Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/1163
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳俊傑(Chun-Chieh Wu)
dc.contributor.authorChin-Hsuan Pengen
dc.contributor.author彭欽旋zh_TW
dc.date.accessioned2021-05-12T09:33:34Z-
dc.date.available2018-08-01
dc.date.available2021-05-12T09:33:34Z-
dc.date.copyright2018-08-01
dc.date.issued2018
dc.date.submitted2018-07-26
dc.identifier.citationAbarca, S. F., and K. L. Corbosiero, 2011: Secondary Eyewall Formation in WRF Simulations of Hurricanes Rita and Katrina (2005). Geophys. Res. Lett., 38, L07802.
Barnes, G. M., and P. Fuentes, 2010: Eye Excess Energy and the Rapid Intensification of Hurricane Lili (2002), Mon. Wea. Rev., 138, 1446–1458.
——, E. J. Zipser, D. Jorgensen, and F. Marks Jr., 1983: Mesoscale and Convective Structure of a Hurricane Rainband. J. Atmos. Sci., 40, 2125–2137.
Bosart, L.F., W.E. Bracken, J. Molinari, C.S. Velden, and P.G. Black, 2000: Environmental Influences on the Rapid Intensification of Hurricane Opal (1995) over the Gulf of Mexico. Mon. Wea. Rev., 128, 322–352.
Chan, K.T. and J.C. Chan, 2012: Size and Strength of Tropical Cyclones as Inferred from QuikSCAT Data. Mon. Wea. Rev., 140, 811–824.
Chang, C.-C. and C.-C. Wu, 2017: On the Processes Leading to the Rapid Intensification of Typhoon Megi (2010). J. Atmos. Sci., 74, 1169–1200.
Chen, H. and D. Zhang, 2013: On the Rapid Intensification of Hurricane Wilma (2005). Part II: Convective Bursts and the Upper-Level Warm Core. J. Atmos. Sci., 70, 146–162.
Cheng, C.-J., and C.-C. Wu, 2018: The Role of the WISHE Mechanism in Secondary Eyewall Formation. J. Atmos. Sci. (under revision).
Corbosiero, K.L. and J. Molinari, 2002: The Effects of Vertical Wind Shear on the Distribution of Convection in Tropical Cyclones. Mon. Wea. Rev., 130, 2110–2123.
Cram, T. A., J. Persing, M. T. Montgomery, and S. A. Braun, 2007: A Lagrangian Trajectory View on Transport and Mixing Processes between the Eye, Eyewall, and Environment Using a High‐Resolution Simulation of Hurricane Bonnie (1998), J. Atmos. Sci., 64, 1835–1856.
Diercks, J. W., and R. A. Anthes, 1976: Diagnostic Studies of Spiral Rainbands in a Nonlinear Hurricane Model. J. Atmos. Sci., 33, 959–975.
Elsberry, R. L., T. D. B. Lambert, and M. A. Boothe, 2007: Accuracy of Atlantic and Eastern North Pacific Tropical Cyclone Intensity Forecast Guidance. Wea. Forecasting, 22, 747–762.
Emanuel, K.A., 1989: The Finite-Amplitude Nature of Tropical Cyclogenesis. J. Atmos. Sci., 46, 3431-3456.
——, M. Fantini, and A.J. Thorpe, 1987: Baroclinic Instability in an Environment of Small Stability to Slantwise Moist Convection. Part I: Two-Dimensional Models. J. Atmos. Sci., 44, 1559–1573.
——, 1986: An Air-Sea Interaction Theory for Tropical Cyclones. Part I: Steady-State Maintenance. J. Atmos. Sci., 43, 585–605.
Green, B. W. and F. Zhang, 2013: Impacts of Air–Sea Flux Parameterizations on the Intensity and Structure of Tropical Cyclones. Mon. Wea. Rev., 141, 2308–2324.
Harnos, D. S. and Nesbitt, S. W., 2016: Varied Pathways for Simulated Tropical Cyclone Rapid Intensification. Part II: Vertical Motion and Cloud Populations. Q.J.R. Meteorol. Soc., 142: 1832–1846.
Hendricks, E.A., M.S. Peng, B. Fu, and T. Li, 2010: Quantifying Environmental Control on Tropical Cyclone Intensity Change. Mon. Wea. Rev., 138, 3243–3271.
Heymsfield, G.M., J.B. Halverson, J. Simpson, L. Tian, and T.P. Bui, 2001: ER-2 Doppler Radar Investigations of the Eyewall of Hurricane Bonnie during the Convection and Moisture Experiment-3. J. Appl. Meteor., 40, 1310–1330.
Hill, K.A. and G.M. Lackmann, 2009: Influence of Environmental Humidity on Tropical Cyclone Size. Mon. Wea. Rev., 137, 3294–3315.
Holliday, C. R. and A. H. Thompson, 1979: Climatological Characteristics of Rapidly Intensifying Typhoons. Mon. Wea. Rev., 107, 1022–1034.
Hong, S., Y. Noh, and J. Dudhia, 2006: A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Mon. Wea. Rev., 134, 2318–2341.
——, and J-O. J. Lim, 2006: The WRF Single-Moment 6-Class Microphysics Scheme (WSM6). J. Korean Meteor. Soc., 42, 129–151.
Houze, R. A., Jr., 1989: Observed Structure of Mesoscale Convective Systems and Implications for Large-Scale Heating. Quart. J. Roy. Meteor. Soc., 115, 425-461.
Ito, K., T. Kuroda, K. Saito, and A. Wada, 2015: Forecasting a Large Number of Tropical Cyclone Intensities around Japan Using a High-Resolution Atmosphere–Ocean Coupled Model. Wea. Forecasting, 30, 793–808.
Juračić, A., and D. J. Raymond, 2016: The Effects of Moist Entropy and Moisture Budgets on Tropical Cyclone Development, J. Geophys. Res. Atmos., 121, 9458–9473.
Kain, J. S. and J. M. Fritsch, 1990: A One-Dimensional Entraining/Detraining Plume Model and its Application in Convective Parameterization. J. Atmos. Sci., 47, 2784–2802.
Kanada, S. and A. Wada, 2015: Numerical Study on the Extremely Rapid Intensification of an Intense Tropical Cyclone: Typhoon Ida (1958). J. Atmos. Sci., 72, 4194–4217.
Kaplan, J. and M. DeMaria, 2003: Large-Scale Characteristics of Rapidly Intensifying Tropical Cyclones in the North Atlantic Basin. Wea. Forecasting, 18, 1093–1108.
——, C.M. Rozoff, M. DeMaria, C.R. Sampson, J.P. Kossin, C.S. Velden, J.J. Cione, J.P. Dunion, J.A. Knaff, J.A. Zhang, J.F. Dostalek, J.D. Hawkins, T.F. Lee, and J.E. Solbrig, 2015: Evaluating Environmental Impacts on Tropical Cyclone Rapid Intensification Predictability Utilizing Statistical Models. Wea. Forecasting, 30, 1374–1396.
——, M. DeMaria, and J.A. Knaff, 2010: A Revised Tropical Cyclone Rapid Intensification Index for the Atlantic and Eastern North Pacific Basins. Wea. Forecasting, 25, 220–241.
Kurihara, Y., 1976: On the Development of Spiral Bands in a Tropical Cyclone. J. Atmos. Sci., 33, 940–958.
Lee, C.-Y., M. K. Tippett, A. H. Sobel, and S. J. Camargo, 2016: Rapid Intensification and the Bimodal Distribution of Tropical Cyclone Intensity. Nat. Commun., 7, 10625.
López Carrillo, C. and D. J. Raymond, 2005: Moisture Tendency Equations in a Tropical Atmosphere. J. Atmos. Sci., 62, 1601–1613.
Lynch, P., and X.-Y. Huang, 1992: Initialization of the HIRLAM Model Using a Digital Filter. Mon. Wea. Rev., 120, 1019–1034.
Malkus, J.S. and Riehl, H., 1960: On the Dynamics and Energy Transformations in Steady-State Hurricanes. Tellus, 12, 1-20.
Marks, F., L. K. Shay, and PDT-5, 1998: Landfalling Tropical Cyclones: Forecast Problems and Associated Research Opportunities. Bull. Amer. Meteor. Soc., 79, 305–323.
—— and R.A. Houze, 1987: Inner Core Structure of Hurricane Alicia from Airborne Doppler Radar Observations. J. Atmos. Sci., 44, 1296–1317.
May, P. T., and G. J. Holland, 1999: The Role of Potential Vorticity Generation in Tropical Cyclone Rainbands. J. Atmos. Sci., 56, 1224–1228.
Miyamoto, Y. and T. Takemi, 2013: A Transition Mechanism for the Spontaneous Axisymmetric Intensification of Tropical Cyclones. J. Atmos. Sci., 70, 112–129.
Molinari, J. and D. Vollaro, 2010: Rapid Intensification of a Sheared Tropical Storm. Mon. Wea. Rev., 138, 3869–3885.
Montgomery, M. T., and R. J. Kallenbach, 1997: A Theory for Vortex Rossby-Waves and its Application to Spiral Bands and Intensity Changes in Hurricanes. Quart. J. Roy. Meteor. Soc., 123, 435–465.
——, J. Persing, and R. K. Smith, 2015: Putting to Rest WISHE-Ful Misconceptions for Tropical Cyclone Intensification. J. Adv. Model. Earth Syst., 7, 92–109.
——, N. V. Sang, R. K. Smith, and J. Persing, 2009: Do Tropical Cyclones Intensify by WISHE? Quart. J. Roy. Meteor. Soc., 135, 1697–1714.
Moon, Y. and D.S. Nolan, 2015: Spiral Rainbands in a Numerical Simulation of Hurricane Bill (2009). Part I: Structures and Comparisons to Observations. J. Atmos. Sci., 72,164–190.
Neelin, J.D., I.M. Held, and K.H. Cook, 1987: Evaporation-Wind Feedback and Low-Frequency Variability in the Tropical Atmosphere. J. Atmos. Sci., 44, 2341–2348.
Peng, C.-H., and C.-C. Wu, 2018: The Impact of Surface Heat Fluxes outside the Inner Core on the Rapid Intensification of Typhoon Soudelor (2015).  33rd Conf. on Hurricanes and Tropical Meteorology, Ponte Vedra, Florida, Amer. Meteor. Soi., 11C.1.
Persing, J., and M. T. Montgomery, 2003: Hurricane Superintensity, J. Atmos. Sci., 60, 2349–2371.
Powell, M. D., 1990a: Boundary Layer Structure and Dynamics in Outer Hurricane Rainbands. Part I: Mesoscale Rainfall and Kinematic Structure. Mon. Wea. Rev., 118, 891–917.
——, 1990b: Boundary Layer Structure and Dynamics in Outer Hurricane Rainbands. Part II: Downdraft Modification and Mixed Layer Recovery. Mon. Wea. Rev., 118, 918–938.
——, Vickery, P. J., and Reinhold, T. A., 2003: Reduced Drag Coefficients for High Wind Speeds in Tropical Cyclones. Nature, 422, 279-283.
Price, E.T., Mielikainen, J., Huang, M., Huang, B., Huang, H., and Lee, T., 2014: GPU-Accelerated Longwave Radiation Scheme of the Rapid Radiative Transfer Model for General Circulation Models (RRTMG). IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7, 3660–3667.
Raymond, D. J., 2013: Sources and Sinks of Entropy in the Atmosphere, J. Adv. Model Earth Syst., 5, 755–763.
Riehl, H., 1950: A Model for Hurricane Formation. J. Appl. Phys., 21, 917-925.
——, 1963: Some Relations Between Wind and Thermal Structure of Steady State Hurricanes. J. Atmos. Sci., 20, 276–287.
Rogers, R., P. Reasor, and S. Lorsolo, 2013: Airborne Doppler Observations of the Inner-Core Structural Differences between Intensifying and Steady-State Tropical Cyclones. Mon. Wea. Rev., 141, 2970–2991.
——, 2010: Convective-Scale Structure and Evolution during a High-Resolution Simulation of Tropical Cyclone Rapid Intensification. J. Atmos. Sci., 67, 44–70.
——, P.D. Reasor, and J.A. Zhang, 2015: Multiscale Structure and Evolution of Hurricane Earl (2010) during Rapid Intensification. Mon. Wea. Rev., 143, 536–562.
Rozoff, C.M., W.H. Schubert, B.D. McNoldy, and J.P. Kossin, 2006: Rapid Filamentation Zones in Intense Tropical Cyclones. J. Atmos. Sci., 63, 325–340.
Schubert, W. H., and J. J. Hack, 1982: Inertial Stability and Tropical Cyclone Development. J. Atmos Sci., 39, 1687–1697.
——, M. T. Montgomery, R. K. Taft, T. A. Guinn, S. R. Fulton, J. P. Kossin, and J. P. Edwards, 1999: Polygonal Eyewalls, Asymmetric Eye Contraction, and Potential Vorticity Mixing in Hurricanes. J. Atmos. Sci., 56, 1197–1223.
Shapiro, L. J., and H. E. Willoughby, 1982: The Response of Balanced Hurricanes to Local Sources of Heat and Momentum. J. Atmos. Sci., 39, 378–394.
Steiner, M., R.A. Houze, and S.E. Yuter, 1995: Climatological Characterization of Three-Dimensional Storm Structure from Operational Radar and Rain Gauge Data. J. Appl. Meteor., 34, 1978–2007.
Tang, X., W. Lee, and M. Bell, 2014: A Squall-Line-Like Principal Rainband in Typhoon Hagupit (2008) Observed by Airborne Doppler Radar. J. Atmos. Sci., 71, 2733–2746.
Vigh, J.L. and W.H. Schubert, 2009: Rapid Development of the Tropical Cyclone Warm Core. J. Atmos. Sci., 66, 3335–3350.
Wang, H. and Y. Wang, 2014: A Numerical Study of Typhoon Megi (2010). Part I: Rapid Intensification. Mon. Wea. Rev., 142, 29–48.
Wang, Y., 2002a: Vortex Rossby Waves in a Numerically Simulated Tropical Cyclone. Part I: Overall Structure, Potential Vorticity, and Kinetic Energy Budgets. J. Atmos. Sci., 59, 1213–1238.
——, 2002b: Vortex Rossby Waves in a Numerically Simulated Tropical Cyclone. Part II: The Role in Tropical Cyclone Structure and Intensity Changes. J. Atmos. Sci., 59, 1239–1262.
——, 2008a: Rapid Filamentation Zone in a Numerically Simulated Tropical Cyclone. J. Atmos. Sci., 65, 1158–1181.
——, 2008b: Structure and Formation of an Annular Hurricane Simulated in a Fully Compressible, Nonhydrostatic model TCM4. J. Atmos. Sci., 65, 1505–1527.
——, and C.-C. Wu, 2004: Current Understanding of Tropical Cyclone Structure and Intensity Changes–A Review. Meteor. Atmos. Phys., 87, 257–278.
——, 2001: An Explicit Simulation of Tropical Cyclones with a Triply Nested Movable Mesh Primitive Equation Model: TCM3. Part I: Model Description and Control Experiment. Mon. Wea. Rev., 129, 1370–1394.
——, 2009: How Do Outer Spiral Rainbands Affect Tropical Cyclone Structure and Intensity? J. Atmos. Sci., 66, 1250–1273.
Weatherford, C.L. and W.M. Gray, 1988: Typhoon Structure as Revealed by Aircraft Reconnaissance. Part I: Data Analysis and Climatology. Mon. Wea. Rev., 116, 1032–1043.
Willoughby, H. E., 1978: A Possible Mechanism for the Formation of Hurricane Rainbands. J. Atmos. Sci., 35, 838–848.
——, H.-L. Jin, S. J. Lord, and J. M. Piotrowicz, 1984: Hurricane Structure and Evolution as Simulated by an Axisymmetric, Nonhydrostatic Numerical Model. J. Atmos. Sci., 41, 1169–1186.
Wu, C.-C., S.-N. Wu, H.-H. Wei, S. F. Abarca, 2016: The Role of Convective Heating in Tropical Cyclone Eyewall Ring Evolution. J. Atmos. Sci., 73, 319-330.
Xu, J. and Y. Wang, 2010: Sensitivity of Tropical Cyclone Inner-Core Size and Intensity to the Radial Distribution of Surface Entropy Flux. J. Atmos. Sci., 67, 1831–1852.
Yu, C. and Tsai, C., 2017: Structural Changes of an Outer Tropical Cyclone Rain Band Encountering the Topography of Northern Taiwan. Q.J.R. Meteorol. Soc, 143, 1107–1122.
Zhang, F. and K. Emanuel, 2016: On the Role of Surface Fluxes and WISHE in Tropical Cyclone Intensification. J. Atmos. Sci., 73, 2011–2019.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/handle/123456789/1163-
dc.description.abstract在2015年的颱風季,蘇迪勒颱風成為西北太平洋地區最強的熱帶氣旋,並且曾經歷快速增強(Rapid Intensification, RI),在48小時之內其中心氣壓下降90hPa。本研究使用全物理(full-physics)的WRF模式,以1.67公里的高網格解析度成功重建蘇迪勒颱風的路徑走向及增強趨勢,並以此結果為控制組實驗。
  為了評估颱風內核(inner core, 距颱風中心60公里以內上升運動明顯之區域)以外之海表熱通量對於颱風結構以及快速增強過程的影響,本研究以1m/s之地面風速,在計算中大幅限制外核區域海表熱通量,並於控制組實驗發生快速增強前24小時執行一系列之敏感性實驗模擬,檢驗不同區域之海表熱通量對於颱風快速增強的敏感性。實驗結果顯示,限制2.5倍內核半徑(150公里)以外之海表熱通量導致颱風在快速增強時期當中,有更大之增強速率、較小之颱風壯度及最大風速半徑。然而,同時限制1.0 – 2.5倍內核半徑(60 – 150公里)之海表熱通量則使颱風發展緩慢,無法經歷快速增強時期。
  在敏感性實驗之颱風內核結構中,經歷快速增強的颱風有較強之中高層上升運動、較高之軸對稱程度,以及較大之加熱效率。此外,高層暖心在快速增強時期迅速建構,但是在未發生快速增強之颱風中心附近則無明顯之高層暖化現象。直覺上,人為大幅減少颱風外核區域之海洋能量供給對於颱風發展有負面影響,但於經歷快速增強的颱風內核中,則有更強之海表熱通量,歸因於地面風速也急遽增強,促進海氣熱量交換。由於限制海表熱通量區域上方之較乾空氣隨著邊界層內流以及中高層逸入作用入侵颱風內核外側區域(約距中心80公里),使該區域穩定化,因此對流集中發展於內核區域,在增多之海洋能量供給下,發展更為旺盛,造成大量渦度集中產生於颱風內核,颱風內核風速急遽增大,導致颱風迅速增強。
  綜合以上的研究結果,我們提出一個觀念:限制颱風所處海域之能量供給不一定使颱風增強速率減緩,取決於限制之海域與颱風中心的距離;換句話說,限制颱風外核區域之海表熱通量將可能導致潛熱更集中釋放於颱風內核,使颱風增強更迅速。
zh_TW
dc.description.abstractTyphoon Soudelor was the most destructive tropical cyclone (TC) in the western North Pacific in 2015, undergoing rapid intensification (RI) with the central minimum sea-level pressure (MSLP) drop of 90 hPa in two days. In this study, a 1.67-km convection-permitting full-physics model simulation is conducted with the track and intensification trend of Soudelor well captured.
  To investigate how the surface heat fluxes outside the inner core (IC, the inner core region within the radius of 60 km) affect TC structure and RI process, a series of numerical experiments with the surface wind highly capped at 1 m/s in the calculation of surface latent and sensible heat flux in different radial extent are performed. It is found that the intensification rate is larger than that of the control experiment (CTRL) during RI when the surface heat fluxes are suppressed in the area 150-km (2.5 times of the IC size) away from the TC center, while the TC is significantly weaker and does not undergo RI when the surface fluxes are also suppressed at 60 to 150-km radius (1 - 2.5 times of the IC size). In addition to intensity change, substantial reduction of surface fluxes outside the inner core leads to lower TC strength and smaller radius of maximum wind (RMW), indicating that the most violent winds concentrate in the inner-core region.
  As to the inner-core feature in each experiment, the RI cases show stronger mid- to upper-level updrafts, higher axisymmetricity and heating efficiency than that of non-RI cases during convective burst times before RI in CTRL. Furthermore, the upper-level warm core develops significantly during RI, while no evident upper-level warming is found in non-RI cases. Although the surface fluxes outside the inner core in these RI cases are substantially suppressed, stronger intensity and more consolidated inner-core structure than that of CTRL is identified associated with the abundant wind-induced surface heat exchange (WISHE) in the inner core. The stabilization of lower troposphere outside the inner core in RI cases leads to aggregation of deep convection and subsequent generation of potential vorticity near the TC center, concentrating the violent winds in the inner-core region. Special insight is identified that the limitation of surface heat fluxes does not always result in a reduction of TC intensification rate. In other words, if the surface heat fluxes are suppressed in the outer region, against one’s physical intuition, TC can possibly turn even stronger.
en
dc.description.provenanceMade available in DSpace on 2021-05-12T09:33:34Z (GMT). No. of bitstreams: 1
ntu-107-R05229003-1.pdf: 13466243 bytes, checksum: 0379ce703d37b912da4ff532751b1651 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents致謝…………………………………………………………………………………………………………………… I
摘要………………………………………………………………………………………………………………… II
英文摘要(Abstract)…………………………………………………………………………… III
目錄………………………………………………………………………………………………………………… IV
圖目錄…………………………………………………………………………………………………………… VI
表目錄…………………………………………………………………………………………………………… XI
第一章 前言………………………………………………………………………………………………… 1
 1.1 研究背景………………………………………………………………………………………… 1
  1.1.1 颱風快速增強之多重尺度探討…………………………………… 1
  1.1.2 颱風增強之WISHE機制探討………………………………………… 3
  1.1.3 颱風內核與螺旋雨帶之交互作用……………………………… 4
 1.2 研究動機與科學目的………………………………………………………………… 6
第二章 研究工具與方法………………………………………………………………………… 7
 2.1 模式介紹………………………………………………………………………………………… 7
 2.2 模式設定與使用資料………………………………………………………………… 7
 2.3 實驗設計………………………………………………………………………………………… 8
  2.3.1 海表交換係數設定…………………………………………………………… 8
  2.3.2 控制組實驗(CTRL)………………………………………………………… 9
  2.3.3 敏感性實驗………………………………………………………………………… 9
第三章 研究結果I - 控制組實驗…………………………………………………… 11
 3.1 模擬結果與觀測資料比對……………………………………………………… 11
  3.1.1 蘇迪勒颱風(2015)介紹……………………………………………… 11
  3.1.2 颱風強度、路徑比較…………………………………………………… 12
 3.2 快速增強前後綜觀環境與颱風結構分析………………………… 12
第四章 研究結果II - 敏感性實驗………………………………………………… 14
 4.1 颱風強度及結構演變……………………………………………………………… 14
 4.2 物理參數特徵……………………………………………………………………………… 16
  4.2.1 颱風內核次環流之強度差異……………………………………… 16
  4.2.2 颱風內核非絕熱作用與暖心結構差異…………………… 17
  4.2.3 颱風內核不同雲種加熱之貢獻差異………………………… 19
  4.2.4 敏感性實驗之濕熵收支分析……………………………………… 23
  4.2.5 敏感性實驗不同於控制組實驗之快速增強歷程… 26
第五章 總結及未來展望……………………………………………………………………… 30
 5.1 結論與討論…………………………………………………………………………………… 30
 5.2 未來展望………………………………………………………………………………………… 33
參考文獻………………………………………………………………………………………………………… 34
附表………………………………………………………………………………………………………………… 42
附圖………………………………………………………………………………………………………………… 44
dc.language.isozh-TW
dc.subject颱風zh_TW
dc.subject快速增強zh_TW
dc.subject海表熱通量zh_TW
dc.subjectWISHE機制zh_TW
dc.subject慣性穩定度zh_TW
dc.subject加熱效率zh_TW
dc.subjectheating efficiencyen
dc.subjectTyphoonen
dc.subjectrapid intensificationen
dc.subjectsurface heat fluxen
dc.subjectwind-induced surface heat exchange (WISHE)en
dc.subjectinertial stabilityen
dc.title外核海表熱通量對於颱風快速增強的影響zh_TW
dc.titleThe Impact of Surface Heat Fluxes outside the Inner Core on the Rapid Intensification of Tropical Cycloneen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊舒芝(Shu-Chih Yang),游政谷(Cheng-Ku Yu),吳健銘(Chien-Ming Wu)
dc.subject.keyword颱風,快速增強,海表熱通量,WISHE機制,慣性穩定度,加熱效率,zh_TW
dc.subject.keywordTyphoon,rapid intensification,surface heat flux,wind-induced surface heat exchange (WISHE),inertial stability,heating efficiency,en
dc.relation.page90
dc.identifier.doi10.6342/NTU201802028
dc.rights.note同意授權(全球公開)
dc.date.accepted2018-07-27
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept大氣科學研究所zh_TW
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf13.15 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved