Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用物理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/1141
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor梁啟德
dc.contributor.authorChau-Shing Changen
dc.contributor.author張朝興zh_TW
dc.date.accessioned2021-05-12T09:33:14Z-
dc.date.available2019-08-07
dc.date.available2021-05-12T09:33:14Z-
dc.date.copyright2018-08-07
dc.date.issued2018
dc.date.submitted2018-08-02
dc.identifier.citationChapter 1
1. Abrhams E, Anderson P W, Licciardello D C and Ramakrishnan T V 1979 Phys. Rev. Lett. 42 763
2. Morán-López J L 2009 Fundamental of physics - Volume II
3. Stӧrmer H L, Dingle R, Gossard A C, Weigmann W and Sturge M D 1979 Solid State Commun. 29 705
4. Stӧrmer H L 1983 Surf. Sci. 132 519
5. Barnes C H W 2008 Quantum Electronics in Semiconductors
6. Kim G H, Ph.D. thesis 1998 Cambridge University
7. Nozik A J 2002 Physica E 14 115
8. Fafand S, Hinzer K, Raymond S, Dion M, McCaffrey J, Feng Y and Charbonnean S 1996 Science 274 1350
9. Fischer K A, Hanschke L, Wierzbowski J, Simmet T, Dory C, Finley J J, Vučković J and Müller K 2017 Nat. Phys. 13 649
10. Tsuchiya M, Gaines J M, Yan R H, Simes R J, Holtz P O, Coldren L A and Petroff P M 1989 Phys. Rev. Lett. 62, 466
11. Kim G H, Nicholls J T, Khondaker S I, Farrer I and Ritchie D A 2000 Phys. Rev. B 61 10910
12. Sakaki H, Yusa G, Someya T, Ohno Y, Noda T, Akiyama H, Kadoya Y and Noge H 1995 Appl. Phys. Lett. 67 3444
13. Yoh K, Konda J, Shiina S and Nishiguchi N 1997 Jpn. J. Appl. Phys. Part 1 36 4134
Chapter 2
1. Huang K 1963 Statistical Mechanics, Wiley
2. Omar Ali M 1974 Elementary Solid State Physics, Addison-Wesley, Inc.
3. von Klitzing K, Dorda G and Pepper M 1980 Phys. Rev. Lett. 45 494
4. von Klitzing K 1986 Rev. Mod. Phys. 58 519
5. Prange R E and Girvin S M 1990 The Quantum Hall Effect, Springer-Verlag, Inc.
6. Isihara A and Smrčka L 1986 J. Phys. C 19 6777
7. Cho H-I, Gusev G M, Kvon Z D, Renard V T, Lee J-H and Portal J C 2005 Phys. Rev. B 71 245323
8. Coleridge P T, Stoner R and Fletcher R 1989 Phys. Rev. B 39 1120
Chapter 3
1. Kim G H, Ph.D. thesis 1998 Cambridge University
2. Lim S H N, McKenzie D R and Bilek M M M 2009 Rev. Sci. Instrum. 80 075109
Chapter 4
1. Kivelson S, Lee D H and Zhang S C 1992 Phys. Rev. B 46 2223
2. Shahar D, Tsui D C and Cunningham J E 1995 Phys. Rev. B 52 14372
3. Du R R, Stӧrmer H L, Tsui D C, Yeh A S, Pfeiffer L N and West K W 1994 Phys. Rev. Lett. 73 3274
4. Asgari R, Davoudi B and Tanatar B 2004 Solid State Commun. 130 13
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/handle/123456789/1141-
dc.description.abstract介觀系統,是指尺度介於微觀與巨觀尺度間的系統,可以看作是尺度縮小的巨觀物體。隨著資訊技術的發展,半導體元件大小也逐漸逼近物理極限,而為了維持或達到更好的效能,許多量子現象也必須加以考慮。因此,本篇論文利用二維電子系統,探討系統中載子的有效質量。樣品選擇了 GaAs/AlGaAs 與 InGaAs/InAlAs 這兩個異質結構所產生的二維電子系統,量測在不同溫度與磁場下的電阻率,並藉由在進入絕緣-量子霍爾態轉變前的 Shubnikov-de Haas (SdH) 震盪求得 載子的有效質量。特別是前者樣品,加入了 InAs 量子點並視為雜質再施以不同的偏壓,產生不同的載子濃度後,進一步的改變載子屏蔽雜質的程度,達到在同一樣品上卻有不同雜質數的目的,更容易探討在此介觀系統中雜質對載子有效質量的影響。我們的實驗結果顯示隨著增加雜質的程度,載子的有效質量也一同增加,且更進一步地提高電子-電子的交互作用。也顯示出在研究絕緣-量子霍爾態轉變時,交互作用為一項需要考慮的因素。zh_TW
dc.description.abstractMesoscopic system, a system with scale between the size of a quantity of atoms and of materials measuring micrometers and can be treated as a tiny macroscopic object. With the development of information technology, the size of semiconductor device starts to approach the boundary of classical physics and into the region ruled by quantum mechanics. In order to maintain or reach higher performance of semiconductor device, a lot of quantum phenomenon need to be considered. Therefore, in this thesis we use two two-dimensional electron systems to probe the effective mass of carrier. One sample is GaAs/AlGaAs and the other is InGaAs/InAlAs heterostructure. By measuring the longitudinal resistivity at difference temperatures and magnetic fields and before the system enters insulator-quantum Hall (I-QH) transition, we use Shubnikov-de Haas oscillations to determine the effective mass of carriers. Especially the former one, it contains InAs self-assembled quantum dots to further manipulate the effective disorder by means of varying the gate voltage which will change the ability of carrier to screen out the disorder potential. We find that the measured effective mass increases with increasing effective disorder. Such results indicate increasing strength of electron-electron interactions with increasing effective disorder. Therefore, our experimental results suggest that interaction effects need to be considered in the I-QH transition.en
dc.description.provenanceMade available in DSpace on 2021-05-12T09:33:14Z (GMT). No. of bitstreams: 1
ntu-107-R05245015-1.pdf: 3307779 bytes, checksum: 264866569e319c3d0dcf6792628f9efb (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員審定書 I
致謝 II
摘要 III
Abstract IV
Contents V
List of figures VII
Chapter 1 Introduction of low-dimensional electron systems 1
1.1. Two-dimensional electron system . . . . . . . . . . . . . . . . . . . . . . . . . . .1
1.1.1. The GaAs/AlxGa1-xAs heterostructure . . . . . . . . . . . . . . . . . . . . . .1
1.1.2. Tuning the carrier concentration of a 2DES . . . . . . . . . . . . . . . . . . 3
1.2. GaAs 2DES containing self-assembled InAs quantum dots . . . . . . . 4
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Chapter 2 Transport theory in two-dimensional electron systems 7
2.1. Classical Hall effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
2.2. Density of states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3. Landau quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1. Landau levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2. Shubnikov-de Haas oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . .13
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Chapter 3 Device fabrication and experimental techniques 16
3.1. Device processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.1. Hall bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.2. Ohmic contacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
3.1.3. Front gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2. Cryogenic system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3. Measurement set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.1. Four-terminal resistance measurement . . . . . . . . . . . . . . . . . . . . . 22
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Chapter 4 Magnetoresistance oscillations in GaAs and InGaAs systems 25
4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2. Device structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3.1. The radio of Coulomb energy to kinetic energy rs . . . . . . . . . . . . .25
4.3.2. Effective mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
4.3.3. Insulator-quantum Hall transition . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.4. Result and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
4.4.1. GaAs sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4.2. InGaAs sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4.3. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Chapter 5 Conclusion 48
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
dc.language.isozh-TW
dc.subject二維電子系統zh_TW
dc.subjectSdH震盪zh_TW
dc.subject絕緣-量子霍爾態轉變zh_TW
dc.subjectinsulator-quantum Hall transitionen
dc.subjecttwo-dimensional electron systemen
dc.subjectSdH oscillationsen
dc.title砷化鎵與砷化鎵銦二維電子系統之磁阻震盪研究zh_TW
dc.titleStudy on magnetoresistance oscillations in GaAs and InGaAs two-dimensional electron systemsen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林立弘,王立民
dc.subject.keyword二維電子系統,SdH震盪,絕緣-量子霍爾態轉變,zh_TW
dc.subject.keywordtwo-dimensional electron system,SdH oscillations,insulator-quantum Hall transition,en
dc.relation.page50
dc.identifier.doi10.6342/NTU201801443
dc.rights.note同意授權(全球公開)
dc.date.accepted2018-08-02
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept應用物理研究所zh_TW
顯示於系所單位:應用物理研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf3.23 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved