Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 職能治療學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/1246
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝清麟(Ching-Lin Hsieh)
dc.contributor.authorGong-Hong Linen
dc.contributor.author林恭宏zh_TW
dc.date.accessioned2021-05-12T09:34:51Z-
dc.date.available2018-08-01
dc.date.available2021-05-12T09:34:51Z-
dc.date.copyright2018-08-01
dc.date.issued2018
dc.date.submitted2018-05-07
dc.identifier.citationAmerican Psychiatric Association. (2013). Desk Reference to the Diagnostic Criteria From DSM-5. Arlington, VA: American Psychiatric Association.
Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. Psychology of Learning and Motivation, 2, 89-195.
Baddeley, A. D. (1996). Exploring the central executive. The Quarterly Journal of Experimental Psychology: Section A, 49, 5-28.
Baddeley, A. D. (2012). Working memory: Theories, models, and controversies. Annual Review of Psychology, 63, 1-29.
Baddeley, A. D., & Hitch, G. (1974). Working memory. Psychology of Learning and Motivation, 8, 47-89.
Bengson, J. J., & Luck, S. J. (2016). Effects of strategy on visual working memory capacity. Psychonomic Bulletin and Review, 23, 265-270.
Bond, T. G., & Fox, C. M. (2001). Applying the Rasch model: Fundamental measurement in the human sciences. Mahwah, NJ: Lawrence Erlbaum Associates.
Bowie, C. R., & Harvey, P. D. (2005). Cognition in schizophrenia: Impairments, determinants, and functional importance. Psychiatric Clinics of North America, 28, 613-633.
Brekke, J., Kay, D. D., Lee, K. S., & Green, M. F. (2005). Biosocial pathways to functional outcome in schizophrenia. Schizophrenia Research, 80, 213-225.
Briggs, D. C., & Wilson, M. (2003). An introduction to multidimensional measurement using Rasch models. Journal of Applied Measurement, 4, 87-100.
Burton, C. Z., Vella, L., Harvey, P. D., Patterson, T. L., Heaton, R. K., & Twamley, E. W. (2013). Factor structure of the MATRICS Consensus Cognitive Battery (MCCB) in schizophrenia. Schizophrenia Research, 146, 244-248.
Cheke, L. G., & Clayton, N. S. (2013). Do different tests of episodic memory produce consistent results in human adults? Learning and Memory, 20, 491-498.
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates.
Conklin, H. M., Curtis, C. E., Katsanis, J., & Iacono, W. G. (2000). Verbal working memory impairment in schizophrenia patients and their first-degree relatives: Evidence from the digit span task. American Journal of Psychiatry, 157, 275-277.
Conway, A. R., Kane, M. J., Bunting, M. F., Hambrick, D. Z., Wilhelm, O., & Engle, R. W. (2005). Working memory span tasks: A methodological review and user's guide. Psychonomic Bulletin and Review, 12, 769-786.
Cowan, N. (1984). On short and long auditory stores. Psychological Bulletin, 96, 341-370.
Cowan, N. (1993). Activation, attention, and short-term memory. Memory and Cognition, 21, 162-167.
Dodrill, C. B., & Troupin, A. S. (1975). Effects of repeated administrations of a comprehensive neuropsychological battery among chronic epileptics. Journal of Nervous and Mental Disease, 161, 185-190.
Embretson, S. E., & Reise, S. P. (2013). Item response theory for Psychologists. Mahwah, NJ: Psychology Press.
Ericsson, K. A., & Kintsch, W. (1995). Long-term working memory. Psychological Review, 102, 211-245.
Faget-Agius, C., Boyer, L., Lançon, C., Richieri, R., Fassio, E., Soulier, E., . . . Guye, M. (2013). Structural and functional reorganization of working memory system during the first decade in schizophrenia. A cross-sectional study. Schizophrenia Research, 151, 48-60.
Fisekovic, S., Memic, A., & Pasalic, A. (2012). Correlation between MoCA and MMSE for the assessment of cognition in schizophrenia. Acta Informatica Medica, 20, 186-189.
Fonseca, A. O., Berberian, A. A., de Meneses-Gaya, C., Gadelha, A., Vicente, M. d. O., Nuechterlein, K. H., . . . Lacerda, A. L. (2017). The Brazilian standardization of the MATRICS consensus cognitive battery (MCCB): Psychometric study. Schizophrenia Research, 185, 148-153.
Forbes, N., Carrick, L., McIntosh, A., & Lawrie, S. (2009). Working memory in schizophrenia: A meta-analysis. Psychological Medicine, 39, 889-905.
Fujii, D. E., Wylie, A. M., & Nathan, J. H. (2004). Neurocognition and long-term prediction of quality of life in outpatients with severe and persistent mental illness. Schizophrenia Research, 69, 67-73.
Georgiades, A., Davis, V. G., Atkins, A. S., Khan, A., Walker, T. W., Loebel, A., . . . Umbricht, D. (2017). Psychometric characteristics of the MATRICS Consensus Cognitive Battery in a large pooled cohort of stable schizophrenia patients. Schizophrenia Research, 190, 172-179.
Graf, P., & Schacter, D. L. (1985). Implicit and explicit memory for new associations in normal and amnesic subjects. Journal of Experimental Psychology: Learning, Memory, and Cognition, 11, 501-518.
Green, M. F., Nuechterlein, K. H., Gold, J. M., Barch, D. M., Cohen, J., Essock, S., . . . Heaton, R. K. (2004). Approaching a consensus cognitive battery for clinical trials in schizophrenia: The NIMH-MATRICS conference to select cognitive domains and test criteria. Biological Psychiatry, 56, 301-307.
Greenberger, C., & Serper, M. R. (2010). Examination of clinical and cognitive insight in acute schizophrenia patients. Journal of Nervous and Mental Disease, 198, 465-469.
Guy, W. (1976). ECDEU Assessment Manual for Psychopharmacology. Rockville, MD: US Department of Heath, Education, and Welfare Public Health Service Alcohol, Drug Abuse, and Mental Health Administration.
Haatveit, B. C., Sundet, K., Hugdahl, K., Ueland, T., Melle, I., & Andreassen, O. A. (2010). The validity of d prime as a working memory index: Results from the 'Bergen n-back task'. Journal of Clinical and Experimental Neuropsychology, 32, 871-880.
Haley, S. M., Andres, P. L., Coster, W. J., Kosinski, M., Ni, P., & Jette, A. M. (2004). Short-form activity measure for post-acute care. Archives of Physical Medicine and Rehabilitation, 85, 649-660.
Harrow, M., Jobe, T., & Faull, R. (2012). Do all schizophrenia patients need antipsychotic treatment continuously throughout their lifetime? A 20-year longitudinal study. Psychological Medicine, 42, 2145-2155.
Hays, R. D., Morales, L. S., & Reise, S. P. (2000). Item response theory and health outcomes measurement in the 21st century. Medical Care, 38, II28-II42.
Heeramun-Aubeeluck, A., Liu, N., Fischer, F., Huang, N., Chen, F., He, L., . . . Lu, Z. (2015). Effect of time and duration of untreated psychosis on cognitive and social functioning in Chinese patients with first-episode schizophrenia: A 1-year study. Nordic Journal of Psychiatry, 69, 254-261.
Hobart, J. C., Cano, S. J., & Thompson, A. J. (2010). Effect sizes can be misleading: Is it time to change the way we measure change? Journal of Neurology, Neurosurgery and Psychiatry, 81, 1044-1048.
Hobart, J. C., Lamping, D. L., & Thompson, A. J. (1996). Evaluating neurological outcome measures: The bare essentials. Journal of Neurology, Neurosurgery and Psychiatry, 60, 127-130.
Hoonakker, M., Doignon-Camus, N., & Bonnefond, A. (2017). Sustaining attention to simple visual tasks: A central deficit in schizophrenia? A systematic review. Annals of the New York Academy of Sciences, 1408, 32-45.
Hou, W. H., Chen, J. H., Wang, Y. H., Wang, C. H., Lin, J. H., Hsueh, I. P., . . . Hsieh, C. L. (2011). Development of a set of functional hierarchical balance short forms for patients with stroke. Archives of Physical Medicine and Rehabilitation, 92, 1119-1125.
Huang, H. Y., Wang, W. C., Chen, P. H., & Su, C. M. (2013). Higher-order item response models for hierarchical latent traits. Applied Psychological Measurement, 37, 619-637.
Jablensky, A., Kirkbride, J. B., & Jones, P. B. (2011). Schizophrenia: The epidemiological horizon. Oxford, UK: Wiley-Blackwell.
Jaeger, J., Czobor, P., & Berns, S. M. (2003). Basic neuropsychological dimensions in schizophrenia. Schizophrenia Research, 65, 105-116.
Jeon, S. Y., & Han, S. J. (2012). Improvement of the working memory and naming by transcranial direct current stimulation. Annals of Rehabilitation Medicine, 36, 585-595.
Jiang, S., Wang, C., & Weiss, D. J. (2016). Sample size requirements for estimation of item parameters in the multidimensional graded response model. Frontiers in Psychology, 7, 109.
Kaneda, Y., Sumiyoshi, T., Keefe, R., Ishimoto, Y., Numata, S., & Ohmori, T. (2007). Brief assessment of cognition in schizophrenia: Validation of the Japanese version. Psychiatry and Clinical Neurosciences, 61, 602-609.
Kim, H. S., An, Y. M., Kwon, J. S., & Shin, M. S. (2014). A preliminary validity study of the cambridge neuropsychological test automated battery for the assessment of executive function in schizophrenia and bipolar disorder. Psychiatry Investigation, 11, 394-401.
Kirshner, B., & Guyatt, G. (1985). A methodological framework for assessing health indices. Journal of Chronic Diseases, 38, 27-36.
Kline, P. (1998). The new psychometrics: Science, psychology, and measurement. Abingdon, Oxon: Routledge.
Kucharska-Pietura, K., Tylec, A., Czernikiewicz, A., & Mortimer, A. (2012). Attentional and emotional functioning in schizophrenia patients treated with conventional and atypical antipsychotic drugs. Medical Science Monitor, 18, CR44-CR49.
Lees, J., Applegate, E., Emsley, R., Lewis, S., Michalopoulou, P., Collier, T., . . . Drake, R. J. (2015). Calibration and cross-validation of MCCB and CogState in schizophrenia. Psychopharmacology, 232, 3873-3882.
Lohr, K. N. (2002). Assessing health status and quality-of-life instruments: Attributes and review criteria. Quality of Life Research, 11, 193-205.
Luciana, M., Conklin, H. M., Hooper, C. J., & Yarger, R. S. (2005). The development of nonverbal working memory and executive control processes in adolescents. Child Development, 76, 697-712.
McCarthy, M. L., Silberstein, C. E., Atkins, E. A., Harryman, S. E., Sponseller, P. D., & Hadley-Miller, N. A. (2002). Comparing reliability and validity of pediatric instruments for measuring health and well-being of children with spastic cerebral palsy. Developmental Medicine and Child Neurology, 44, 468-476.
Milanzi, E., Molenberghs, G., Alonso, A., Verbeke, G., & De Boeck, P. (2015). Reliability measures in item response theory: Manifest versus latent correlation functions. British Journal of Mathematical and Statistical Psychology, 68, 43-64.
Mokkink, L. B., Prinsen, C. A., Bouter, L. M., Vet, H. C., & Terwee, C. B. (2016). The COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) and how to select an outcome measurement instrument. Brazilian Journal of Physical Therapy, 20, 105-113.
Mokkink, L. B., Terwee, C. B., Patrick, D. L., Alonso, J., Stratford, P. W., Knol, D. L., . . . de Vet, H. C. (2010). The COSMIN study reached international consensus on taxonomy, terminology, and definitions of measurement properties for health-related patient-reported outcomes. Journal of Clinical Epidemiology, 63, 737-745.
Nobre, A. d. P., Rodrigues, J. d. C., Sbicigo, J. B., Piccolo, L. d. R., Zortea, M., Junior, S. D., & de Salles, J. F. (2013). Tasks for assessment of the episodic buffer: A systematic review. Psychology & Neuroscience, 6, 331-343.
Noh, J., Kim, J.-H., Hong, K. S., Kim, N., Nam, H. J., Lee, D., & Yoon, S. C. (2010). Factor structure of the neurocognitive tests: An application of the confirmative factor analysis in stabilized schizophrenia patients. Journal of Korean Medical Science, 25, 276-282.
Owen, A. M., Doyon, J., Petrides, M., & Evans, A. C. (1996). Planning and spatial working memory: A positron emission tomography study in humans. European Journal of Neuroscience, 8, 353-364.
Owen, A. M., McMillan, K. M., Laird, A. R., & Bullmore, E. (2005). N‐back working memory paradigm: A meta‐analysis of normative functional neuroimaging studies. Human Brain Mapping, 25, 46-59.
Pietrzak, R. H., Olver, J., Norman, T., Piskulic, D., Maruff, P., & Snyder, P. J. (2009). A comparison of the CogState Schizophrenia Battery and the Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) Battery in assessing cognitive impairment in chronic schizophrenia. Journal of Clinical and Experimental Neuropsychology, 31, 848-859.
Pinna, F., Deriu, L., Diana, E., Perra, V., Randaccio, R. P., Sanna, L., . . . Cagliari Recovery Study, G. (2015). Clinical Global Impression-severity score as a reliable measure for routine evaluation of remission in schizophrenia and schizoaffective disorders. Annals of General Psychiatry, 14, 6.
Piskulic, D., Olver, J. S., Norman, T. R., & Maruff, P. (2007). Behavioural studies of spatial working memory dysfunction in schizophrenia: A quantitative literature review. Psychiatry Research, 150, 111-121.
Portney, L. G., & Watkins, M. P. (2000). Foundations of clinical research: Applications to practice. (2nd ed.). Upper Saddle River, NJ: Prentice Hall.
Pukrop, R., Matuschek, E., Ruhrmann, S., Brockhaus-Dumke, A., Tendolkar, I., Bertsch, A., & Klosterkotter, J. (2003). Dimensions of working memory dysfunction in schizophrenia. Schizophrenia Research, 62, 259-268.
Rössler, W., Salize, H. J., van Os, J., & Riecher-Rössler, A. (2005). Size of burden of schizophrenia and psychotic disorders. European Neuropsychopharmacology, 15, 399-409.
Raffard, S., Gutierrez, L. A., Yazbek, H., Larue, A., Boulenger, J. P., Lançon, C., . . . Capdevielle, D. (2016). Working memory deficit as a risk factor for severe apathy in schizophrenia: A 1-Year longitudinal study. Schizophrenia Bulletin, 42, 642-651.
Rensink, R. A. (2014). Limits to the usability of iconic memory. Frontiers in Psychology, 5, 971.
Robertson, I. H., Ward, T., Ridgeway, V., & Nimmo-Smith, I. (1996). The structure of normal human attention: The Test of Everyday Attention. Journal of the International Neuropsychological Society, 2, 525-534.
Robinson, D. G., Woerner, M. G., McMeniman, M., Mendelowitz, A., & Bilder, R. M. (2004). Symptomatic and functional recovery from a first episode of schizophrenia or schizoaffective disorder. American Journal of Psychiatry, 161, 473-479.
Rund, B. R. (1989). Distractibility and recall capability in schizophrenics: A 4 year longitudinal study of stability in cognitive performance. Schizophrenia Research, 2, 265-275.
Salamé, P., Danion, J.-M., Peretti, S., & Cuervo, C. (1998). The state of functioning of working memory in schizophrenia. Schizophrenia Research, 30, 11-29.
Salthouse, T. A., & Hedden, T. (2002). Interpreting reaction time measures in between-group comparisons. Journal of Clinical and Experimental Neuropsychology, 24, 858-872.
Saperstein, A. M., Fuller, R. L., Avila, M. T., Adami, H., McMahon, R. P., Thaker, G. K., & Gold, J. M. (2006). Spatial working memory as a cognitive endophenotype of schizophrenia: Assessing risk for pathophysiological dysfunction. Schizophrenia Bulletin, 32, 498-506.
Shrivastava, A., Johnston, M., Shah, N., Thakar, M., & Stitt, L. (2011). Persistent cognitive dysfunction despite clinical improvement in schizophrenia: A 10-year follow-up study. Journal of Psychiatric Practice, 17, 194-199.
Silverstein, S. M., Jaeger, J., Donovan-Lepore, A. M., Wilkniss, S. M., Savitz, A., Malinovsky, I., . . . Marcello, S. (2010). A comparative study of the MATRICS and IntegNeuro cognitive assessment batteries. Journal of Clinical and Experimental Neuropsychology, 32, 937-952.
Simmering, V. R., & Perone, S. (2013). Working memory capacity as a dynamic process. Frontiers in Psychology, 3, 567.
Stretton, J., Sidhu, M. K., Winston, G. P., Bartlett, P., McEvoy, A. W., Symms, M. R., . . . Duncan, J. S. (2014). Working memory network plasticity after anterior temporal lobe resection: A longitudinal functional magnetic resonance imaging study. Brain, 137, 1439-1453.
Tesio, L. (2003). Measuring behaviours and perceptions: Rasch analysis as a tool for rehabilitation research. Journal of Rehabilitation Medicine, 35, 105-115.
Tulsky, D., Zhu, J., & Ledbetter, M. (1997). WAIS-III/WMS-III Technical Manual. San Antonio, TX: The Psychological Corporation.
Tyson, P. J., Laws, K. R., Flowers, K. A., Mortimer, A. M., & Schulz, J. (2008). Attention and executive function in people with schizophrenia: Relationship with social skills and quality of life. International Journal of Psychiatry in Clinical Practice, 12, 112-119.
Vingerhoets, W. A., Bloemen, O. J., Bakker, G., & van Amelsvoort, T. A. (2013). Pharmacological interventions for the MATRICS cognitive domains in schizophrenia: What's the evidence? Front Psychiatry, 4, 157.
Vlahou, C. H., Kosmidis, M. H., Dardagani, A., Tsotsi, S., Giannakou, M., Giazkoulidou, A., . . . Pontikakis, N. (2013). Development of the Greek Verbal Learning Test: Reliability, construct validity, and normative standards. Archives of Clinical Neuropsychology, 28, 52-64.
Wang, W. C., Chen, P. H., & Cheng, Y. Y. (2004). Improving measurement precision of test batteries using multidimensional item response models. Psychological Methods, 9, 116-136.
Wechsler, D. (1997). Wechsler memory scale (WMS-III). San Antonio, TX: The Psychological Corporation.
Wegner, D. M. (1987). Transactive memory: A contemporary analysis of the group mind Theories of group behavior. New York, NY: Springer.
Wright, B. D., & Linacre, J. M. (1989). Observations are always ordinal; Measurements, however, must be interval. Archives of Physical Medicine and Rehabilitation, 70, 857-860.
Wright, B. D., & Linacre, J. M. (1994). Reasonable mean-square fit values. Rasch Measurement Transactions, 8, 370.
Wright, B. D., & Mok, M. (2000). Rasch models overview. Journal of Applied Measurement, 1, 83-106.
Wu, C., Dagg, P., & Molgat, C. (2014). A pilot study to measure cognitive impairment in patients with severe schizophrenia with the Montreal Cognitive Assessment (MoCA). Schizophrenia Research, 158, 151-155.
Yao, S., Chen, H., Jiang, L., & Tam, W. C. (2007). Replication of factor structure of Wechsler Adult Intelligence Scale‐III Chinese version in Chinese mainland non‐clinical and schizophrenia samples. Psychiatry and Clinical Neurosciences, 61, 379-384.
Yu, L., Buysse, D. J., Germain, A., Moul, D. E., Stover, A., Dodds, N. E., . . . Pilkonis, P. A. (2012). Development of short forms from the PROMIS™ sleep disturbance and sleep-related impairment item banks. Behavioral Sleep Medicine, 10, 6-24.
Zhong, N., Jiang, H., Wu, J., Chen, H., Lin, S., Zhao, Y., . . . Zhao, M. (2013). Reliability and validity of the CogState battery Chinese language version in schizophrenia. PloS One, 8, e74258.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/handle/123456789/1246-
dc.description.abstract背景與目的:工作記憶 (working memory, WM) 為個體短暫儲存並操縱訊息之能力。WM缺損為思覺失調症患者核心認知缺損之一,影響患者之思覺失調症狀、功能性表現及生活品質。然而,目前常用於思覺失調症患者之WM評量工具有三項限制:(一)未完整評量Baddeley「多系統WM模式」之所有WM系統;(二)紙筆/桌上型測驗之施測者負擔較大;(三)心理計量特性 (psychometric properties) 驗證結果不佳或缺乏驗證。上述限制使得臨床及研究人員難全面地掌握思覺失調症患者之WM狀態,嚴重影響WM之研究與臨床評估/治療效能。為解決上述WM測驗之限制,本研究之目的為:依據Baddeley之「多系統WM模式」,以「多向度羅序模型」發展一套電腦化多階段WM測驗:電腦化多階段工作記憶測驗組 (Computerized Multistage Testing of Working Memory, COWMEM),以完整地評量各WM系統。此外研究者驗證COWMEM之心理計量特性,包含信度、同時效度、收斂效度及已知族群效度。
方法:本研究包含二個階段,第一階段為「發展COWMEM」,包含六個步驟:(一)參考Baddeley之多系統WM模式以設計COWMEM之6個向度題目,包含:視空間系統、語音系統、訊息整合系統、及中央執行系統之3種注意力:集中性注意力、轉換性注意力及分配性注意力;(二)專家內容效度驗證;(三)電腦施測平台建構;(四)題庫測試於病情穩定之思覺失調症患者;(五)題庫驗證:以單向度羅序分析各WM向度題庫,並刪除違反羅序模型假設之題目;及(六)選題以建構COWMEM。本研究第二階段為「驗證COWMEM之信度與效度」,以本研究第一階段收集之患者資料進行分析。信度部分,研究者計算COWMEM之受測者個別信度及所有受測者平均信度。同時效度驗證上,研究者以 Pearson’s r 分別檢驗COWMEM之6個WM向度分數與6個一一對應之效標測驗 [Spatial Span-backward, Digit Span-backward, California Verbal Learning Test-10 minutes delayed recall, Test of Everyday Attention (TEA)-Elevator counting, TEA-Visual elevator, and TEA-Telephone search dual task] 分數之相關性。收斂效度以 Pearson’s r 檢驗6個WM向度分數間之相關程度。已知族群效度驗證上,研究者依據整體認知功能量表 Montreal Cognitive Assessment 將受測者分為高、低認知等二組 (分數 ≥ 26 or ≤ 25),再計算效應值 (Cohen’s d) 以檢驗二組之COWMEM分數差異程度。
結果:本研究第一階段COWMEM題庫經3回合之專家內容效度驗證,149位思覺失調症患者之臨床測試,題庫驗證刪除5題不符合羅序模型或研究者假設之題目,於最後階段挑選6題篩檢題,並於6個WM向度題庫中分別挑選高及低難度測驗組之題目各15題,以組成最終版COWMEM(共186題),每位受測者作答COWMEM時須完成6題篩檢題及各WM系統之1組高或低難度測驗組(共96題)。本研究第二階段驗證COWMEM信度之結果發現,6個WM向度平均信度為0.70~0.86,此結果顯示團體層級信度可接受。個別信度驗證結果顯示52.0%~100.0%之受測者個別信度 ≥ 0.70,表示個別信度可接受。同時效度驗證結果發現COWMEM之中央執行系統3種注意力分數與效標測驗分數之 |Pearson’s rs| 為0.21~0.22,此結果顯示COWMEM中3種注意力分數之同時效度不佳。COWMEM其它3個WM向度(視空間系統、語音系統及訊息整合系統)與效標測驗分數之 Pearson’s rs 為0.50~0.52,此結果顯示上述三個系統之同時效度中等。COWMEM之收斂效度發現6個WM向度分數間之 Pearson’s rs 為0.33~0.87,此結果顯示COWMEM之收斂效度良好。COWMEM之已知族群效度驗證結果顯示,高、低認知功能組別之受測者於6個WM向度之 Cohen’s d 為0.72~1.06,此結果顯示COWMEM具中等至良好之已知族群效度。
結論:COWMEM可能為第一個依據Baddeley多系統WM模式發展之電腦化WM測驗組,可完整評量6個WM向度。本研究初步驗證COWMEM於思覺失調症患者之心理計量特性,結果發現COWMEM中6個WM向度分數之信度可接受、收斂效度良好、已知族群效度中等至良好。同時效度驗證結果發現,COWMEM之視空間系統、語音系統及訊息整合系統分數具可接受之同時效度,但中央執行系統中3種注意力分數之同時效度尚不明確。COWMEM適用於思覺失調症患者團體層級之各WM系統能力比較,例如:研究中實驗組及對照組於各WM向度能力比較,或臨床上不同嚴重程度或病程之患者族群於各WM向度能力比較。
zh_TW
dc.description.abstractBackground and purposes: Working memory (WM) can be defined as an individual’s ability to maintain and manipulate information temporarily. WM deficit is a core syndrome of cognitive deficits for patients with schizophrenia. WM deficit may affect other syndromes of schizophrenia, functional outcomes, and quality of life. However, current frequently used WM tests have 3 limitations, including: (1) incomprehensive assessment of the WM components of the Baddeley’s multiple-component model; (2) heavy administration burden of the paper-and-pencil tests for assessors; and (3) unsound / less-examined psychometric properties. Due to these 4 limitations, researchers and clinicians cannot efficiently and accurately measure the WM deficits in patients, which hampers the efficiency and efficacy in the research and treatment on WM.
To deal with the limitations of the WM tests, the first aim of this study was to develop a Computerized Multistage Testing of Working Memory (COWMEM) in patients with schizophrenia based on the Baddeley’s multiple-component model. The second aim of this study was to examine the preliminary psychometric properties of the COWMEM in patients with schizophrenia, including reliability and validity (concurrent validity, convergent validity, and known-groups validity).
Methods: This study is comprised of 2 phases. Phase 1 contained 6 steps to develop the COWMEM: (1) designing the items of the COWMEM’s 6 item banks (domains): phonological loop, visuospatial sketchpad, episodic buffer, and central executive’s 3 types of attentional controls (focused attention, switching attention, and divided attention); (2) examining the content validity; (3) establishing the administration platform of the item banks; (4) administering the item banks in patients with schizophrenia; (5) validating the item banks: deleting the items which did not fit the unidimenal Rasch model in each item bank; and (6) selecting items from the item banks to establich the COWMEM. In Phase 2, the data collected in Phase 1 were used to validate the psychometric properties of the COWMEM. To examine the reliability of the COWMEM, individual patient’s Rasch reliability and the average Rasch reliability of the patients were calculated. To validate the concurrent validity, Pearson’s r was calculated to examine the correlations between the 6 domain scores of the COWMEM and the scores of the corresponding external criteria [Spatial Span-backward, Digit Span-backward, California Verbal Learning Test-10 minutes delayed recall, Test of Everyday Attention (TEA)-Elevator counting, TEA-Visual elevator, and TEA-Telephone search dual task]. To validate the convergent validity, the correlations among the COWMEM’s 6 domain scores were examined using Pearson’s r. To validate the known-groups validity, the patients were divided into 2 groups (good or poor cognition) according to the patients’ scores of the Montreal Cognitive Assessment (≥ 26 or ≤ 25). Next, in each domain of the COWMEM, the extent of difference of the mean domain scores between the 2 groups was examined using effect size (Cohen’s d).
Results: In Phase 1, the item banks of the COWMEM were validated through 3 rounds of examination for content validity, administered on 149 patients with schizophrenia, and 5 items which did not fit the Rasch model were deleted. Finally, the COWMEM contained 6 routing items and 2 item sets (difficult or easy; 15 items in each item set) in each of the 6 domains (a total of 186 items). In the administration of the COWMEM, each patient had to complete the 6 routing items and 1 item set (which are chosen according to the patient’s performance on the routing items) in each of the 6 domains (a total of 96 items). In Phase 2, the results of the reliability indicate that the COWMEM has acceptable individual reliability (52.0%~100.0% of patients had Rasch reliability ≥ 0.70) and average reliability (0.70~0.86 across the 6 domains). The results of the concurrent validity indicate that the COWMEM has acceptable concurrent validity in the 3 domains (phonological loop, visuospatial sketchpad, and episodic buffer; Pearson’s rs = 0.50~0.52) but poor concurrent valditiy in the other 3 domains (central executive’s 3 types of attentional controls; Pearson’s rs = 0.21~0.22). The results of the convergent validity indicate that the COWMEM has good convergent validity (Pearson’s rs = 0.33~0.87). The results of the known-groups validity indicate that the COWMEM has moderate-to-good known-groups validity (Cohen’s ds = 0.72~1.06).
Conclusion: The COWMEM may be the first computerized WM test for comprehensively assessing 6 domains of WM. The preliminary examination of psychometric properties indicate that the COWMEM has acceptable reliability, good convergent validity, moderate-to-good known-groups validity. Regarding the concurrent validity, the 3 domain scores (phonological loop, visuospatial sketchpad, and episodic buffer) of the COWMEM have acceptable concurrent validity, but the concurrent validity of the other 3 domain scores (central executive’s 3 types of attentional controls) are unclear. The COWMEM can be used to compare the scores of the 6 WM domains among groups of patients with schizophrenia (e.g., control vs. treatment group in research or comparisons between groups of patients with different severities or stages in clinical settings).
en
dc.description.provenanceMade available in DSpace on 2021-05-12T09:34:51Z (GMT). No. of bitstreams: 1
ntu-107-F01429005-1.pdf: 11921671 bytes, checksum: 1aba2ef5b4b05b1273059a53a0eda024 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 i
中文摘要 ii
英文摘要 iv
圖目錄 ix
表目錄 x
第一章 工作記憶 (working memory, WM) 簡介 1
第一節 記憶力之分類 1
第二節 WM之理論 2
第二章 思覺失調症之WM 8
第一節 思覺失調症簡介 8
第二節 思覺失調症患者之WM缺損 8
第三章 WM測驗之介紹與評析 10
第一節 良好WM測驗之主要特性 10
第二節 常用於思覺失調症患者之WM測驗 11
第三節 常用WM測驗之缺點 14
第四章 電腦化WM測驗結合「多向度羅序模型 (multidimensional Rasch model)」與「電腦化多階段測驗 (computerized multistage testing)」 16
第一節 多向度羅序模型 16
第二節 電腦化多階段測驗 17
第三節 電腦化WM測驗結合「多向度羅序模型」與「電腦化多階段測驗」之優勢 18
第五章 研究目的 19
第六章 研究方法 20
第一節 階段一:發展COWMEM 20
第二節 階段二:初步驗證COWMEM之信度與效度 27
第七章 研究結果 29
第一節 階段一:發展COWMEM 29
第二節 階段二:初步驗證COWMEM之信度與效度 40
第八章 討論 42
第九章 總結 51

參考文獻 52
附錄一:初版COWMEM設計構想 108
附錄二:蒙特利爾認知評估 117
附錄三:臨床整體印象嚴重度量表 118
附錄四:數字記憶廣度測驗 119
附錄五:空間記憶廣度測驗 120
附錄六:語言學習測驗 121
附錄七:日常注意力測驗-視覺電梯樓層計算 122
附錄八:日常注意力測驗-電話搜尋雙重作業 125
dc.language.isozh-TW
dc.title發展思覺失調症患者之電腦化多階段工作記憶測驗組zh_TW
dc.titleDevelopment of a computerized multistage testing of working memory in patients with schizophreniaen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree博士
dc.contributor.oralexamcommittee薛漪平(I-Ping Hsueh),吳建德(Chien-Te Wu),施慶麟(Ching-Lin Shih),郭千哲(Chian-Jue Kuo)
dc.subject.keyword思覺失調症,工作記憶,電腦化多階段測驗,心理計量特性,zh_TW
dc.subject.keywordschizophrenia,working memory,computerized multistage testing,psychometric property,en
dc.relation.page125
dc.identifier.doi10.6342/NTU201800787
dc.rights.note同意授權(全球公開)
dc.date.accepted2018-05-07
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept職能治療研究所zh_TW
顯示於系所單位:職能治療學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf11.64 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved