請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/1164
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳俊傑(Chun-Chieh Wu) | |
dc.contributor.author | Li-Zhi Shen | en |
dc.contributor.author | 沈里治 | zh_TW |
dc.date.accessioned | 2021-05-12T09:33:34Z | - |
dc.date.available | 2018-08-01 | |
dc.date.available | 2021-05-12T09:33:34Z | - |
dc.date.copyright | 2018-08-01 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-07-26 | |
dc.identifier.citation | Chavas, D. R. and K. A. Emanuel, 2010: A QuikSCAT climatology of tropical cyclone size. Geophys. Res. Lett., 37, L18816.
Chan, K. T., and J. C. Chan, 2012: Size and strength of tropical cyclones as inferred from QuikSCAT data. Mon. Wea. Rev., 140, 811–824. ——, and ——, 2013: Angular momentum transports and synoptic flow patterns associated with tropical cyclone size change. Mon. Wea. Rev., 141, 3985–4007 ——, and ——, 2014: Impacts of initial vortex size and planetary vorticity on tropical cyclone size. Q. J. R. Meteorol. Soc. , 140: 2235-2248. ——, and ——, 2015: Global climatology of tropical cyclone size as inferred from QuikSCAT data. Int. J. Climatol., 35: 4843-4848. Chavas, D. R. and K. A. Emanuel, 2010: A QuikSCAT climatology of tropical cyclone size. Geophys. Res. Lett., 37, L18816. D’Asaro, E. A., P. G. Black, L. R. Centurioni, Y.-T. Chang, S. S. Chen, R. C. Foster, H. C. Graber, P. Harr, V. Hormann, R.-C. Lien, I.-I. Lin, T. B. Sanford, T.-Y. Tang, and C.-C. Wu, 2013: Impact of typhoons on the ocean in the Pacific: ITOP. Bull. Amer. Meteor. Soc., 1405-1418. Frisius, T., 2015: What controls the size of a tropical cyclone? Investigations with an axisymmetric model. Q. J. R. Meteorol. Soc., 141, 2457–2470. Green, B.W., and F. Zhang, 2013: Impacts of air–sea flux parameterizations on the intensity and structure of tropical cyclones. Mon. Wea. Rev., 141, 2308–2324. Hill, K. A., and G. M. Lackmann, 2009: Influence of environmental humidity on tropical cyclone size. Mon. Wea. Rev., 137, 3294–3315. Hong, S., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341. Iacono, M. J., E. J. Mlawer, S. A. Clough, and J.‐J. Morcrette, 2000: Impact of an improved longwave radiation model, RRTM, on the energy budget and thermodynamic properties of the NCAR community climate model, CCM3, J. Geophys. Res., 105(D11), 14873–14890. Jimenez, Pedro, J. Dudhia, R. González, J. Fidel, J. Navarro, J. Montávez, B. E. Garcia, 2012: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev. 140. 10.1175/MWR-D-11-00056.1. Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170–181. Knaff J. A., S. P. Longmore, D. A. Molenar. 2014: An objective satellite‐based tropical cyclone size climatology. J. Clim. 27: 455–476. Lee, C., K. K. Cheung, W. Fang, and R.L. Elsberry, 2010: Initial maintenance of tropical cyclone size in the western north Pacific. Mon. Wea. Rev., 138, 3207–3223. Lin, I-I, C.-H. Chen, I.-F. Pun, W. T. Liu., and C.-C. Wu, 2009: Warm ocean anomaly, air sea fluxes, and the rapid intensification of Tropical Cyclone Nargis. Geophys. Res. Lett., 36, L03817, ——, M.-D. Chou, and C.-C. Wu, 2011: The impact of a warm ocean eddy on Typhoon Morakot (2009) – A preliminary study from satellite observations and numerical modeling. Terr. Atmos. Ocean. Sci., 22, 661-671. ——, P. Black, J. F. Price, C.-Y. Yang, S. S. Chen, C.-C. Lien, P. Harr, N.-H. Chi, C.-C. Wu, and E. A. D’Asaro, 2013: An ocean coupling potential intensity index for tropical cyclones. Geophys. Res. Lett., 40, 1878-188. Liu K. S., and J. C. Chan, 2002: Synoptic flow patterns associated with small and large tropical cyclones over the western North Pacific. Mon. Weather Rev. 130: 2134–2142. Lu X, H. Yu, and X. Lei, 2011: Statistics for size and radial wind profile of tropical cyclones in the western North Pacific. Acta Meteorol. Sinica 25: 104–112. Ma Z, J. Fei, L. Liu, X. Huang, and X. Cheng, 2013: Effects of the cold core eddy on tropical cyclone intensity and structure under idealized air–sea interaction conditions. Mon. Weather Rev. 141: 1285–1303. ——, ——, X. Huang, and X. Cheng, 2015: Contributions of surface sensible heat fluxes to tropical cyclone. Part I: evolution of tropical cyclone intensity and structure. J. Atmos. Sci., 72, 120–140 Powell Mark, Peter Vickery, and Timothy A Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature. 422. 279-83. 10.1038/nature01481. Pun, I.-F., I-I Lin, C.-C. Lien, and C.-C. Wu, 2018: Influence of the size of supertyphoon Megi (2010) on SST cooling. Mon. Wea. Rev. 146, 661-677. Radu R., R. Toumi, and J. Phau, 2014: Influence of atmospheric and sea-surface temperature on the size of hurricane Catarina. Q. J. R. Meteorol. Soc. 140:1778–1784. Ruiz‐Arias, J., A., J. Dudhia, F. J. Santos‐Alamillos, and D. Pozo‐Vázquez , 2013: Surface clear‐sky shortwave radiative closure intercomparisons in the Weather Research and Forecasting model, J. Geophys. Res. Atmos., 118, 9901–9913. Shen, L.-Z, and C.-C. Wu, 2018: The effect of surface heat fluxes in the outer region on the size of Typhoon Megi (2016). 33rd Conf. on Hurricanes and Tropical Meteorology, Ponte Vedra, Florida, Amer. Meteor. Soi., 5C.7. Tsuji H., Itoh H., and Nakajima K., 2016: Mechanism governing the size change of tropical cyclone-like vortices. J. Meteorol. Soc. Jpn. 94: 219–236. Wang, Y., and C.-C. Wu, 2004: Current understanding of tropical cyclone structure and intensity changes – a review. Meteorol Atmos Phys (2004) 87: 257. Wu, C.-C., C.-Y Lee, and I-I Lin, 2007: The effect of the ocean eddy on tropical cyclone intensity. J. Atmos. Sci., 64, 3562-3578. Wu, C.-C., W.-T. Tu, I.-F. Pun, I-I Lin, and M. S. Peng, 2016: Tropical cyclone-ocean interaction in Typhoon Megi (2010) - A synergy study based on ITOP observations and atmosphere-ocean coupled model simulations. J. Geophys. Res., 121, 153-167. Xu J., and Y. Wang, 2010a: Sensitivity of tropical cyclone inner‐core size and intensity to the radial distribution of surface entropy flux. J. Atmos. Sci. 67: 1831–1852. ——, Y. ——, 2010b: Sensitivity of the simulated tropical cyclone inner‐core size to the initial vortex size. Mon. Wea. Rev. 138: 4135–4157. Yu, C.-K., C.-Y. Lin, L.-W. Cheng, J.-S. Luo, C.-C. Wu, and Y. Chen, 2018: The degree of prevalence of similarity between outer tropical cyclone rainbands and squall lines. Sci. Rep. 8, 1-15. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/handle/123456789/1164 | - |
dc.description.abstract | 颱風雨帶的位置以及活躍程度會影響颱風的大小(size),並且過去的研究指出雨帶產生的次環流會影響颱風底層的角動量平流,而底層的角動量平流越多越有利於颱風切向風風場的擴張。除此之外,移除海表熱通量會減弱颱風雨帶的活躍程度。因此,本研究將探討海表熱通量以及颱風大小之間的關係,並瞭解海表熱通量如何影響颱風大小的改變。
本研究使用Advanced Research Weather Research and Forecasting (ARW-WRF) model (version 3.5.1),以2016年的梅姬颱風(Megi)做為模擬對象進行模擬,並分為控制組實驗以及敏感性實驗。在敏感性實驗中,海表熱通量在不同區域被限制,限制區域分別為限制內核、外核以及整個第三層網格,並且限制程度也有所差異。研究顯示海表熱通量越多,颱風的大小越大,並且外核的海表熱通量對於颱風大小變化較為敏感。減少海表熱通量將導致該區域的對流活動減弱,並使得次環流也有所減弱。然而,由減弱的內雨帶引發的次環流減弱只侷限在內核區域,因此對於外核底層的角動量平流沒有太大的影響;另一方面,較不活躍的外圍雨帶引起的次環流減弱在徑向方向上較前述實驗寬,因此外圍底層的角動量較少,並且不利於颱風切向風風場的擴張。因此,海表熱通量越多越能讓颱風大小增大,並且外核的海表熱通量相對於內核的海表熱通量對於颱風的大小變化較為敏感。 | zh_TW |
dc.description.abstract | Locations of outer rainbands and the embedded convective activities can affect tropical cyclone (TC) size, and it has been suggested that the secondary circulation induced by the rainbands can affect the momentum transport in the lower level, and more momentum import in the lower level leads to the expansion of TC. In addition, removing surface heat fluxes weakens the rainband activities. Therefore, this study attempts to further understand the impact of surface heat fluxes on TC size and how do surface heat fluxes in different area affect TC size.
The Advanced Research Weather Research and Forecasting (ARW-WRF) model (version 3.5.1) is used in this study to conduct simulations of Typhoon Megi (2016). Several experiments are carried out, including a control (CTL) simulation and sensitivity experiments with surface heat fluxes suppressed in varying degrees and in inner and outer core of TC. The results show that more surface heat fluxes leads to a larger TC. Furthermore, outer core surface heat fluxes are more sensitive to TC size than inner core surface heat fluxes. Suppressing surface heat fluxes weakens the rainbands around the suppressed area. The weakened rainbands slow down the secondary circulation. However, the weakening of secondary circulation resulted from the weakened inner rainbands is constrained in the inner core region, so it only slightly affects the absolute angular momentum import in the outer region. On the other hand, inactive outer rainbands leads to a broader secondary circulation weakening, so the absolute momentum import in the outer region is less, which is not favorable for TC size increase. Therefore, the supplementation of surface heat fluxes in the outer core region is more important than that in the inner core region. | en |
dc.description.provenance | Made available in DSpace on 2021-05-12T09:33:34Z (GMT). No. of bitstreams: 1 ntu-107-R05229007-1.pdf: 3180250 bytes, checksum: 5de4b6c14b7d7ebc0f06a2113073ea37 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 誌謝 1
摘要 2 Abstract 3 目錄 4 表目錄 6 圖目錄 7 第一章 前言 11 1.1 外圍雨帶及角動量傳遞對颱風大小的影響 11 1.2 海表熱通量對颱風大小的影響 13 1.3 研究動機及目的 14 第二章 資料與方法 16 2.1 資料來源及個案簡介 16 2.2 颱風大小的定義 17 2.3 實驗設計 18 2.3.1 控制組實驗(CTL) 18 2.3.2 敏感性實驗 18 第三章 實驗結果 20 3.1 強度及大小的演變與比較 20 3.2 雨帶及降水差異 23 3.3 環流差異 25 3.4 絕對角動量分析 27 第四章 討論 30 4.1 颱風面積以及海表潛熱之正比關係 30 4.2 減少海表熱通量與冷渦的關係 30 第五章 總結與未來工作 32 5.1 總結 32 5.2 未來工作 33 參考文獻 34 表格 38 圖片 39 | |
dc.language.iso | zh-TW | |
dc.title | 外核海表熱通量對於梅姬颱風(2016)大小的影響 | zh_TW |
dc.title | The Effect of Surface Heat Fluxes in the Outer Region on the Size of Typhoon Megi (2016) | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 楊舒芝,吳健銘,游政谷 | |
dc.subject.keyword | 海表熱通量,外核,雨帶,大小,絕對角動量, | zh_TW |
dc.subject.keyword | tropical cyclone size,surface heat flux,rainband,secondary circulation,absolute angular momentum, | en |
dc.relation.page | 69 | |
dc.identifier.doi | 10.6342/NTU201801990 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2018-07-26 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 大氣科學研究所 | zh_TW |
顯示於系所單位: | 大氣科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf | 3.11 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。