請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/1119完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉霆(Tyng Liu) | |
| dc.contributor.author | Cheng-Kai Lin | en |
| dc.contributor.author | 林承楷 | zh_TW |
| dc.date.accessioned | 2021-05-12T09:32:50Z | - |
| dc.date.available | 2018-08-13 | |
| dc.date.available | 2021-05-12T09:32:50Z | - |
| dc.date.copyright | 2018-08-13 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-08 | |
| dc.identifier.citation | [1] Encyclopaedia Britannica Inc., 'Encyclopaedia Britannica,' 15th ed: New York: Black Dog & Leventhal Publishers, 2008.
[2] 刘惟信, 汽车车桥设计. 北京: 清华大学出版社有限公司, 2004. [3] T. K. Garrett, K. Newton, and W. Steeds, Motor Vehicle. Oxford: Butterworth-Heinemann, 2000. [4] J. Kinsey, 'The Advantages of an Electronically Controlled Limited Slip Differential,' presented at the SAE 2004 World Congress & Exhibition, United States, 2004. Available: https://doi.org/10.4271/2004-01-0861 [5] R. Kumar, B. K. Suda, S. Karande, D. Piyabongkarn, and C. Patil, 'Simulation and Experimental Study of Torque Vectoring on Vehicle Handling and Stability,' presented at the International Mobility Engineering Congress and Exposition, India, 2009. Available: https://doi.org/10.4271/2009-28-0062 [6] K. Sawase, Y. Tadashi, U. Yuichi, and S. Kenichiro, 'Development of the Active Yaw Control System,' Journal of JSAE, vol. 50, no. 11, pp. 52-57, 1996. [7] Y. Ushiroda, K. Sawase, N. Takahashi, K. Suzuki, and K. Manabe, 'Development of Super AYC,' Mitsubishi Motors Technical Review, no. 15, pp. 73-76, 2003. [8] L. Kakalis, A. Zorzutti, F. Cheli, and G. C. Travaglio, 'Brake Based Torque Vectoring for Sport Vehicle Performance Improvement,' SAE International Journal of Passenger Cars - Mechanical Systems, vol. 1, no. 1, pp. 514-525, 2008. [9] J. Park and W. J. Kroppe, 'Dana Torque Vectoring Differential Dynamic Trak™,' presented at the SAE 2004 Automotive Dynamics, Stability & Controls Conference and Exhibition, United States, 2004. Available: https://doi.org/10.4271/2004-01-2053 [10] T. Miura, Y. Ushiroda, K. Sawase, N. Takahashi, and K. Hayashikawa, 'Development of Integrated Vehicle Dynamics Control System ‘S-AWC’,' Mitsubishi Motors Technical Review, no. 20, pp. 21-25, 2008. [11] K. Sawase, Y. Ushiroda, Y. Tadashi, K. Suzuki, K. Manabe, and T. Matsui, 'Development of Center-Differential Control System for High-Performance Four-Wheel Drive Vehicles,' Mitsubishi Motors Technical Review, no. 13, pp. 61-66, 2001. [12] S. Tanaka, 'Development of Vehicle Cornering Control System Utilizing Driving/Braking Force Differences between Right and Left Wheels,' Mitsubishi Motors Technical Review, no. 9, pp. 32-43, 1997. [13] R. Kunii, A. Iwazaki, Y. Atsumi, and A. Mori, 'Development of SH-AWD (Super Handling-All Wheel Drive) System,' Honda R&D Technical Review, vol. 16, no. 2, pp. 9-16, 2004. [14] AUDI AG. (2011). Video - Audi Sport Differential Technology [EuroCar News website]. Available: http://www.eurocarnews.com/0/0/1332/0/video-audi-sport-differential-technology.html [15] S. Tamura and T. Yoshinari, 'Development of Electric Drive System for New Model Super Sports Hybrid Vehicle,' presented at the SAE 2016 World Congress and Exhibition, United States, 2016. Available: https://doi.org/10.4271/2016-01-1685 [16] 陳羿名, '應用功能動力圖論方法於車輛扭力導引系統之設計與分析,' 博士論文, 機械工程學研究所, 國立臺灣大學, 2016. [17] 李東原, '扭力分配差速器對車輛動態之影響,' 碩士論文, 機械工程學研究所, 國立臺灣大學, 2016. [18] M. Čavić, M. Penčić, and M. Zlokolica, 'Torque Vectoring Differential,' presented at the 20th International Research/Expert Conference, ”Trends in the Development of Machinery and Associated Technology”, TMT 2016, Mediterranean Sea Cruising, 2016. [19] 宋仁正, '一種以馬達調控之扭力分配差速器對車輛動態之影響,' 碩士論文, 機械工程學研究所, 國立臺灣大學, 2017. [20] M. H. Westbrook, The Electric and Hybrid Electric Car. United States: SAE International, 2006. [21] E. H. Wakefield, History of the Electric Automobile – Hybrid Electric Vehicles. United States: SAE International, 1998. [22] Toyota Motor Corporation. Toyota Hybrid System [Toyota Motor Corporation global website]. Available: http://www.toyota-global.com/innovation/environmental_technology/technology_file/hybrid/hybridsystem.html [23] Honda Motor Company. (2018). Honda Sport Hybrid i-DCD(intelligent Dual-Clutch Drive) [Honda Worldwide site]. Available: http://world.honda.com/automobile-technology/i-DCD/topic3/ [24] Honda Motor Company. (2018). Honda Sport Hybrid i-MMD(intelligent Multi-Mode Drive) [Honda Global website]. Available: https://global.honda/innovation/technology/automobile/hybrid/i-MMD-picturebook.html [25] M. R. Schmidt, 'Two-Mode, Input-Split, Parallel, Hybrid Transmission,' United States Patent US5558588A, 1996. [26] BMW Group. (2013). The BMW i8 [Website]. Available: https://www.press.bmwgroup.com/global/article/detail/T0145324EN/the-bmw-i8 [27] A. Stoklosa. (2016). Volvo’s Latest “Twin Engine” Plug-In Hybrid Powertrain Explained [Car and Driver Website]. Available: https://www.caranddriver.com/news/volvos-latest-twin-engine-plug-in-hybrid-powertrain-explained [28] 許正和, 機構構造設計學. 台北縣: 高立圖書有限公司, 2002. [29] 劉思佳, '三自由度混合動力裝置之分析與理念設計,' 碩士論文, 機械工程學研究所, 國立臺灣大學, 2008. [30] 黃靖雄, 現代汽車底盤. 新北市: 全華, 1995. [31] G. Genta and L. Morello, The Automotive Chassis. Berlin: Springer, 2009. [32] S. Bai, J. Maguire, and H. Peng, Dynamic Analysis and Control System Design of Automatic Transmissions. United States: SAE International, 2013. [33] K. Sawase and K. Inoue, 'Maximum Acceptable Differential Speed Ratio of Lateral Torque-Vectoring Differentials for Vehicles,' Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol. 223, no. 8, pp. 967-978, 2009. [34] M. Hancock, 'Vehicle Handling Control Using Active Differentials,' Doctoral Thesis, Loughborough University, 2006. [35] M. Abe, Vehicle Handling Dynamics: Theory and Application. Oxford: Butterworth-Heinemann, 2009. [36] J. Y. Wong, Theory of Ground Vehicles. New York: John Wiley & Sons, 2001. [37] A. Farazandeh, A. K. W. Ahmed, and S. Rakheja, 'Performance Enhancement of Road Vehicles Using Active Independent Front Steering (AIFS),' SAE International Journal of Passenger Cars - Mechanical Systems, vol. 5, no. 4, pp. 1273-1284, 2012. [38] H. B. Pacejka, Tire and Vehicle Dynamics. Oxford: Butterworth-Heinemann, 2012. [39] 'ADAMS,' 2014 ed: MSC Software, 2014. [40] 小原歯車工業株式会社. 齒輪技術入門篇. Available: https://www.khkgears.co.jp/tw/gear_technology/pdf/gear_guide1.pdf [41] American Gear Manufacturers Association, ANSI/AGMA 2001-D04, Fundamental Rating Factors and Calculation Methods for Involute Spur and Helical Gear Teeth. Alexandria, VA: American Gear Manufacturers Association, 2004. [42] W. Huang, L. Fu, X. Liu, Z. Wen, and L. Zhao, 'The Structural Optimization of Gearbox Based on Sequential Quadratic Programming Method,' in Second International Conference on Intelligent Computation Technology and Automation, China, 2009. [43] 'CarSim,' 8.1 ed: Mechanical Simulation Corporation, 2011. [44] 'MATLAB,' 9.3 ed: The MathWorks Inc., 2017. [45] A. D. Belegundu and T. R. Chandrupatla, Optimization Concepts and Applications in Engineering, 2nd ed. Cambridge: Cambridge University Press, 2014. [46] R. C. Sanghvi, A. S. Vashi, H. P. Patolia, and R. G. Jivani, 'Multi-Objective Optimization of Two-Stage Helical Gear Train Using NSGA-II,' Journal of Optimization, vol. 2014, p. 8, 2014, Art. no. 670297. [47] S. P. Radzevich, Dudley's Handbook of Practical Gear Design and Manufacture, 2nd ed. Boca Raton, FL: CRC Press, 2012. [48] J. Erjavec, Techone: Manual Transmissions, 1st ed. Boston, MA: Cengage Learning, 2003. [49] A. Ishibashi and S. Tanaka, 'Effects of Hunting Gear Ratio Upon Surface Durability of Gear Teeth,' ASME. Journal of Mechanical Design, vol. 103, pp. 227-235, 1981. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/handle/123456789/1119 | - |
| dc.description.abstract | 本研究提出一種以馬達調控,而同時具備混合動力功能的扭力分配差速器(Hybrid Torque-vectoring Differential, H-TD)。本研究所提出之扭力分配差速器是以一般開放式差速器為基礎搭配行星齒輪組、馬達、煞車以及離合器,來同時達成混合動力與扭力分配之功能。此機構可以馬達將輸入至差速器之主動力於兩輸出軸之間分配,亦可以馬達之動力與主動力形成同時輸出之混合動力功能。本研究首先提出H-TD之概念原型,並且以機構拓樸搜尋一定範圍內所有可能之構型,以找到最佳的機構組合。接著本研究提出此機構的空間布局方式,以及此系統之操作模式與模式切換策略。接下來以最佳化之方式設定H-TD之細部設計參數,以完成一可行設計。完成機構參數設計後,本研究討論H-TD在一般四輪車輛上的動力總成配置,最後推導各種動力總成配置下的車輛動力分配動態模型。完成系統之設計後,本研究將以數值模擬程式進行分析,程式包含可替換之駕駛模型、動力分配模型、輪胎模型、車輛模型,以求得不同操作情形與環境下之車輛動態表現。模擬情境包含單輪打滑、定轉角轉向、轉向時單輪打滑、加速打滑、混合動力加速、混合動力回充等情境。結果顯示本研究提出之H-TD可在車輛遭遇打滑時保有較佳的驅動力、轉向時提升車輛之轉向能力,並且在混合動力模式下,為車輛提供更佳的動力表現或者更多元的能量管理方式。 | zh_TW |
| dc.description.abstract | A motor-controlled torque-vectoring differential with electric hybrid functionality (Hybrid Torque-vectoring Differential, H-TD) is proposed in this study. The structure of H-TD is based on an open differential with a planetary gear set, an electric motor, a clutch brake, and a clutch to achieve both torque-vectoring and hybrid functionality. The mechanism can utilize electric motor to distribute torque between two output shafts, or use motor to provide additional power. This study first comes up with a conceptual prototype of H-TD, then uses mechanism topology to search all possible configurations within a certain range to find the best-suited mechanism for the system. Next, this study presents a conceptual spatial layout for the system, and proposes the operation modes of the system, as well as the control strategy. Afterwards, this study uses optimum design method to obtain design parameters of the system. Following is discussion about possible powertrain configurations of H-TD on four-wheeled vehicles, and derivation of the dynamic model for each configuration. After completing the conceptual design of H-TD, this study uses a numerical simulation program, which includes a replaceable driver model, a power distribution model, a tire model, and a vehicle dynamic model, to obtain vehicle dynamic performance under different system operating modes and driving situations. The simulation scenarios include single wheel slipping while driving, constant cornering, single-wheel-slip constant cornering, slipping during acceleration, hybrid power acceleration, and hybrid regenerative mode. Simulation results show that H-TD proposed in this study is capable of maintaining better tractive force when the vehicle encounters slipping, and improving the cornering performance. In addition, H-TD can provide better power performance and energy management due to its hybrid functionality. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-12T09:32:50Z (GMT). No. of bitstreams: 1 ntu-107-R05522626-1.pdf: 9470472 bytes, checksum: 2bfe5d30ff85abacc28d191cc7e6c284 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iii Abstract iv 目錄 v 圖目錄 ix 表目錄 xvi 符號彙整 xviii 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-2-1 扭力分配系統 2 1-2-2 混合動力系統 4 1-2-3 小結 5 1-3 研究動機與目的 6 1-4 研究方法與論文架構 6 第二章 理論基礎 8 2-1 圖論之基本概念 8 2-2 行星齒輪組之運動與力學關係 8 2-3 差速器之運動與力學關係 11 2-4 扭力分配系統之背景概念 13 2-4-1 離合器動力傳遞特性 13 2-4-2 限滑差速器 14 2-4-3 能任意分配扭力之差速器概念 15 2-5 功能動力圖論方法 16 2-6 車輛動態模型 17 2-6-1 車輛座標 18 2-6-2 車輛受力分析 18 2-6-3 阿克曼轉向幾何 20 2-6-4 平面車輛動態方程式 22 2-6-5 車輪之速度 24 2-7 輪胎模型 25 2-7-1 輪胎座標系定義 25 2-7-2 輪胎受力與力矩 25 2-7-3 輪胎滑差與驅動力 26 2-7-4 輪胎側滑角與側向力 29 2-7-5 Magic Formula 30 2-7-6 車輪動態模型 33 第三章 H-TD概念原型及機構合成與選用 34 3-1 以馬達調控之扭力分配差速器 34 3-2 一般差速器與行星齒輪組搭配之機構合成 35 3-3 系統動力元件之配置規則 38 3-4 選用構型之設計規則 41 3-5 根據定性分析選擇最適合之構型 45 3-6 小結 58 第四章 H-TD機構實體化與設計參數設定 59 4-1 H-TD之機構實體化 59 4-2 H-TD之操作模式與模式切換邏輯 62 4-3 H-TD之設計參數設定 65 4-3-1 H-TD各操作模式之力學與運動方程式 66 4-3-2 機構之不對稱性與設計改善方案選定 72 4-3-3 機構傳動系數值設定之最佳化問題 75 4-3-4 輔助馬達、離合器、煞車參數之設定方法 81 4-4 H-TD之車輛配置討論 83 4-5 整車數學模型建立 85 4-5-1 前輪驅動車輛模型 86 4-5-2 後輪驅動車輛模型 87 4-5-3 四輪驅動車輛模型 89 4-6 小結 92 第五章 整車動態數值分析 93 5-1 車輛動態數值模擬流程 93 5-2 車輛參數設定 95 5-2-1 車輛規格 95 5-2-2 輪胎規格 96 5-3 扭力分配功能模擬分析 98 5-3-1 前輪驅動車輛之分析 98 5-3-2 後輪驅動車輛之分析 110 5-3-3 四輪驅動車輛之分析 121 5-4 混合動力功能模擬分析 125 5-4-1 混合動力加速 125 5-4-2 混合動力回充模式 128 5-5 H-TD系統其他模擬分析 131 5-6 H-TD馬達作動狀態整理 133 5-7 小結 134 第六章 結論 135 6-1 結論 135 6-2 未來展望 136 參考文獻 137 附件 最佳化1000組結果 142 附錄 車輛動態數值模擬程式 167 | |
| dc.language.iso | zh-TW | |
| dc.subject | 混合動力 | zh_TW |
| dc.subject | 機構拓樸 | zh_TW |
| dc.subject | 扭力分配 | zh_TW |
| dc.subject | 數值模擬分析 | zh_TW |
| dc.subject | 車輛力學模型 | zh_TW |
| dc.subject | 最佳化設計 | zh_TW |
| dc.subject | hybrid power | en |
| dc.subject | numerical simulation | en |
| dc.subject | vehicle dynamic model | en |
| dc.subject | optimum design | en |
| dc.subject | mechanism topology | en |
| dc.subject | torque vectoring | en |
| dc.title | 一種具混合動力功能的扭力分配差速器之理念設計與分析 | zh_TW |
| dc.title | Conceptual Design and Analysis of a Torque Vectoring Differential with Electric Hybrid Functionality | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李志中(Jyh-Jone Lee),詹魁元(Kuei-Yuan Chan) | |
| dc.subject.keyword | 機構拓樸,扭力分配,混合動力,最佳化設計,車輛力學模型,數值模擬分析, | zh_TW |
| dc.subject.keyword | mechanism topology,torque vectoring,hybrid power,optimum design,vehicle dynamic model,numerical simulation, | en |
| dc.relation.page | 188 | |
| dc.identifier.doi | 10.6342/NTU201802573 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2018-08-08 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf | 9.25 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
