bc6e93ddbd2196823a (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents誌謝 v
Acknowledgements vii
摘要 ix
Abstract xi
I t-Test in Large-Scale Genome-Wide Association Studies Computation 1
1 Introduction 3
1.1 Problem Description ............................ 3
1.2 Formal Studies ............................... 4
1.3 Patient Criteria ............................... 4
1.4 Image Acquisition and Processing ..................... 5
1.5 Proposed Method .............................. 5
1.6 Structure of This Thesis........................... 6
2 Medical Background 7
2.1 Brain .................................... 7
2.2 Dataset................................... 7
3 Theories 9
3.1 Linear regression .............................. 9
3.2 Student’stdistribution ........................... 10
3.3 Challenge.................................. 10
4 GPU-Accelerated Algorithm 11
4.1 Main Structure ............................... 11
4.2 Kernel Function............................... 11
4.3 Multi-GPU Implementation......................... 15
5 Numerical Result 17
5.1 Validation.................................. 17
5.2 Run Time.................................. 17
5.3 Numerical result............................... 18
5.3.1 Whole brain heat map........................ 18
5.3.2 Cross Validation .......................... 20
6 Conclusion and Future Work 21
7 Appendix A 23
II Gigapixel Pathology Image Classification 25
8 Introduction 27
8.1 Whole Slide Image ............................. 28
8.2 Deep Learning ............................... 29
9 Medical Background 33
9.1 Prostate Cancer ............................... 33
9.2 Gleason Score................................ 34
10 Preprocessing 39
10.1 Active Contour(Snake)........................... 39
10.2 Remove small objects............................ 41
11 Downsized image classification 43
11.1 Method ................................... 43
11.2 Result.................................... 45
12 Patch-based image classification 47
12.1 Patch labeled data (golden)......................... 47
12.2 Four-class classification........................... 48
12.2.1 Direct deep learning ........................ 48
12.2.2 Three binary classifications .................... 48
12.3 Result.................................... 50
12.4 Predict Gleason Score from Patch Images ................. 50
13 Appendix B 51
13.1 Prostate Patch Labeling APP ........................ 51
13.1.1 MATLAB APP ........................... 51
13.1.2 IPython Notebook APP....................... 53
Bibliography 55
dc.language.isoen
dc.title利用圖形處理器計算大規模基因關聯分析暨病理切片分析zh_TW
dc.titleComputing t-Test in Large-Scale Genome-Wide Association Studies and Classifying Gigapixel Pathology Image with GPUsen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳素雲(Su-Yun Huang),崔茂培
dc.subject.keyword基因組關聯分析,p值,病理切片,前列腺癌,神經網路,圖形處理器,平行計算,zh_TW
dc.subject.keywordGenome-Wide Association Studies,p-value,pathology image,prostate cancer,neural network,GPU,parallel computing,en
dc.relation.page59
dc.identifier.doi10.6342/NTU201803677
dc.rights.note同意授權(全球公開)
dc.date.accepted2018-08-15
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept應用數學科學研究所zh_TW
顯示於系所單位:應用數學科學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf100.14 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved