Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/1097
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳瑞北教授
dc.contributor.authorHan-Yun Tsaien
dc.contributor.author蔡涵昀zh_TW
dc.date.accessioned2021-05-12T09:32:31Z-
dc.date.available2018-08-14
dc.date.available2021-05-12T09:32:31Z-
dc.date.copyright2018-08-14
dc.date.issued2018
dc.date.submitted2018-08-13
dc.identifier.citationREFERENCES
[1] B. Hammond, New System Design Tools a Must for 5G RF Front-Ends, [Online]. Available: http://www.mwrf.com/systems/new-system-design-tools-must-5g-rf-front-ends
[2] K. Hashimoto, Surface Acoustic Wave Devices in Telecommunications: Modelling and Simulation, Berlin, Germany: Springer-Verlag, 2000, ch. 3.
[3] F. Z. Bi and B. P. Barber, 'Bulk acoustic wave RF technology,' IEEE Microw. Mag., vol. 9, no. 5, pp. 65–80, Oct. 2008.
[4] C. C. W. Ruppel, 'Acoustic wave filter technology – A review,' IEEE Trans. Ultrason. Ferro-electro Freq. Control, vol. 64, no. 9, pp. 1390-1400, Sept. 2017.
[5] 3GPP, Release-15, [Online]. Available: http://www.3gpp.org/release-15
[6] S. Anthony, 5G specs announced: 20Gbps download, 1ms latency, 1M devices per square km, [Online]. Available: https://arstechnica.com/information-technology/2017/02/5g-imt-2020-specs/
[7] G. Brzezina and L. Roy, 'Miniaturized, lumped-element filters for customized system-on-package L-band receivers,' IEEE Trans. Compon. Packag. Manuf. Technol., vol. 4, no. 1, pp.26-36, Jan. 2014.
[8] S. J. Cheon, S. P. Lim, and J. Y. Park, '3- to 5-GHz ultra-compact bandpass filter with independent transmission zeros using PCB embedding passive technology,' IEEE Trans. Compon. Packag. Manuf. Technol., vol. 2, no. 7, pp.1064-1069, Jul. 2012.
[9] E. A. Alos, A. U. Zaman, and P.-S. Kildal, 'Ka-band gap waveguide coupled-resonator filter for radio link diplexer application,' IEEE Trans. Compon. Packag. Manuf. Technol., vol. 3, no. 5, pp.870-879, May 2013.
[10] X.-P. Chen and K. Wu, 'Self-packaged millimeter-wave substrate integrated waveguide filter with asymmetric frequency response,' IEEE Trans. Compon. Packag. Manuf. Technol., vol. 2, no. 5, pp.775-782, May 2012.
[11] R. E. Amaya, A. Momciu, and I. Haroun, 'High-performance, compact quasi-elliptic band pass filters for V-band high data rate radios,' IEEE Trans. Compon. Packag. Manuf. Technol., vol. 3, no. 3, pp.411-416, Mar. 2013.
[12] C.-F. Chen, T.-Y. Huang, C.-P. Chou, and R.-B. Wu, 'Microstrip diplexers design with common resonator sections for compact size, but high isolation,' IEEE Trans. Microw. Theory Techn., vol. 54, no. 5, pp. 1945-1952, May 2006.
[13] Q. X. Chu and F. C. Chen, 'A compact dual-band bandpass filter using Meandering stepped impedance resonators,' IEEE Microw. Wireless Comp. Lett., vol. 18, no. 5, pp. 320-322, May 2008.
[14] C.-F. Chen, T.-M. Shen, T.-Y. Huang, and R. B. Wu, 'Design of multimode net-type resonators and their applications to filters and multiplexers,' IEEE Trans. Microw. Theory Techn., vol. 59, no. 4, pp.848 -856, Apr. 2011.
[15] C.-F. Chen, T.-Y. Huang, and R.-B. Wu, 'Novel compact net-type resonators and their applications to microstrip bandpass filters,' IEEE Trans. Microw. Theory Techn., vol. 54, no. 2, pp.755 -762, Feb. 2011.
[16] H. Y. Chien, T. M. Shen, T. Y. Huang, W. H. Wang, and R. B. Wu, 'Miniaturized bandpass filters with double-folded substrate integrated waveguide resonators in LTCC,' IEEE Trans. Microw. Theory Techn., vol. 57, no. 7, pp. 1774-1782, Jul. 2009.
[17] H. C. Pineda, 'Thin-film bulk acoustic wave resonators (FBAR): fabrication, heterogeneous integration with CMOS technologies and sensor applications,' PhD, Universite de Montpellier II, Dec. 2007, ch. 1.
[18] J. V. Tirado, Bulk Acoustic Wave Rsonators and their Application to Microwave Device, Ph.D. thesis, Universitat Autònoma de Barcelona, 2010, chs. 2, 4, and 5.
[19] T. Nishihara, T. Yokoyama, T. Miyashita, and Y. Satoh, 'High performance and miniature thin film bulk acoustic wave filters for 5 GHz,' in Proc. IEEE Ultrason. Symp., vol.1, pp. 969-972, 2002.
[20] A. A. Shirakawa, J-M. Pham, P. Jarry, E. Kerherve, F. Dumont, J-B. David, and A. Cathelin, 'A high isolation and high selectivity ladder-lattice BAW-SMR filter,' 2006 Eur. Microw. Conf., Manchester, 2006, pp. 905-908.
[21] S. Marksteiner, M. Handtmann, H.-J. Timme, R. Aigner, R. Welzer, J. Portmann, and U. Bauernschmitt, 'A miniature BAW duplexer using flip-chip on LTCC,' in Proc. IEEE Ultrason. Symp., vol.2, pp. 1794-1797, 2003.
[22] M. Small, R. Ruby, S. Ortiz, R. Parker, F. Zhang, J. Shi, and B. Otis, 'Wafer-scale packaging for FBAR-based oscillators,' in Proc. Joint Conf. IEEE Int. Freq. Control Eur. Freq. Time Forum (FCS), pp. 1–4, May 2011.
[23] R. E. Jones, C. Ramiah, T. Kamgaing, S. K. Banerjee, C.-T. Tsai, H. G. Hughes, A. P. D. Silva, J. Drye, L. Li, W. Blood, Q. Li, C. R. Vaughan, R. Miglore, D. Penunuri, R. Lucero, D. R. Frear, and M. F. Miller, 'System-in-a-package integration of SAW RF Rx filter stacked on a transceiver chip, ' IEEE Trans. Adv. Packag., vol. 28, no. 2, pp. 310–319, May 2005.
[24] I. Dufek and M. Pokotny, 'Digitally tunable input filter unit for LTE bands,' IEEE 9th Loughborough Antennas Propag. Conf. (LAPC), UK, pp.273-276, 11-12 Nov. 2013.
[25] A. S. Morris III and V. Steel, 'Integrated tunable systems for scalable 4G radios,' IEEE Int. Microw. Symp., Seattle, WA, 2-7 Jun. 2013.
[26] S. C. Del Barrio, A. Tatomirescu, G. F. Pedersen, and A. Morris, 'Novel architecture for LTE world-phones,' IEEE Antennas Wireless Propagat. Lett., vol.12, pp.1676-1679, Jan. 2014.
[27] J.-E. Mueller, T. Bruder, P. Herrero, N. Norholm, P. Olesen, J. Rizk, and L. Schumacher, 'Requirements for reconfigurable 4G front-ends,' IEEE Int. Microw. Symp., Seattle, WA, 2-7 Jun. 2013.
[28] Q. Y. Xiang, Q. Y. Feng, X. G. Huang, and D. H. Jia, 'Electrical tunable microstrip LC bandpass filters with constant bandwidth,' IEEE Trans. Microw. Theory Techn., vol. 61, no. 3, pp.1124-1130, Mar. 2013.
[29] Y. C. Li and Q. Xue, 'Tunable balanced bandpass filter with constant bandwidth and high common-mode suppression,' IEEE Trans. Microw. Theory Techn., vol. 59, No. 10, pp.2452-2460, Oct. 2011.
[30] X. Y. Zhang, C. H. Chan, Q. Xue, and B. J. Hu, 'RF tunable bandstop filters with constant bandwidth based on a doublet configuration,' IEEE Trans. Ind. Electron., vol. 59, no. 2, pp.1257-1265, Feb. 2012.
[31] H. L. Peng, L. S. Wu, W. Y. Yin, D. Huo, and J. Mao, 'Compact tunable bandpass filter with a fixed out-of-band rejection based on Hilbert fractals,' IEEE Trans. Compon. Packag. Manuf. Technol., vol. 3, no. 3, pp.391-400, Mar. 2013.
[32] C.-F. Chen, 'A compact reconfigurable microstrip dual-band filter using varactor-tuned stub-loaded stepped-impedance resonators,' IEEE Microw. Wireless Comp. Lett., vol. 23, no. 1, pp.16-18, Jan. 2013.
[33] C.-W. Tang, C.-T. Tseng, and S.-C. Chang, 'Design of the compact tunable filter with modified coupled lines,' IEEE Trans. Compon. Packag. Manuf. Technol., vol. 4, no. 11, pp.1815-1821, Nov. 2014.
[34] J. R. Mao, W. W. Choi, K. W. Tam, W. Q. Che, and Q. Xue, 'Tunable bandpass filter design based on external quality factor tuning and multiple mode resonators for wideband applications,' IEEE Trans. Microw. Theory Techn., vol.61, no.7, pp.2574-2584, Jul. 2013.
[35] S. Sirci, J. D. Martinez, M. Taroncher, and V. E. Boria, 'Varactor-loaded continuously tunable SIW resonator for reconfigurable filter design,' in Proc. 41st Eur. Microw. Conf., Manchester, U.K., Oct. 2011, pp. 436–439.
[36] T. C Lee, S. J Cheon, and J. Y Park, 'Ultracompact UHF tunable filter embedded into multilayered organic packaging substrate,' IEEE Trans. Compon. Packag. Manuf. Technol., vol. 2, no. 1, pp.46-52, Jan. 2012.
[37] I. Reines, A. Brown, M. El-Tanani, A. Grichner, and G. M. Rebeiz '1.6-2.4 GHz RF-MEMS tunable 3-pole suspended combline filter,' IEEE Int. Microw. Symp., Atlanta, GA,USA, pp.133-136, 15-20 Jun. 2008.
[38] J. H. Park, S. Lee, J. M. Kim, H. T. Kim, Y. Kwon, and Y. K. Kim, 'Reconfigurable millimeter-wave filters using CPW-based periodic structures with novel multiple-contact MEMS switches,' J. Microelectromech. Syst., vol. 14, no. 3, pp.456-463, Jun. 2005.
[39] D. Bouyge, A. Crunteanu, M. D.-Sindreu, A. Pothier, P. Blondy, J. Bonache, J. C. Orlianges, and F. Martin, 'Reconfigurable split rings based on MEMS switches and their application to tunable filters,' J. Opt., vol. 14, no. 11, Jul. 2012.
[40] X. Liu, L. Katehi, W. Chappell, and D. Peroulis, 'High-Q tunable microwave cavity resonators and filters using SOI-based RF MEMS tuners,' J. Microelectromech. Syst., vol. 19, no. 4, pp.774-784, Aug. 2010.
[41] G. M. Rebeiz and J. B. Muldavin, 'RF MEMS switches and switch circuits,' IEEE Microw. Mag., vol.2, no.4, pp.59-71, Dec. 2001.
[42] M. Bakri-Kassem, S. Fouladi, and R. R. Mansour, 'Novel high-MEMS curled-plate variable capacitors fabricated in 0.35-m CMOS technology,' IEEE Trans. Microw. Theory Tech., vol. 56, no. 2, pp. 530–541, Feb. 2008.
[43] K. W. Wong, R. R. Mansour, and G. Weale, 'Reconfigurable bandstop and bandpass filters with wideband balun using IPD technology for frequency agile applications,' IEEE Trans. Compon. Packag. Manuf. Technol., vol. 7, no. 4, pp. 610-620, Apr. 2017.
[44] J. Reinke, G. K. Fedder, and T. Mukherjee, 'CMOS-MEMS 3-bit digital capacitors with tuning ratios greater than 60:1,' IEEE Trans. Microw. Theory Techn., vol. 59, no. 5, pp. 1238–1248, May 2011.
[45] K. Nadaud, F. Roubeau, A. Pothier, P. Blondy, L. Y. Zhang, and R. Stefanini, 'High Q zero level packaged RF-MEMS switched capacitor arrays,' in Proc. Eur. Microw. Conf., London, pp. 1377-1380, 4-6 Oct. 2016.
[46] W. Tang and J. –S Hong, 'Varactor-tuned dual-mode bandpass filters', IEEE Trans. Microw. Theory Tech., vol. 58, no. 8, pp.2213 -2219, Aug. 2010.
[47] J. Cai, W. Qin, J. X. Chen, and Q. Xue, 'Novel varactor-tuned coupling mechanism and its applications to high-order bandwidth-agile bandpass filters,' IEEE Trans. Compon. Packag. Manuf. Technol., vol. 7, no. 2, pp. 246-253, Feb. 2017.
[48] C. Schuster, A. Wiens, F. Schmidt, M. Nickel, M. Schüßbler, R. Jakoby, and H. Maune, 'Performance analysis of reconfigurable bandpass filters with continuously tunable center frequency and bandwidth,' IEEE Trans. Microw. Theory Techn., vol. 65, no. 11, pp. 4572-4583, Nov. 2017.
[49] T.-C. Lee, S.-J. Cheon, and J.-Y. Park, 'Ultracompact UHF tunable filter embedded into multilayered organic packaging substrate,' IEEE Trans. Compon. Packag. Manuf. Technol., vol. 2, no. 1, pp. 46–52, Jan. 2012.
[50] E. Arabi and A. Shamim, 'The effect of self-heating on the performance of a tunable filter with embedded windings in a ferrite LTCC package,' IEEE Trans. Compon., Packag., Manuf. Technol., vol. 5, no. 3, pp. 365–371, Mar. 2015.
[51] X. Lu, K. Mouthaan, and Y. T. Soon, 'Wideband bandpass filters with SAW-filter-like selectivity using chip SAW resonators,' IEEE Trans. Microw. Theory Techn., vol. 62, no. 1, pp. 28–36, Jan. 2014.
[52] X. Lu, K. Mouthaan, and T. S. Yeo, 'A wideband bandpass filter with frequency selectivity controlled by SAW resonators,' IEEE Trans. Compon. Packag. Manuf. Technol., vol. 6, no. 6, pp. 897-905, Jun. 2016.
[53] D. Psychogiou, R. Gómez-García, R. Loeches-Sánchez, and D. Peroulis, 'Hybrid acoustic-wave-lumped-element resonators (AWLRs) for high-Q bandpass filters with quasi-elliptic frequency response,' IEEE Trans. Microw. Theory Techn., vol. 63, no. 7, pp. 2233-2244, Jul. 2015.
[54] D. Psychogiou, R. Gomez-Garcia, and D. Peroulis, 'Single- and multi-band acoustic-wave-lumped-eransfer function,' IEEE Trans. Microw. Theory Techn., vol. 64, no. 12, pp. 4394-4404, Dec. 2016.
[55] M. Kadota, T. Sannomiya, and S. Tanaka, 'Tunable rejection filters with ultra-wideband using zeroth shear mode plate wave resonators,' Jpn. J. Appl. Phys., vol. 56, p.p. 07JD01, May 2017.
[56] F. V. Pop, A. S. Kochhar, G. Vidal-Alvarez, and G. Piazza, 'Laterally vibrating lithium niobate MEMS resonators with 30% electromechanical coupling coefficient,' in Proc. IEEE Int. Conf. Micro Electro Mech. Syst. (MEMS), Las Vegas, NV, 2017, pp. 966-969.
[57] A. Kochhar, L. Colombo, G. Vidal-Alvarez, and G. Piazza, 'Integration of bottom electrode in Y-cut lithium niobate thin films for high electromechanical coupling and high capacitance per unit area MEMS resonators,' in Proc. IEEE Int. Conf. Micro Electro Mech. Syst. (MEMS), Las Vegas, NV, 2017, pp. 962-965.
[58] R.-L. Lin. Piezoelectric Theory [Online]. Available: http://eshare.stust.edu.tw/EshareFile/2010_12/2010_12_eb898916.pdf
[59] X. Lu, J. Galipeau, K. Mouthaan, E. H. Briot, and B. Abbott, 'Reconfigurable multiband SAW filters for LTE applications,' in Proc. IEEE 13th Topical Meeting Silicon Monolithic Integr. Circuits RF Syst., pp. 153-155, Jan. 2013.
[60] M. Kadota, T. Ogami, T. Kimura, and K. Daimon, 'Tunable filters using wide-band elastic resonators,' IEEE Trans. Ultrason. Ferro-electro Freq. Control, vol. 60, no. 10, pp. 2129-2136, 2013.
[61] H. Hirano, T. Samoto, T. Kimura, M. Inaba, K. Hashimoto, T. Matsumura, K. Hikichi, M. Kadota, M. Esashi, and S. Tanaka, 'Bandwidth-tunable SAW filter based on wafer-level transfer-integration of BaSrTiO3 film for wireless LAN system using TV white space,' in Proc. IEEE Ultrason. Symp., pp. 803–806, 2014.
[62] S. Lee and A. Mortazawi, 'An intrinsically switchable ladder-type ferroelectric BST-on-Si composite FBAR filter,' IEEE Trans. Ultrason., Ferroelect., Freq. Control, vol. 63, no. 3, pp. 456-462, Mar. 2016.
[63] V. Lee, S. Lee, S. A. Sis, and A. Mortazawi, 'Intrinsically switchable frequency reconfigurable barium strontium titanate resonators and filters,' IEEE Trans. Microw. Theory Techn., vol. 65, no. 9, pp. 3221-3229, Sept. 2017.
[64] C. X. Qiu, I. Shih, C. Qiu, A. Shih, J. Qiu, and Y.-C. Shih, “Tunable film bulk acoustic resonators and filter,' U.S. Patent 2017/0025596 A1, Jan. 26, 2017.
[65] J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications. New York, NY, USA: Wiley, 2001, ch. 3.
[66] J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications. New York, NY, USA: Wiley, 2001, ch. 8.
[67] R. Aigner. SAW, BAW and the future of wireless. [Online]. Available: https://www.edn.com/5G/4413442/SAW--BAW-and-the-future-of-wireless
[68] J. F. Rosenbaum, Bulk Acoustic Theory and Device. Norwood, MA: Artech House, 1988, chs. 1 , 2, 4 and 5.
[69] C. M. Fang, Study on Film Bulk Acoustic Wave Filter for Wireless Communication, Ph.D. dissertation, Institute of Applied Mechanics College of Engineering, National Taiwan University, 2009, ch.2.
[70] 黃世疇和陳育賢, 壓電懸臂樑發電裝置最佳化分析與應用, 工程科技與教育學刊 第10卷, 第4期, 第379~395頁. [Online]. Available: http://www.engh.kuas.edu.tw/files/ne/xyb816xu54.pdf
[71] J. D. Larson, P. D. Bradley, S. Wartenberg, and R. C. Ruby, 'Modified Butterworth-Van Dyke circuit for FBAR resonators and automated measurement system,' in Proc. IEEE Ultrason. Symp., pp. 863-868, 2000.
[72] M. Chatras, S. Bila, S. Giraud, L. Catherinot, J. Fan, D. Cros, M. Aubourg, A. Flament, A. Frappé, B. Stefanelli, A. Kaiser, A. Cathelin, J. B. David, A. Reinhardt, L. Leyssenne, and E. Kerhervé, 'Modeling and design of BAW resonators and filters for integration in a UMTS transmitter,' in Modeling and Measurement Methods for Acoustic Waves and for Acoustic Microdevices, Rijeka, Croatia: InTech, 2013, ch. 14, pp. 323-354.
[73] M. E. Hassan, E. Kerherve, Y. Deval, K. Baraka, J.B. David, and D. Belot, 'Techniques for tuning BAW-SMR resonators for the 4th generation of mobile communications,' in Modeling and Measurement Methods for Acoustic Waves and for Acoustic Microdevices, Rijeka, Croatia: InTech, 2013, ch. 18, pp. 421-442.
[74] C.-F. Chen, Design of Compact Bandpass Filters and Multiplexers with Multi-function Applications, Ph.D. dissertation, Graduate Institute of Communication Engineering, National Taiwan University, 2006.
[75] ANSYS HFSS [Online]. Available: http://www.ansys.com/Products/ Simulation+Technology/Electronics/Signal+Integrity/ANSYS+HFSS
[76] “M/A COM MA46H120 data sheet”, Lowell, MA, M/A COM.
[77] Tutorial of CoventorWare, 'Section 8: PZE resonator analysis,' July 30, 2014, Coventor Inc.
[78] CoventorWare (Ver. 10.2), Coventor Inc. [Online]. Available: https://www.coventor.com/
[79] Advanced Design System (ADS) 2009, Keysight EEsof EDA. [Online]. Available: http://www.keysight.com/zh-TW/pc-1297113/advanced-design-system-ads?nid=-34346.0&cc=TW&lc=cht
[80] T. Hanada, 'Basic properties of ZnO, GaN, and related materials,' Adv. Mater. Res. vol. 12, p.p. 1–19, 2009.
[81] “TAI-SAW TC0528A data sheet”, Taiwan, TAI-SAW TECHNOLOGY CO., LTD.
[82] Murata [Online]. Available: https://www.murata.com/
[83] Advanced Design System (ADS) 2013, Keysight EEsof EDA. [Online]. Available: http://www.keysight.com/zh-TW/pc-1297113/advanced-design-system-ads?nid=-34346.0&cc=TW&lc=cht
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/handle/123456789/1097-
dc.description.abstract本論文主要研究可重構濾波器的設計,包含使用微帶線共振器以及聲波共振器。第一部份為固定比例頻寬之可重構濾波器,利用可調之外部品質因子維持通帶內反射損耗的響應,使用一具有接地傳輸線段負載之網式雙模共振器及兩組可調式電容來實現,固定比例頻寬是利用具有接地傳輸線段負載之網式雙模濾波器的特性來達成,一組可變電容做為調整濾波器之中心頻率,另一組則接於饋入傳輸線段之ㄧ端,維持外部品質因子以調整通帶內的反射損耗。基於此設計概念,論文中所提之固定比例頻寬可重構濾波器,在可調頻率範圍中,可以使反射損耗皆維持在20dB,且插入損耗小於2.9dB,可改善一般可重構濾波器,反射損耗與插入損耗會隨著中心頻率下降而變差的情況。
第二部分為使用薄膜聲波共振器設計可重構濾波器,分別使用一般高機電耦合係數之薄膜聲波共振器與可調式薄膜聲波共振器。本論文中所提之薄膜聲波濾波器皆使用微波濾波器的耦合理論進行設計,將薄膜聲波共振器串聯一電感之電路簡化為並聯RLC電路模型且作為濾波器的共振器,中心頻率、耦合係數以及外部品質因子的調整,皆使用可調式電容進行設計。為了增加可重構濾波器的可調範圍,使用具有高機電耦合係數之薄膜聲波共振器以及具有高品質因子之可調式電容。基於此設計概念,此可重構濾波器使用機電耦合係數為26% 的薄膜聲波共振器以及品質因子為150的可調式電容,在插入損耗小於4dB的情況下可以達到8.2% 的可調範圍。
由於外加之可變電容,會使可重構濾波器的頻率降低時,插入損耗隨之增加,使用可調式薄膜共振器可有效改善此情況,可調式薄膜聲波共振器本身的可調機制即可用來調整可重構濾波器的中心頻率,不須再額外加入可調式電容,故可重構濾波器之可調範圍便由可調式薄膜共振器決定,在與使用高機電耦合係數薄膜共振器設計之可重構濾波器相同規格下,使用可調式薄膜共振器設計之可重構濾波器的可調範圍為10%,而插入損耗則小於2.24dB。
zh_TW
dc.description.abstractThis dissertation focuses on the research of reconfigurable filters using microstrip resonators and acoustic wave resonators. The first part is the constant fractional bandwidth (CFBW) reconfigurable filter with frequency invariant passband characteristics using tunable external quality factors. A grounded-stub loaded net-type dual-mode resonator and two sets of varactors for tuning both the center frequency and the return loss level are used to design the reconfigurable filter. The design is featured with the net-type dual-mode filter of a short grounded-stub so that the CFBW property can be assured. In addition to conventional design, a pair of varactors is added at the ends of feeding transmission lines to keep the external quality factors constant while tuning. From the design concept, the return losses of reconfigurable CFBW filter with tunable external quality factor maintain at 20dB and the insertion losses are below 2.9dB over the entire frequency tuning range. The design can improve the return loss and insertion loss of reconfigurable filters when the center frequency decreases.
The second part is the reconfigurable filters using film bulk acoustic resonators (FBARs), including high electromechanical coupling coefficient (kt2) FBARs and tunable FBARs. The FBAR resonator and a series inductor are first represented by a simplified parallel RLC circuit model. The reconfigurable FBAR filters are then designed by applying the general coupled resonator filter theory, with tunable capacitors to adjust center frequencies, coupling coefficients and external quality factors. To increase the tuning ranges of reconfigurable filters, high kt2 FBARs and variable capacitors with high quality factor are used. In the presented reconfigurable filters using high kt2 FBARs, the tuning range is about 8.2% with < 4dB insertion loss by using high-Q digital capacitors of Q = 150. For deceasing the losses of extra tunable capacitors for tuning the center frequency, tunable FBARs are used to design the reconfigurable filters. By the mechanism of tunable FBARs, the center frequency of reconfigurable filters is tuning by TFBARs, not extra tunable capacitors. The tuning range of reconfigurable filters is determined by tunable FBARs. In same specification, the tuning range of reconfigurable filters using tunable FBARs is about 10% and the insertion loss is below 2.24dB.
en
dc.description.provenanceMade available in DSpace on 2021-05-12T09:32:31Z (GMT). No. of bitstreams: 1
ntu-107-D02942002-1.pdf: 18165673 bytes, checksum: 517234c6cac49062d52df1fb5aafba96 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontentsCONTENTS
中文摘要 III
ABSTRACT V
LIST OF FIGURES X
LIST OF TABLES XIV
CHAPTER 1 1
INTRODUCTION 1
1.1. MOTIVATION 1
1.2. LITERATURE SURVEY 4
1.3. CONTRIBUTIONS 11
1.4. ORGANIZATION OF THE DISSERTATION 12
CHAPTER 2 13
BASIC THEORIES OF FILTERS AND ACOUSTIC RESONATORS 13
2.1. CHEBYSHEV FUNCTION FILTERS [65] 13
2.1.1. Lowpass Prototype Filters 14
2.1.2. Dissipation Effects on Bandpass Filters 16
2.2. COUPLED RESONATOR CIRCUITS [66] 16
2.2.1. General Coupling Matrix 17
2.2.2. Coupling Coefficient M 18
2.2.3. External Quality Factor Qe 22
2.3. BASIC THEORY OF ACOUSTIC WAVE RESONATOR [18][68][69] 24
2.3.1. Constitutive Equations of Piezoelectric material 26
2.3.2. Mechanical Wave Equation on Acoustic Wave Resonators 28
2.3.3. Equivalent Circuit Model of FBARs 34
2.3.4. FBARs with Lumped Components [73] 37
CHAPTER 3 39
RECONFIGURABLE FILTERS USING NET-TYPE DUAL-MODE MICROSTRIP LINE 39
3.1. NET-TYPE DUAL-MODE RESONATORS 39
3.2. NET-TYPE DUAL-MODE RECONFIGURABLE FILTER 41
3.2.1. Design Specifications 42
3.2.2. Constant Coupling Coefficients 43
3.2.3. Tunable External Quality Factors 45
3.2.4. Net-type Dual-mode Reconfigurable Filters 47
3.3. EXPERIMENTAL VALIDATIONS 53
3.3.1. Net-type Dual-mode Recofigurable Filters Without Tunable External Quality Factors 53
3.3.2. Net-type Dual-mode Reocfigurable Filters With Tunable External Quality Factors 55
CHAPTER 4 59
RECONFIGURABLE FILTERS USING FILM BULK ACOUSTIC RESONATORS 59
4.1. BASIC THEORIES OF FBARS 59
4.1.1. Derivation to Input Impedance of Layered FBARs 60
4.1.2. MBVD Model and Simplified Parallel RLC Model 64
4.2. DESIGN OF FBARS 66
4.2.1. Material of Piezoelectric Layers 66
4.2.2. Structure of FBARs 67
4.2.3. Comparison of Theoretical and Simulation Result 67
4.3. DESIGN OF RECONFIGURATION FILTERS USING FBARS 70
4.3.1. Design Specifications 70
4.3.2. Tunable Coupling Coefficient and External Quality Factor 71
4.3.3. Highest Band of Reconfigurable FABR Filters 73
4.3.4. Reconfigurable Filters Using FBARs 74
4.4. APPLICATION FOR LTE BANDS 81
4.5. EXPERIMENTAL VALIDATIONS USING COMMERCIAL SAW RESONATORS 82
CHAPTER 5 87
RECONFIGURABLE FILTERS USING TUNABLE FILM BULK ACOUSTIC RESONATORS 87
5.1. BASIC THEORIES OF TUNABLE FBARS 87
5.2. DESIGN OF TUNABLE FBARS 90
5.2.1. Material of Piezoelectric Layers 91
5.2.2. Structure of Tunable FBARs 92
5.2.3. Comparison of Theoretical and Simulation Result 94
5.3. DESIGN OF RECONFIGURABLE FILTERS USING TFBARS 96
5.4. APPLICATION FOR LTE BANDS 104
CHAPTER 6 105
CONCLUSIONS 105
6.1. SUMMARY AND DISCUSSION 105
6.2. SUGGESTIONS FOR FUTURE RESEARCH 109
APPENDIX 112
REFERENCES 121
PUBLICATION LIST 131
dc.language.isoen
dc.subject高品質因子之可調式電容zh_TW
dc.subject可調式濾波器zh_TW
dc.subject可變電容zh_TW
dc.subject薄膜聲波共振器zh_TW
dc.subject可調式薄膜聲波共振器zh_TW
dc.subject可調式外部品質因子zh_TW
dc.subject高機電耦合係數zh_TW
dc.subject網式共振器zh_TW
dc.subject雙模共振器zh_TW
dc.subject聲波共振器zh_TW
dc.subject可重構濾波器zh_TW
dc.subjectHigh-Q digital capacitorsen
dc.subjectReconfigurable filteren
dc.subjectTunable filteren
dc.subjectDual mode resonatoren
dc.subjectNet-type resonatoren
dc.subjectTunable external quality factoren
dc.subjectVaractoren
dc.subjectAcoustic wave resonatoren
dc.subjectFilm bulk acoustic resonator (FBAR)en
dc.subjectTunable film bulk acoustic resonator (TFBAR)en
dc.subjectHigh electromechanical coupling coefficienten
dc.titleLTE通訊系統用戶端之可重構濾波器設計zh_TW
dc.titleDesign of Reconfigurable Filters at UEs of LTE Communication Systemsen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree博士
dc.contributor.oralexamcommittee吳宗霖教授,郭仁財教授,張志揚教授,林丁丙教授,陳永裕教授
dc.subject.keyword可重構濾波器,可調式濾波器,雙模共振器,網式共振器,可調式外部品質因子,可變電容,聲波共振器,薄膜聲波共振器,可調式薄膜聲波共振器,高機電耦合係數,高品質因子之可調式電容,zh_TW
dc.subject.keywordReconfigurable filter,Tunable filter,Dual mode resonator,Net-type resonator,Tunable external quality factor,Varactor,Acoustic wave resonator,Film bulk acoustic resonator (FBAR),Tunable film bulk acoustic resonator (TFBAR),High electromechanical coupling coefficient,High-Q digital capacitors,en
dc.relation.page131
dc.identifier.doi10.6342/NTU201803099
dc.rights.note同意授權(全球公開)
dc.date.accepted2018-08-13
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf17.74 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved