請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/1141
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 梁啟德 | |
dc.contributor.author | Chau-Shing Chang | en |
dc.contributor.author | 張朝興 | zh_TW |
dc.date.accessioned | 2021-05-12T09:33:14Z | - |
dc.date.available | 2019-08-07 | |
dc.date.available | 2021-05-12T09:33:14Z | - |
dc.date.copyright | 2018-08-07 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-08-02 | |
dc.identifier.citation | Chapter 1
1. Abrhams E, Anderson P W, Licciardello D C and Ramakrishnan T V 1979 Phys. Rev. Lett. 42 763 2. Morán-López J L 2009 Fundamental of physics - Volume II 3. Stӧrmer H L, Dingle R, Gossard A C, Weigmann W and Sturge M D 1979 Solid State Commun. 29 705 4. Stӧrmer H L 1983 Surf. Sci. 132 519 5. Barnes C H W 2008 Quantum Electronics in Semiconductors 6. Kim G H, Ph.D. thesis 1998 Cambridge University 7. Nozik A J 2002 Physica E 14 115 8. Fafand S, Hinzer K, Raymond S, Dion M, McCaffrey J, Feng Y and Charbonnean S 1996 Science 274 1350 9. Fischer K A, Hanschke L, Wierzbowski J, Simmet T, Dory C, Finley J J, Vučković J and Müller K 2017 Nat. Phys. 13 649 10. Tsuchiya M, Gaines J M, Yan R H, Simes R J, Holtz P O, Coldren L A and Petroff P M 1989 Phys. Rev. Lett. 62, 466 11. Kim G H, Nicholls J T, Khondaker S I, Farrer I and Ritchie D A 2000 Phys. Rev. B 61 10910 12. Sakaki H, Yusa G, Someya T, Ohno Y, Noda T, Akiyama H, Kadoya Y and Noge H 1995 Appl. Phys. Lett. 67 3444 13. Yoh K, Konda J, Shiina S and Nishiguchi N 1997 Jpn. J. Appl. Phys. Part 1 36 4134 Chapter 2 1. Huang K 1963 Statistical Mechanics, Wiley 2. Omar Ali M 1974 Elementary Solid State Physics, Addison-Wesley, Inc. 3. von Klitzing K, Dorda G and Pepper M 1980 Phys. Rev. Lett. 45 494 4. von Klitzing K 1986 Rev. Mod. Phys. 58 519 5. Prange R E and Girvin S M 1990 The Quantum Hall Effect, Springer-Verlag, Inc. 6. Isihara A and Smrčka L 1986 J. Phys. C 19 6777 7. Cho H-I, Gusev G M, Kvon Z D, Renard V T, Lee J-H and Portal J C 2005 Phys. Rev. B 71 245323 8. Coleridge P T, Stoner R and Fletcher R 1989 Phys. Rev. B 39 1120 Chapter 3 1. Kim G H, Ph.D. thesis 1998 Cambridge University 2. Lim S H N, McKenzie D R and Bilek M M M 2009 Rev. Sci. Instrum. 80 075109 Chapter 4 1. Kivelson S, Lee D H and Zhang S C 1992 Phys. Rev. B 46 2223 2. Shahar D, Tsui D C and Cunningham J E 1995 Phys. Rev. B 52 14372 3. Du R R, Stӧrmer H L, Tsui D C, Yeh A S, Pfeiffer L N and West K W 1994 Phys. Rev. Lett. 73 3274 4. Asgari R, Davoudi B and Tanatar B 2004 Solid State Commun. 130 13 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/handle/123456789/1141 | - |
dc.description.abstract | 介觀系統,是指尺度介於微觀與巨觀尺度間的系統,可以看作是尺度縮小的巨觀物體。隨著資訊技術的發展,半導體元件大小也逐漸逼近物理極限,而為了維持或達到更好的效能,許多量子現象也必須加以考慮。因此,本篇論文利用二維電子系統,探討系統中載子的有效質量。樣品選擇了 GaAs/AlGaAs 與 InGaAs/InAlAs 這兩個異質結構所產生的二維電子系統,量測在不同溫度與磁場下的電阻率,並藉由在進入絕緣-量子霍爾態轉變前的 Shubnikov-de Haas (SdH) 震盪求得 載子的有效質量。特別是前者樣品,加入了 InAs 量子點並視為雜質再施以不同的偏壓,產生不同的載子濃度後,進一步的改變載子屏蔽雜質的程度,達到在同一樣品上卻有不同雜質數的目的,更容易探討在此介觀系統中雜質對載子有效質量的影響。我們的實驗結果顯示隨著增加雜質的程度,載子的有效質量也一同增加,且更進一步地提高電子-電子的交互作用。也顯示出在研究絕緣-量子霍爾態轉變時,交互作用為一項需要考慮的因素。 | zh_TW |
dc.description.abstract | Mesoscopic system, a system with scale between the size of a quantity of atoms and of materials measuring micrometers and can be treated as a tiny macroscopic object. With the development of information technology, the size of semiconductor device starts to approach the boundary of classical physics and into the region ruled by quantum mechanics. In order to maintain or reach higher performance of semiconductor device, a lot of quantum phenomenon need to be considered. Therefore, in this thesis we use two two-dimensional electron systems to probe the effective mass of carrier. One sample is GaAs/AlGaAs and the other is InGaAs/InAlAs heterostructure. By measuring the longitudinal resistivity at difference temperatures and magnetic fields and before the system enters insulator-quantum Hall (I-QH) transition, we use Shubnikov-de Haas oscillations to determine the effective mass of carriers. Especially the former one, it contains InAs self-assembled quantum dots to further manipulate the effective disorder by means of varying the gate voltage which will change the ability of carrier to screen out the disorder potential. We find that the measured effective mass increases with increasing effective disorder. Such results indicate increasing strength of electron-electron interactions with increasing effective disorder. Therefore, our experimental results suggest that interaction effects need to be considered in the I-QH transition. | en |
dc.description.provenance | Made available in DSpace on 2021-05-12T09:33:14Z (GMT). No. of bitstreams: 1 ntu-107-R05245015-1.pdf: 3307779 bytes, checksum: 264866569e319c3d0dcf6792628f9efb (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 口試委員審定書 I
致謝 II 摘要 III Abstract IV Contents V List of figures VII Chapter 1 Introduction of low-dimensional electron systems 1 1.1. Two-dimensional electron system . . . . . . . . . . . . . . . . . . . . . . . . . . .1 1.1.1. The GaAs/AlxGa1-xAs heterostructure . . . . . . . . . . . . . . . . . . . . . .1 1.1.2. Tuning the carrier concentration of a 2DES . . . . . . . . . . . . . . . . . . 3 1.2. GaAs 2DES containing self-assembled InAs quantum dots . . . . . . . 4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 Chapter 2 Transport theory in two-dimensional electron systems 7 2.1. Classical Hall effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 2.2. Density of states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3. Landau quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3.1. Landau levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3.2. Shubnikov-de Haas oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . .13 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 Chapter 3 Device fabrication and experimental techniques 16 3.1. Device processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.1.1. Hall bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.1.2. Ohmic contacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 3.1.3. Front gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2. Cryogenic system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.3. Measurement set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.3.1. Four-terminal resistance measurement . . . . . . . . . . . . . . . . . . . . . 22 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Chapter 4 Magnetoresistance oscillations in GaAs and InGaAs systems 25 4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.2. Device structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.3. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.3.1. The radio of Coulomb energy to kinetic energy rs . . . . . . . . . . . . .25 4.3.2. Effective mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 4.3.3. Insulator-quantum Hall transition . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.4. Result and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 4.4.1. GaAs sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.4.2. InGaAs sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.4.3. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Chapter 5 Conclusion 48 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 | |
dc.language.iso | zh-TW | |
dc.title | 砷化鎵與砷化鎵銦二維電子系統之磁阻震盪研究 | zh_TW |
dc.title | Study on magnetoresistance oscillations in GaAs and InGaAs two-dimensional electron systems | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林立弘,王立民 | |
dc.subject.keyword | 二維電子系統,SdH震盪,絕緣-量子霍爾態轉變, | zh_TW |
dc.subject.keyword | two-dimensional electron system,SdH oscillations,insulator-quantum Hall transition, | en |
dc.relation.page | 50 | |
dc.identifier.doi | 10.6342/NTU201801443 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2018-08-02 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 應用物理研究所 | zh_TW |
顯示於系所單位: | 應用物理研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf | 3.23 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。