Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/1241
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor于靖(Jing Yu)
dc.contributor.authorZih-Hao Huangen
dc.contributor.author黃子豪zh_TW
dc.date.accessioned2021-05-12T09:34:44Z-
dc.date.available2018-05-31
dc.date.available2021-05-12T09:34:44Z-
dc.date.copyright2018-05-31
dc.date.issued2018
dc.date.submitted2018-05-23
dc.identifier.citationReferences
[B] D. Benson, Spin Modules for Symmetric Groups, Journal of the London Mathematical Society, s2-38(2), 250-262, 1988.
[CR] C. Curtis and I. Reiner, Methods of Representation Theory I, II. Wiley-Interscience 1981.
[F] W. Fulton and J. Harris, Representation Theory: A First Course, Springer GTM.
[F1] M. Fayers, On the Irreducible Representation of the Alternating Group which Remain Irreducible in Characteristic $p$, Representation Theory Amer. Math. Soc., 14, 601-626, 2010.
[F2] M. Fayers, The Irreducible Representations of the Alternating group which Remain Irreducible in Characteristic $p$, Transactions Amer. Math. Soc., 368(8), 5807–5855, 2016.
[I] I. M. Isaacs, Character Theory of Finite Groups, Academic Press.
[J1] G. D. James, The Representation Theory of the Symmetric Groups, Springer 1978.
[J2] G. D. James, On the Decomposition Matrices of the Symmetric Groups. II, Journal of Algebra, 43(13), 45-54, 1976.
[L] Yu-Chung Liu, On Lifting of Modular Characters, Master's Thesis of Department of Mathematics, National Taiwan University, Taipei, 2017.
[R] G. de B. Robinson, Representation Theory of the Symmetric Group, Edinburgh University Press, 1961.
[S1] J. P. Serre, Linear Representations of Finite Groups, Springer GTM.
[S2] J. P. Serre, Local Fields, Springer GTM.
[W] M. Wildon, Character Values and Decomposition
Matrices of Symmetric Groups, Journal of Algebra, 319(8), 3382-3397, 2008.
[web] http://www.math.rwth-aachen.de/homes/MOC/decomposition/tex/ON/ON.2mod2.pdf
[web2] http://www.math.rwth-aachen.de/homes/MOC/decomposition/
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/handle/123456789/1241-
dc.description.abstract令 p 為一個質數,G 為一個有限群,且 G^(p) 為收集 G 的元素中所有滿足元素的階 (order) 和 p 互質的元素。如果對於所有的 G 的不可約特徵標 (irreducible character) X,都沒辦法找到一個大於 1 的自然數 a 和一個 G 的不可約 p-模特徵標 φ (irreducible p-modular character)使得 X|_{G^(p)} = aφ,那我們就會說G有 (L ', p)-性質 ((L ', p)-property)。如果對於所有的 G 的不可約特徵標 X,都能找到一個 G 的不可約 p-模特徵標 φ 使得 X|_{G^(p)} ≥ φ with multiplicity 1,那我們就會說 G 有 (L ' ', p)-性質 ((L ' ', p)-property)。又如果對於所有的質數 p,G 恆有 (L ' ', p)-性質,那我們就會說 G有 L ' '-性質 (L ' '-property)。
在這篇碩士論文中,我們想要證明所有的對稱群 (symmetric groups) 都有 L ' '-性質;所有的交錯群 (alternating groups) 都有 (L ' ',2)-性質;且對於所有比 2 大的質數 p,所有的交錯群都有 (L ', p)-性質。
zh_TW
dc.description.abstractLet p be a prime number, G be a finite group,and G^(p) be the set of all g ∈ G such that p ∤ ord(g). We say G has the (L ', p)-property if for any irreducible character X of G, X|_{G^(p)} ≠ aφ for any irreducible p-modular character φ of G and any a∈N with a > 1. We say G has the (L ' ', p)-property if for any irreducible character X of G, there exists an irreducible p-modular character φ of G such that X|_{G^(p)} ≥ φ with multiplicity 1. We say
G has the L ' '-property if G has the (L ' ', p)-property for all p.
In this thesis, we want to show that all symmetric groups have the L ' '-property, all alternating groups have the (L ' ',2)-property, and all alternating groups have the (L ', p)-property for all prime p > 2.
en
dc.description.provenanceMade available in DSpace on 2021-05-12T09:34:44Z (GMT). No. of bitstreams: 1
ntu-107-R04221002-1.pdf: 3159178 bytes, checksum: de5d694bf029ff4d2b210bcc62bf5902 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontentsContents
口試委員會審定書 i
致謝 ii
中文摘要 iii
Abstract iv
0 Notations and Preliminaries 1
1 Introduction 7
2 Specht modules, F0Sn-Modules, and FpSn-modules 11
2.1 The Definition of the Specht Module 11
2.2 Simple F0Sn-Module and Simple FpSn-Module 14
2.3 Facts about F0Sn-Module and FpSn-Module 19
3 About Sn 22
3.1 Groups S5 and S6 have the (L ', p)-property 22
3.2 Diagrams 32
3.3 The L ' '-Property of Sn 43
4 About An 56
4.1 Tools 57
4.2 The (L ' ',2)-property of An 65
4.3 The (L ', p)-property of An for p > 2 67
5 Appendix A: Letter from Jean-Pierre Serre 79
6 Appendix B: Proof of Serre’s Exercise in Appendix A 81
Reference 87
dc.language.isoen
dc.subject交錯群zh_TW
dc.subjectL -性質zh_TW
dc.subject對稱群zh_TW
dc.subjectp-模特徵標zh_TW
dc.subjectp)-性質zh_TW
dc.subject特徵標zh_TW
dc.subjectsymmetric groupsen
dc.subjectL -propertyen
dc.subjectp)-propertyen
dc.subjectmodular characteren
dc.subjectcharacteren
dc.subjectalternating groupsen
dc.title在對稱群上的特徵標zh_TW
dc.titleOn Characters of Symmetric Groupsen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李華介,林惠雯,潘戍衍
dc.subject.keyword對稱群,交錯群,特徵標,p-模特徵標,(L ,p)-性質,L -性質,zh_TW
dc.subject.keywordsymmetric groups,alternating groups,character,modular character,(L ,p)-property,L -property,en
dc.relation.page88
dc.identifier.doi10.6342/NTU201800842
dc.rights.note同意授權(全球公開)
dc.date.accepted2018-05-23
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf3.09 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved