Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/1151
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor卿建業(Jianye Ching)
dc.contributor.authorTsung-Yu Tsaien
dc.contributor.author蔡宗祐zh_TW
dc.date.accessioned2021-05-12T09:33:22Z-
dc.date.available2019-04-01
dc.date.available2021-05-12T09:33:22Z-
dc.date.copyright2018-08-01
dc.date.issued2018
dc.date.submitted2018-07-31
dc.identifier.citationBaum, L. E., Petrie, T., Soules, G., & Weiss, N. (1970). A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains. The Annals of Mathematical Statistics, 41(1), 164-171. doi:10.1214/aoms/1177697196
Bishop, C. M. (2006). Pattern recognition and machine learning. New York: Springer.
Bong, T., & Stuedlein, A. W. (2017). Spatial Variability of CPT Parameters and Silty Fines in Liquefiable Beach Sands. Journal of Geotechnical and Geoenvironmental Engineering, 143(12), 04017093. doi:10.1061/(asce)gt.1943-5606.0001789
Campanella, R. G., & Wickremesinghe, D. S. (1991). Statistical methods for soil layer boundary location using the cone penetration test. Proceedings of the 6th International Conference on Applications of Statistics and Probability in Civil Engineering, 636-643.
Chib, S. (1996). Calculating Posterior Distributions and Modal Estimates in Markov Mixture Models. Journal of Econometrics, 75(1), 79-97. doi:10.1016/0304-4076(95)01770-4
Ching, J. Y., Wang, J. S., Juang, C. H., & Ku, C. S. (2015). Cone Penetration Test (CPT)-based Stratigraphic Profiling Using the Wavelet Transform Modulus Maxima Method. Canadian Geotechnical Journal,52(12), 1993-2007. doi:10.1139/cgj-2015-0027
DeGroot, D. J., & Baecher, G. B. (1993). Estimating Autocovariance of In-situ Soil Properties. Journal of Geotechnical Engineering, ASCE, 119(1), 147-166.
Elfeki, A., & Dekking, M. (2001). A Markov Chain Model for Subsurface Characterization: Theory and Applications. Mathematical Geology, 33(5), 569-589.
Elfeki, A. M. M., & Dekking, F. M. (2005). Modelling Subsurface Heterogeneity by Coupled Markov Chains: Directional Dependency, Walther’s Law and Entropy. Geotechnical and Geological Engineering, 23(6), 721-756. doi:10.1007/s10706-004-2899-z
Geman, S., & Geman, D. (1984). Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(6), 721-741. doi:10.1109/TPAMI.1984.4767596
Idriss, I. M., & Boulanger, R. W. (2008). Soil liquefaction during earthquakes. Oakland, California: Earthquake Engineering Research Institute.
Jaksa, M. B. (1995). The Influence of Spatial Variability on the Geotechncial Design Properties of a Stiff, Overconsolidated Clay. PhD thesis, The University of Adelaide, Adelaide.
Jaynes, E. T. (2003). Probability theory: The logic of science (G. L. Bretthorst, Ed.). Cambridge: Cambridge University Press.
Ku, C. S., Juang, C. H., & Ou, C. Y. (2010). Reliability of CPT Ic as an Index for Mechanical Behaviour Classification of Soils. Géotechnique, 60(11), 861-875. doi:10.1680/geot.09.p.097
Li, W. (2007). Markov Chain Random Fields for Estimation of Categorical Variables. Mathematical Geology, 39(3), 321-335. doi:10.1007/s11004-007-9081-0
Liao, T., & Mayne, P. W. (2007). Stratigraphic Delineation by Three-dimensional Clustering of Piezocone Data. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 1(2), 102-119. doi:10.1080/17499510701345175
MacQueen, J. B. (1967). Some Methods for Classification and Analysis of Multivariate Observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, Calif: University of California Press. 281-297
Nobre, M. M., & Sykes, J. F. (1992). Application of Bayesian Kriging to Subsurface Characterization. Canadian geotechnical journal, 29(4), 589-598. doi:10.1139/t92-066
Park, E., Elfeki, A. M. M., Song, Y., & Kim, K. (2007). Generalized Coupled Markov Chain Model for Characterizing Categorical Variables in Soil Mapping. Soil Science Society of America Journal,71(3), 909-917. doi:10.2136/sssaj2005.0386
Park, E. (2010). A Multidimensional, Generalized Coupled Markov Chain Model for Surface and Subsurface Characterization. Water Resources Research, 46(11). doi:10.1029/2009wr008355
Phoon, K. K., Kulhawy, F. H., & Grigoriu, M. D. (1995). Reliability-based Design of Foundations for Transmission Line Structures. Electric Power Research Institute, Palo Alto, Report TR-105000.
Qi, X. H., Li, D. Q., Phoon, K. K., Cao, Z. J., & Tang, X. S. (2016). Simulation of Geologic Uncertainty Using Coupled Markov Chain. Engineering Geology, 207, 129-140. doi:10.1016/j.enggeo.2016.04.017
Robertson, P. K. (1990). Soil Classification Using the Cone Penetration Test. Canadian Geotechnical Journal, 27(1), 151-158. doi:10.1139/t90-014
Robertson, P. K., & Wride, C. E. (1998). Evaluating Cyclic Liquefaction Potential Using the Cone Penetration Test. Canadian Geotechnical Journal, 35(3), 442-459. doi:10.1139/t98-017
Robertson, P. K. (2009). Interpretation of Cone Penetration Tests — a Unified Approach. Canadian Geotechnical Journal, 46(11), 1337-1355. doi:10.1139/t09-065
Raiffa, H., & Schlaifer, R. (1961). Applied statistical decision theory. Cambridge: Harvard University Press.
Scott, S. L. (2002). Bayesian Methods for Hidden Markov Models. Journal of the American Statistical Association, 97(457), 337-351. doi:10.1198/016214502753479464
Sivia, D. S., & Skilling, J. (2006). Data analysis: A Bayesian tutorial. Oxford: Oxford University Press.
Vanmarcke, E. H. (1977). Probabilistic Modeling of Soil Profiles. Journal of the Geotechnical Engineering, 103(11), 1227-1246.
Vanmarcke, E., & Grigoriu, M. (1983). Stochastic Finite Element Analysis of Simple Beams. Journal of Engineering Mechanics, 109(5), 1203-1214. doi:10.1061/(asce)0733-9399(1983)109:5(1203)
Walsh, B. (2004). Markov Chain Monte Carlo and Gibbs Sampling. Lecture Notes for EEB 581.
Wang, Y., Huang, K., & Cao, Z. (2013). Probabilistic Identification of Underground Soil Stratification Using Cone Penetration Tests. Canadian Geotechnical Journal, 50(7), 766-776. doi:10.1139/cgj-2013-0004
Xiao, T., Zhang, L. M., Li, X. Y., & Li, D. Q. (2017). Probabilistic Stratification Modeling in Geotechnical Site Characterization. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 3(4), 04017019. doi:10.1061/AJRUA6.0000924
Zhang, Z., and Tumay, M. T. (1996). The Reliability of Soil Classification Derived from Cone Penetration Test. ASCE Spec. Conf.—Uncertainty in the geologic environment: From theory to practice, ASCE, 383-408.
Zhang, Z., & Tumay, M. T. (1999). Statistical to Fuzzy Approach Toward CPT Soil Classification. Journal of Geotechnical and Geoenvironmental Engineering, 125(3), 179-186. doi:10.1061/(ASCE)1090-0241(1999)125:3(179)
王俊翔(民105)。根據圓錐貫入試驗資料判識土壤層面與分析工址的機率特性。(碩士論文)。國立台灣大學,臺北市。doi:10.6342/NTU201601155
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/handle/123456789/1151-
dc.description.abstract在工址調查的作業中,調查地下土層是相當重要的環節,因為了解土層分布 就能了解地層承載力的強弱,主導後續工程之設計。調查地下土層的主要內容為取得地下土層的厚度、層面之高程與土層之土壤種類,傳統做法是進行標準貫入試驗(standard penetration test, SPT),取出土壤樣本來判別層面與土壤種類。而圓錐貫入試驗 (cone penetration test, CPT)雖然無法取樣,但是也可以進行土壤分層,而且其施作起來比SPT更簡單、方便。CPT資料經過計算後可以得到土壤行為指數(soil behavior type index, Ic),它被證實能根據其數值大小而有效地區分土壤種類,因此許多學者致力發展以CPT資料為基礎的土壤分層方法。
本研究發展了以隱馬爾可夫模型(hidden Markov model, HMM)配合吉布斯抽樣法(Gibbs Sampling)應用於土壤分層的分析方法,稱為HMM土壤分層法。做法為將土壤種類視為隱馬爾可夫模型的隱含狀態,將Ic視為模型之輸出序列,並以Ic作為分析資料,用一維穩態高斯隨機場(stationary Gaussian random field)描述其空間變異性。接著以貝氏定理(Bayes' theorem)為基礎,使用吉布斯抽樣法估算Ic之平均值(μ)與標準差(σ),再根據Ic與其平均值、標準差,使用前向—後向遞迴(forward-backward recursions, FB recursions)找出每一點最可能的土壤種類,將上述步驟進行疊代計算以得到收斂的結果,以此方法找出土壤的種類與層面。最後以概似遞迴 (likelihood recursions)計算每一種分群數的似然性(likelihood),以此找出最佳分群數。
在案例分析方面,本研究使用南卡羅萊納州好萊塢(Hollywood, South Carolina)之現地CPT資料驗證HMM土壤分層法的結果,並與表現相當穩定的另一種一維土壤分層法——小波轉換調變極大值法(WTMM法,Ching et al., 2015)進行比較與討論。結論為HMM土壤分層法的優點為分群數量可做1~10群的變化,而且能分析Ic的變化,自動將類似的土層歸類為一層。然而也發現其具有孤兒層問題、分層分數問題等問題需要後續的研究來解決。
本研究的第二部分為嘗試將WTMM法與Park (2010)開發之廣義耦合馬爾可夫鏈(generalized coupled Markov chain, GCMC)模型結合,進行二維與三維土壤分層剖面預測之案例分析,藉此探索以CPT資料建立多維土壤分層模型之可行性,並分析了南卡羅萊納州好萊塢與南澳洲阿得雷德(Adelaide, South Australia)的South Parklands兩個案例,皆得到了合理的結果。
zh_TW
dc.description.abstractIn the work of site investigation, investigating the underground soil layers is a quite important part. Once we know the distribution of the soil layers, we could understand the strength of stratum bearing capacity which leads the design of subsequent engineering project. The main contents of investigating underground soil layers are to obtain the thickness of the layers, the elevations of the interfaces and the types of the soils. The conventional way is to perform a standard penetration test (SPT) and take out the soil samples to identify the interfaces and the types of the soil layers. Although the cone penetration test (CPT) can not sample the soils, soil stratification still can be performed based on it. And CPT is more simple and convenient than SPT. Soil behavior type index (Ic), which has been proved to be able to distinguish soil types effectively according to its value, can be calculated from CPT data. Therefore, many scholars have devoted themselves to the development of soil stratification methods based in CPT data.
This study developed a method of soil stratification using the hidden Markov model (HMM) and Gibbs sampling, which is called HMM soil stratification method. The approach is to regard the soil types as the hidden states of the hidden Markov model, and to regard Ic as the output sequence of the model. Using Ic as the analytical data, describe the spatial variability of Ic with one-dimensional stationary Gaussian random field. Then based on Bayes ' theorem, the mean (μ) and the standard deviation (σ) of Ic are estimated by Gibbs sampling. According to Ic and its mean and standard deviation, use forward-backward recursions (FB recursions) to find the most likely soil type at each point. The above steps are performed for iterative calculations to obtain convergent results, and the types and interfaces of the soil layers can be found by this method. Finally, the likelihood of each number of cluster is calculated by the likelihood recursions to find the optimal number of clusters.
In terms of case studied, this study used the in-situ CPT data from Hollywood, South Carolina, to verify the results of HMM soil stratification method. And another stable 1D soil stratificaiton method—the wavelet transform modulus maxima method (WTMM method, Ching et al., 2015) was performed for comparison and discussion with HMM method. The conclusion is as following: the advantages of HMM soil stratification method is that the number of clusters can be changed from 1 to 10, and HMM can analyze the change of Ic and automatically classified similar soil layers into one layer. However, it was also found that the irrational thin layer problem and the cluster scores problem need to be addressed by subsequent studies.
The second part of this study is trying to combine the WTMM method with the generalized coupled Markov chain (GCMC) model developed by Park (2010). We conducted the case studies of the predictions of 2D and 3D soil stratification profiles. And we explored the feasibility of using CPT data to build a multidimensional soil stratification model and analyzed two cases in Hollywood and South Parklands in Adelaide, South Australia, respectively. Both cases have received reasonable results.
en
dc.description.provenanceMade available in DSpace on 2021-05-12T09:33:22Z (GMT). No. of bitstreams: 1
ntu-107-R05521129-1.pdf: 10978961 bytes, checksum: fa73cb7f8912d3c54479874fc3b5630a (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iii
ABSTRACT v
目錄 vii
圖目錄 x
表目錄 xvi
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究方法 2
1.3 本文內容 3
第二章 文獻回顧 4
2.1 地質分層 4
2.1.1 土壤行為指數 (soil behavior type, SBT, index) 4
2.1.2 小波轉換調變極大值法 (wavelet transform modulus maxima method, WTMM method) 6
2.1.3 學生檢定統計量法 (T ratio method) 10
2.1.4 模糊方法 (Fuzzy approach) 11
2.1.5 群法 (clustering) 12
2.1.6 貝氏分析法 (Bayesian method) 13
2.2 隱馬爾可夫模型回顧 16
2.2.1 一維穩態高斯隨機場 (one-dimensional stationary Gaussian random field) 16
2.2.2 貝氏定理 (Bayes' theorem) 19
2.2.3 共軛先驗 (conjugate prior) 20
2.2.4 一維馬爾可夫鏈 (one-dimensional Markov chains) 22
2.2.5 吉布斯抽樣法 (Gibbs sampling) 25
2.2.6 隱馬爾可夫模型 (hidden Markov model, HMM) 28
第三章 隱馬爾可夫模型土壤分層法 30
3.1 HMM土壤分層法 (HMM soil stratification method) 30
3.1.1 基本假設與初始值 30
3.1.2 吉布斯抽樣法更新參數 32
3.1.3 前向—後向遞迴 (forward-backward recursions, FB recursions) 35
3.1.4 轉換機率矩陣的更新 39
3.1.5 似然遞迴 (likelihood recursion)與分群分數 40
3.1.6 HMM土壤分層法使用流程與輸出結果 43
3.1.7 預燒期 (burn-in period)問題 45
3.2 多維土壤剖面預測 48
3.2.1 WTMM法的延伸應用 48
3.2.2 回顧廣義耦合馬爾可夫鏈模型 (generalized coupled Markov chain model, GCMC model) 53
第四章 案例分析與討論 59
4.1 一維分層案例分析 59
4.1.1 第一現地:南卡羅萊納州好萊塢 (Hollywood, South Carolina) 59
4.1.2 HMM土壤分層法結果 60
4.1.3 WTMM法結果 67
4.1.4 孤兒層問題 72
4.1.5 分群分數問題 74
4.1.6 HMM土壤分層法與WTMM法的比較 74
4.2 二維分層案例分析 78
4.2.1 第一現地之二維分層預測 78
4.2.2 第二現地:南澳洲阿得雷德South Parklands (South Parklands in Adelaide, South Australia) 84
4.2.2 第二現地之二維分層預測 85
4.3 三維分層案例分析 90
4.3.1 第一現地之三維分層預測 90
4.3.2 第二現地之三維分層預測 98
4.3.3 第二現地之三維分層驗證 104
第五章 結論與建議 110
5.1 結論 110
5.1.1 HMM土壤分層法 110
5.1.2 多維土壤剖面預測 111
5.2 建議 112
5.2.1 HMM土壤分層法 112
5.2.2 多維土壤剖面預測 113
參考文獻 114
附錄A 公式推導 119
A.1 吉布斯抽樣法後驗分布公式推導 119
A.1.1 平均值μi之後驗超參數推導 119
A.1.2 變異數σi^2之後驗超參數推導 120
附錄B 提問與答覆 121
dc.language.isozh-TW
dc.subject土壤行為指數zh_TW
dc.subject吉布斯抽樣法zh_TW
dc.subject圓錐貫入試驗zh_TW
dc.subject前向—後向遞迴zh_TW
dc.subject隱馬爾可夫模型zh_TW
dc.subject土壤分層zh_TW
dc.subjectforward-backward recursionsen
dc.subjectcone penetration test (CPT)en
dc.subjectunderground strati?cationen
dc.subjecthidden Markov modelen
dc.subjectsoil behavior type indexen
dc.subjectGibbs samplingen
dc.title以隱馬爾可夫模型進行土壤分層zh_TW
dc.titleUnderground Stratification Using Hidden Markov Modelen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee劉家男(Chia-Nan Liu),王瑞斌(Jui-Pin Wang)
dc.subject.keyword圓錐貫入試驗,土壤分層,隱馬爾可夫模型,土壤行為指數,吉布斯抽樣法,前向—後向遞迴,zh_TW
dc.subject.keywordcone penetration test (CPT),underground strati?cation,hidden Markov model,soil behavior type index,Gibbs sampling,forward-backward recursions,en
dc.relation.page123
dc.identifier.doi10.6342/NTU201802234
dc.rights.note同意授權(全球公開)
dc.date.accepted2018-07-31
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf10.72 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved