Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10789
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor童心欣
dc.contributor.authorBor-Jyh Chenen
dc.contributor.author陳柏志zh_TW
dc.date.accessioned2021-05-20T21:58:57Z-
dc.date.available2012-07-30
dc.date.available2021-05-20T21:58:57Z-
dc.date.copyright2010-07-30
dc.date.issued2010
dc.date.submitted2010-07-19
dc.identifier.citationChaiket, T., P. C. Singer, A. Miles, M. Moran, and C. Pallotta. 2002. Effectiveness of coagulation, ozonation, and biofiltration in controlling DBPs. Journal American Water Works Association 94 (12):81-95.
Chang, H. H., H. H. Tung, C. C. Chao, and G. S. Wang. 2009. Occurrence of haloacetic acids (HAAs) and trihalomethanes (THMs) in drinking water of Taiwan. Environmental Monitoring and Assessment 162 (1-4):237-250.
Edzwald, J. K., and J. E. Tobiason. 1999. Enhanced coagulation: US requirements and a broader view. Water Science and Technology 40 (9):63-70.
Hashimoto, S., T. Azuma, and A. Otsuki. 1998. Distribution, sources, and stability of haloacetic acids in Tokyo Bay, Japan. Environmental Toxicology and Chemistry 17 (5):798-805.
Hua, G., and D. A. Reckhow. 2008. DBP formation during chlorination and chloramination: Effect of reaction time. pH, dosage, and temperature. Journal / American Water Works Association 100 (8):82-95.
Kim, J. 2009. Fate of THMs and HAAs in low TOC surface water. Environmental Research 109 (2):158-165.
Klevens, C. M., M. R. Collins, R. Negm, M. F. Farrar, G. P. Fulton, and R. Mastronardi. 1996. Natural organic matter characterization and treatability by biological activated carbon filtration - Croton Reservoir case study. Water Disinfection and Natural Organic Matter 649:211-250.
Krasner, S. W., W. H. Glaze, H. S. Weinberg, P. A. Daniel, and I. N. Najm. 1993. Formation and control of bromate during ozonation of waters containing bromide. Journal / American Water Works Association 85 (1):73-81.
Krasner, S. W., H. S. Weinberg, S. D. Richardson, S. J. Pastor, R. Chinn, M. J. Sclimenti, G. D. Onstad, and A. D. Thruston Jr. 2006. Occurrence of a new generation of disinfection byproducts. Environmental Science and Technology 40 (23):7175-7185.
Liang, L., and P. C. Singer. 2003. Factors Influencing the Formation and Relative Distribution of Haloacetic Acids and Trihalomethanes in Drinking Water. Environmental Science & Technology 37 (13):2920-2928.
Lu, J. F., T. Zhang, J. Ma, and Z. L. Chen. 2009. Evaluation of disinfection by-products formation during chlorination and chloramination of dissolved natural organic matter fractions isolated from a filtered river water. Journal of Hazardous Materials 162 (1):140-145.
Luong, T. V., C. J. Peters, and R. Perry. 1982. Influence of bromide and ammonia upon the formation of trihalomethanes under water-treatment conditions. Environmental Science & Technology 16 (8):473-479.
Rodriguez, M. J., J. Serodes, and D. Roy. 2007. Formation and fate of haloacetic acids (HAAs) within the water treatment plant. Water Research 41 (18):4222-4232.
Rodriguez, M. J., J.-B. Sodes, and P. Levallois. 2004. Behavior of trihalomethanes and haloacetic acids in a drinking water distribution system. Water Research 38 (20):4367-4382.
Rook, J. J. 1974. Formation of Haloforms during Chlorination of Natural Waters. Journ. Society for Water Treatment Exam 23 (2):234-243.
Saadi, I., M. Borisover, R. Armon, and Y. Laor. 2006. Monitoring of effluent DOM biodegradation using fluorescence, UV and DOC measurements. Chemosphere 63 (3):530-539.
Singer, P. C. 1994. CONTROL OF DISINFECTION BY-PRODUCTS IN DRINKING-WATER. Journal of Environmental Engineering-Asce 120 (4):727-744.
Speight, V. L., and P. C. Singer. 2005. Association between residual chlorine loss and HAA reduction in distribution systems. American Water Works Association Journal 97 (2):82-91.
Sun, W. J., and W. J. Liu. 2009. Impact of the Ultraviolet Disinfection Process on Biofilm Control in a Model Drinking Water Distribution System. Environmental Engineering Science 26 (4):809-816.
Sun, Y.-X., Q.-Y. Wu, H.-Y. Hu, and J. Tian. 2009. Effect of bromide on the formation of disinfection by-products during wastewater chlorination. Water Research 43 (9):2391-2398.
Tung, H.-H., J. M. Regan, R. F. Unz, and Y. F. Xie. 2006. Microbial community structure in a drinking water GAC filter.
Urbansky, E. T. 2000. Techniques and methods for the determination of haloacetic acids in potable water. Journal of Environmental Monitoring 2 (4):285-291.
Urfer, D., P. M. Huck, S. D. J. Booth, and B. M. Coffey. 1997. Biological filtration for BOM and particle removal: a critical review. Journal American Water Works Association 89 (12):83-98.
Velten, S., F. Hammes, M. Boller, and T. Egli. 2007. Rapid and direct estimation of active biomass on granular activated carbon through adenosine tri-phosphate (ATP) determination. Water Research 41 (9):1973-1983.
Vogel, T. M. 1993. Natural bioremediation of chlorinated solvents. In Hutidbook of Bioremediation.
: Lewis Publishers Inc, 201-225.
White, D. M., D. S. Garland, J. Narr, and C. R. Woolard. 2003. Natural organic matter and DBP formation potential in Alaskan water supplies. Water Research 37 (4):939-947.
Wobma, P., D. Pernitsky, B. Bellamy, K. Kjartanson, and K. Sears. 2000. Biological filtration for ozone and chlorine DBP removal. Ozone: Science and Engineering 22 (4):393-413.
Wu, H., and Y. F. Xie. 2005. Effects of EBCT and water temperature on HAA removal using BAC. American Water Works Association Journal 97 (11):94-101.
Wu, H., and F. X. Yuefeng. 2005. Effects of EBCT and Water Temperature on HAA Removal using BAC. American Water Works Association. Journal 97 (11):94.
Wu, W. W., M. M. Benjamin, and G. V. Korshin. 2001. Effects of Thermal Treatment on Halogenated Disinfection By-Products in Drinking Water. Water Research 35 (15):3545-3550.
Xie, Y. F. F., and H. J. Zhou. 2002. Use of BAC for HAA removal - Part 2, column study. Journal American Water Works Association 94 (5):126-134.
Yapsakli, K., and F. Cecen. 2010. Effect of type of granular activated carbon on DOC biodegradation in biological activated carbon filters. Process Biochemistry 45 (3):355-362.
Yavich, A. A., K. H. Lee, K. C. Chen, L. Pape, and S. J. Masten. 2004. Evaluation of biodegradability of NOM after ozonation. Water Research 38 (12):2839-2846.
Zhang, P., T. M. Lapara, E. H. Goslan, Y. F. Xie, S. A. Parsons, and R. M. Hozalski. 2009. Biodegradation of Haloacetic Acids by Bacterial Isolates and Enrichment Cultures from Drinking Water Systems. Environmental Science & Technology 43 (9):3169-3175.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10789-
dc.description.abstract自由餘氯具有良好的氧化力與殺菌能力,被廣泛應用在淨水處理廠中前氧化與消毒處理。而自由餘氯與水中的天然有機物(Natural Oraganic Matter, NOM)反應時會產生消毒副產物(Disinfection by products, DBPs),其中以三鹵甲烷(Trihalomethane, THM)濃度最高,鹵乙酸(Haloacetic acid, HAA)次之。消毒副產物對人體健康具有危害性,需控制消毒副產物在飲用水中的濃度以維護飲用水安全。淨水處理廠中濾床的生物降解作用有助於控制鹵乙酸及消毒副產物前趨物質,而水中所含有的餘氯量可能會抑制濾床的生物活性。因此,了解前加氯劑量對濾床生物活性、消毒副產物及天然有機物降解的影響,有助於改善消毒副產物所產生的問題。
本研究於小型自來水淨水模廠中進行,設有兩組由不同濾料所組成之快濾床,分別為顆粒狀活性碳(GAC)/石英砂、無煙煤/石英砂,另設陶瓷珠濾床連接於無煙煤/石英砂快濾床之後,討論不同前加氯劑量對於濾床的影響。由三磷酸腺苷(ATP)之單位體積濃度代表生物活性,以鹵乙酸的變化做為生物降解能力的指標,並由非揮發溶解性有機碳(NPDOC)、比紫外光吸收度(SUVA),分析濾床對於有機物質的利用。
結果顯示前加氯劑量會影響濾床之生物活性以及HAA的生成。當前加氯劑量由8 mg-Cl2/L降至4 mg-Cl2/L、2 mg-Cl2/L時,GAC與無煙煤的ATP濃度提升了15倍與10倍。而生物活性之提高可提升NPDOC與消毒副產物生成潛勢(DBPFP)於快濾床中的去除效率約15%,也可使快濾床對於二氯乙酸之降解效率提升10%。而本研究之陶瓷珠濾床僅對於前加氯所生成之二氯乙酸、三氯乙酸之降解性有所提升。因此,降低前加氯劑量可提升快濾床中的生物活性並提升消毒副產物與其前趨物質之生物降解程度,對於水處理系統中消毒副產物之控制有所幫助。
zh_TW
dc.description.provenanceMade available in DSpace on 2021-05-20T21:58:57Z (GMT). No. of bitstreams: 1
ntu-99-R97541132-1.pdf: 3475853 bytes, checksum: b5c45f8dfe2cbbcf084e0feeaed04515 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents口試委員會審定書 I
誌謝 II
摘要 III
Abstract IV
圖目錄 VII
表目錄 VIII
附錄 IX
第一章 前言 1
1.1研究背景 1
1.2研究目的 2
第二章 文獻回顧 3
2.1前氧化應用於自來水處理 3
2.2消毒副產物生成及種類 3
2.3三鹵甲烷與鹵乙酸基本介紹 5
2.4消毒副產物生成影響因子 6
2.4.1天然有機質 6
2.4.2 pH值 7
2.4.3溫度 7
2.4.4劑量與反應時間 8
2.4.5溴離子 8
2.5消毒副產物之控制 9
2.6天然有機質與消毒副產物之生物降解 9
2.6.1天然有機質之生物降解 9
2.6.2 微生物降解消毒副產物 10
2.7生物濾床 11
2.7.1生物濾床與天然有機質 11
2.7.2 生物濾床與消毒副產物 12
第三章 實驗材料與方法 14
3.1模廠架構與維護 15
3.1.1模廠配置 15
3.1.2單元設計 17
3.1.3操作與維護 18
3.1.3.1沉澱槽排泥 18
3.1.3.2濾床反沖洗: 18
3.1.4採樣 19
3.2水質與濾料分析 19
3.2.1溫度、pH 20
3.2.2濁度 20
3.2.3總餘氯與自由餘氯 20
3.2.4非揮發性溶解有機碳 20
3.2.5 UV254吸光度 21
3.2.6鹵乙酸萃取及衍生 21
3.2.7三鹵甲烷萃取 23
3.2.8消毒副產物生成潛勢分析 24
3.2.9三磷酸腺苷濃度檢測 25
第四章 結果與討論 28
4.1環境背景與模廠功能 29
4.2 需氯量及自由餘氯之變化 30
4.3生物活性 34
4.4天然有機質降解性 38
4.5消毒副產物降解性 43
第五章 結論與建議 51
5.1 結論 51
5.2 建議 51
參考文獻 53
附錄 56
dc.language.isozh-TW
dc.title前加氯劑量對快濾床中生物活性的影響zh_TW
dc.titleTHE IMPACTS OF PRECHLORINATION DOSAGE TO MICROBIAL ACTIVITIES IN RAPID SAND FILTRATIONen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王根樹,吳先琪
dc.subject.keyword前加氯劑量,生物降解,生物活性,濾床,zh_TW
dc.subject.keywordPrechlorination dosage,Bioactivity,Biodegradation,Filtration,en
dc.relation.page67
dc.rights.note同意授權(全球公開)
dc.date.accepted2010-07-20
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf3.39 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved