請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10781
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林郁真 | |
dc.contributor.author | Cheng-Yi Chang | en |
dc.contributor.author | 張丞毅 | zh_TW |
dc.date.accessioned | 2021-05-20T21:58:17Z | - |
dc.date.available | 2014-01-01 | |
dc.date.available | 2021-05-20T21:58:17Z | - |
dc.date.copyright | 2010-07-21 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-07-20 | |
dc.identifier.citation | 3M Company (1999). The science of organic fluorochemistry., U.S. EPA docket EPA-HQ-OPPT-2002-0043-0006
3M Company (2001). Environmental monitoring-multi-city study., 3M Envrionmental Laboratory, U.S. EPA Administrative Record AR226-1030A Beltran, F. J., Encinar, J. M., Alonso, M. A. Nitroaromatic hydrocarbon ozonation in water. 1. Single ozonation. Industrial and Engineering Chemistry Research, 1998, 37(1), 25-31. Benjamin J. Apelberg, F.R.W., Julie B. Herbstman, Antonia M. Calafat, Rolf U. Halden, Larry L. Needham, Lynn R. Goldman. Cord Serum Concentrations of Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoate (PFOA) in Relation to Weight and Size at Birth. Environ Health Perspect. 2007 November, 115(11),1670–1676. Cheng J, Vecitis C D, Park H, Mader B T, Hoffmann M R. Sonochemical degradation of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in landfill groundwater: Environmental matrix effects. Environmental Science & Technology, 2008, 42(21): 8057–8063 Chen, J., Zhang, P.-y., Liu, J. Photodegradation of perfluorooctanoic acid by 185 nm vacuum ultraviolet light. Journal of Environmental Sciences, 2007, 19, 387-390. Chen J, Zhang P. Photodegradation of perfluorooctanoic acid in water under irradiation of 254 nm and 185 nm light by use of persulfate. Water Science & Technology, 2006, 54(11-12): 317–325 Cho Min, Chung Hyenmi, Yoon Jeyong. Disinfection of Water Containing Natural Organic Matter by Using Ozone-Initiated Radical Reactions. Applied and Environmental Microbiology, 2003, 69, 4: 2284-2291. Elovitz, M.S., Gunten, U.v. Hydroxyl Radical/Ozone Ratios During Ozonation Processes I. The Rct Concept. OZONE SCIENCE & ENGINEERING, 1999, 21, 239-260 Printed in the U.S.A. Erol, Funda., Özbelge ülay A.. Catalytic ozonation with non-polar bonded alumina phases for treatment of aqueous dye solutions in a semi-batch reactor Chemical Engineering Journal, 2008, 139, 272–283 Fujii Shigeo, Polprasert Chongrak, Tanaka Shuhei, Lien Nguyen Pham Hong, Qiu Yong. New POPs in the water environment: distribution, bioaccumulation and treatment of perfluorinated compounds - a review paper. Journal of water supply research and technology-Aqua, 2007, 56, 5: 313-326 Guedes Maniero, M., Maia Bila, D., Dezotti, M. Degradation and estrogenic activity removal of 17β-estradiol and 17α-ethinylestradiol by ozonation and O3/H2O2 Science of the Total Environment, 2008, 407, 1: 105-115. Gunten, Urs von. Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water Research, 2003, 37, 1443–1467 Hoigné, J., Bader, H. The role of hydroxyl radical reactions in ozonation processes in aqueous solutions. Water Research, 1976, 10, 377-386. Hori, H., Hayakawa, E., Einaga, H., Kutsuna, S., Koike, K., Ibusuki, T., Kiatagawa, H., Arakawa, R. Decomposition of Environmentally Persistent Perfluorooctanoic Acid in Water by Photochemical Approaches. Environmental Science & Technology, 2004, 38, 6118-6124. Hori, H., Nagaoka, Y., Yamamoto, A., Sano, T., Yamashita, N., Taniyasu, S., Kutsuna, S., Osaka, I., Arakawa, R. Efficient Decomposition of Environmentally Persistent Perfluorooctanesulfonate and Related Fluorochemicals Using Zerovalent Iron in Subcritical Water. Environmental Science & Technology, 2006, 40, 1049-1054. Hori, H., Yamamoto, A., Hayakawa, E., Taniyasu, S., Yamashita, N., Kutsuna, S., Kiatagawa, H., Arakawa, R. Efficient Decomposition of Environmentally Persistent Perfluorocarboxylic Acids by Use of Persulfate as a Photochemical Oxidant. Environmental Science & Technology, 2005, 39, 2383-2388. Kim, S.-J., Song, H.-S., 1999. Quantum Mechanical Study for the Photolysis and Unimolecular Decomposition Reactions in the Atmosphere of CF3OH. Photolysis and Unimolecular Reactions of CF3OH, 1943, 20, 12 Lee Yunho, Gunten Urs von. Oxidative transformation of micropollutants during municipal wastewater treatment: Comparison of kinetic aspects of selective (chlorine, chlorine dioxide, ferrateVI, and ozone) and non-selective oxidants (hydroxyl radical). Water Research, 2010, 44, 2: 555-566 LenntechBV, 1998. Ozone decomposition. http://www.lenntech.com/library/ozone/decomposition/ozone-decomposition.htm. Lijie Men, Yinsheng Wang. Fragmentation of the deprotonated ions of peptides containing cysteine, cysteine sulfinic acid, cysteine sulfonic acid, aspartic acid, and glutamic acid. Mass Spectrom. 2006, 20: 777–784 Liao, Chih-Hsian., Kang, Shyh-Fang., Wu, Fu-An. Hydroxyl radical scavenging role of chloride and bicarbonate ions in the H2O2/UV process. Chemosphere 2001, 44, 1193-1200 Lin, A.Y.-C., Panchangam, S.C., Lo, C.-C. The impact of semiconductor, electronics and optoelectronic industries on downstream perfluorinated chemical contamination in Taiwanese rivers. Environmental Pollution, 2009, 157, 1365-1372. Men, L., Wang, Y. Fragmentation of the deprotonated ions of peptides containing cysteine, cysteine sulfinic acid, cysteine sulfonic acid, aspartic acid, and glutamic acid. Rapid Communications in Mass Spectrometry, 2006, 20, 777-784. Moriwaki, H., Takagi, Y., Tanaka, M., Tsuruho, K., Okitsu, K., Maeda, Y. Sonochemical Decomposition of Perfluorooctane Sulfonate and Perfluorooctanoic Acid. Environmental Science & Technology, 2005, 39, 3388-3392. Ochoa-Herrera, V., Sierra-Alvarez, R. Removal of perfluorinated surfactants by sorption onto granular activated carbon, zeolite and sludge. Chemosphere, 2008, 72, 1588-1593. Park H, Vecitis C D, Cheng J, Mader B T, Hoffmann M R. Reductive defluorination of aqueous perfluorinated alkyl surfactants: Effects of ionic headgroupand chain length. Journal of Physical Chemistry A, 2009, 113(4): 690–696 Riesz, P., Berdahl, D., Christman, C.L. Free radical generation by ultrasound in aqueous and nonaqueous solutions. Environ Health Perspect. 1985 December; 64: 233-252. Sato, C., Yao, J. Simultaneous and sequential photosonolysis of TCE and PCE., J. of Environmental Engineering, 2006, 132(1), 32-41 Schröder, H.F., Meesters, R.J.W., 2005. Stability of fluorinated surfactants in advanced oxidation processes--A follow up of degradation products using flow injection-mass spectrometry, liquid chromatography-mass spectrometry and liquid chromatography-multiple stage mass spectrometry. Journal of Chromatography A 1082, 110-119. Sri Chandana Panchangam, Angela Yu-Chen Lin, Jia-Hong Tsai, Cheng-Fang Lin. Sonication-assisted photocatalytic decomposition of perfluorooctanoic acid. Chemosphere 75 (2009) 654–660 Staehelln, J., Holgne, J., 1982. Decomposition of Ozone in Water: Rate of Initiation by Hydroxide Ions and Hydrogen Peroxide. Environ. Scl. Technol. 1982, 16, 676-681. Suh, J.H., Mohseni, M. A study on the relationship between biodegradability enhancement and oxidation of 1,4-dioxane using ozone and hydrogen peroxide Water Research, 2004, 38, 10: 2596-2604. U.S. EPA (2002). Revised draft hazard assessment of perfluorooctanoic acid and its salts. Office of Pollution Prevention and Toxics Risk Assessment Division, U.S. U.S. EPA (2006). SAB review of EPA's draft risk assessment of potential human health effects associated with PFOA and its salts. Office of The Administration Science Advisory Board, U.S. Vecitis C D, Park H, Cheng J, Mader B T, HoffmannMR. Kinetics and mechanism of the sonolytic conversion of the aqueous perfluorinated surfactants, perfluorooctanoate (PFOA), and perfluorooctane sulfonate (PFOS) into inorganic products. Journal of Physical Chemistry A, 2008, 112(18): 4261–4270 Vecitis, Chad. D., Park, H., Cheng, J., Mader, B.T., Hoffmann, M.R. Treatment technologies for aqueous perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA). Front. Environ. Sci. Engin. China, 2009, 3(2): 129–151 DOI 10.1007/s11783-009-0022-7. Wang, Y., Zhang, P., Pan, G., Chen, H., 2008. Ferric ion mediated photochemical decomposition of perfluorooctanoic acid (PFOA) by 254 nm UV light. Journal of Hazardous Materials 160, 181-186. Westerhoff, Paul, George Aiken, Gary Amy, Jean Debroux. Relationships Between The Structure of Natural Organic Matter and Its Reactivity Towards Molecular Ozone and Hydroxyl Radicals. Elsevier Science Ltd. 1999, 33, 10, 2265-2276 李維豐, 2006. 全氟辛烷磺酸鹽有效管理制度與策略之研究以臺灣為例. 碩士在職專班論文,國立中央大學環境工程研究所,桃園. 蔡家弘, 2008. 超音波促進光催化氧化法去除水中全氟辛酸. 國立臺灣大學工學院環境工程學研究所,碩士論文,台北. 邱培森, 2009. 全氟化合物於工業汙水處理廠及其下游河川之流佈調查. 國立臺灣大學工學院環境工程學研究所,碩士論文,台北. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10781 | - |
dc.description.abstract | 全氟碳化物(perfluorinated compounds,PFCs)常被半導體與光電產業用來酸洗電子零件或晶圓表面,或當作光版程序的界面活性劑。PFCs因其強大的碳-氟鍵結(C-F bond),在自然界中不易被光解、水解或生物降解,也導致其在環境中有持久性與生物累積性的特質。許多文獻已證實PFCs具有致突變腫瘤與致癌性,因此利用工程方法去除PFCs為近年來熱門的研究議題。其中,全氟辛酸(perfluorooctanoic acid,PFOA)為一種最被廣泛應用的人造全氟碳化物,且比起許多其他的PFCs更具毒性、更難以分解。
PFOA無法在中性或酸性環境下使用臭氧直接降解,因此本研究嘗試使用臭氧在鹼性條件下,產生氫氧自由基(hydroxyl radical,OH•)降解水中PFOA。實驗中改變之參數有:pH (5~6, 11)、臭氧濃度(0 wt%, 2 wt%, 2.5 wt%, 7 wt%, 9.5 wt%, 10.5 wt% (ozone/oxygen)),PFOA初始濃度(50 ppb, 5 ppm)、過氧化氫(H2O2/O3 =5, 10, 20 molar%)、腐植酸(15 mg/L)與外加超音波場源震盪影響。 當在鹼性條件(pH=11)下,使用臭氧能有效降解PFOA。使用2.5 wt%之臭氧可得到最佳處理效率(90 %);若添加過氧化氫增加氫氧自由基之穩定態濃度,可使去除效率增加15 %~ 56 %;添加腐植酸抑制氫氧自由基之穩定態濃度,會使去除效率減少15 %~44%;外加超音波場源震盪則增加2 %去除效率,顯示降解機制為氫氧自由基攻擊目標污染物。此方法可將PFOA降解成毒性較低的中間產物如:全氟庚酸(PFHpA)、全氟己酸(PFHxA)、全氟戊酸(PFPeA)、全氟丁酸(PFBA)與氟離子,以減少PFOA在環境中的危害。 此外,本研究亦嘗試將最佳操作條件用於處理全氟辛烷磺酸(Perfluorooctanesulfonic acid, PFOS)與實廠廢水,結果顯示PFOS去除效率可達84 %,用於處理實廠廢水6小時可去除92 %之PFOA、4小時即可去除99 %之PFOS。 | zh_TW |
dc.description.abstract | Perfluorinated compounds (PFCs) have been widely used as surfactants in photolithographic processes in semiconducting and optoelectronic industry. The highly stabilities in photodegradation, hydrolysis, and biodegradation of perfluorinated compounds is attributed to their strong C-F bond, resulting in persistence and bioaccumulation in the environment. PFCs have been proved to be a carcinogen to human. Perfluorooctanoic acid (PFOA), one of human-made PFCs, is more toxic and difficult to be degraded than many other PFCs.
PFOA can not be degraded by direct ozone reaction in acidic/neutral condition. Consequently, this study aimes to investigate PFOA ozonation in alkaline condition due to the generation of hydroxyl radical to degrade PFOA. The degradation efficiency of PFOA varied with pH values (5~6, 11), ozone concentrations (0 wt%, 2 wt%, 2.5 wt%, 7 wt%, 9.5 wt%, 10.5 wt% (ozone/oxygen)), the initial PFOA concentrations (50 ppb, 5 ppm), the molar ratio of hydrogen dioxide to ozone (H2O2/O3 =5, 10, 20 molar%), presence of humic acid (15 mg/L) and with the assistant of ultrasound. In alkaline condition (initial pH=11), ozonation can effectively degrade PFOA and exhibits the best efficiency with 2.5 wt% (ozone/oxygen). Adding hydrogen dioxide to enhance the steady concentration of hydroxyl radical (OH•) increases 15~56% of the conversion. Adding humic acid to restrain the steady concentration of OH• decreases 15~44% of the conversion. Combining ultrasonic vibration increases 2% of the conversion. Those phenomena illustrate that the hydroxyl radical attacking the target compound is the main mechanism of degradation. In this study, PFOA can be degraded to the-lower-toxic intermediates such as PFHpA, PFHxA, PFPeA, PFBA, and fluoride ion. In addition, this technology was also applied in treating perfluorooctanesulfonic acid (PFOS) and industrial wastewater under the optimum operating condition. Result shows that 84% PFOS can be degraded, and 92% PFOA and 99% PFOS in the industrial wastewater can be degraded within 6 hours and 4 hours, respectively. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T21:58:17Z (GMT). No. of bitstreams: 1 ntu-99-R97541124-1.pdf: 1323722 bytes, checksum: dfbd2809636b4c4fd31fce3536aa1616 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 誌謝 I
摘要 II Abstract III 目錄 IV 圖目錄 VI 表目錄 VII 第一章 緒論 1 1-1 前言 1 1-2 研究動機與假設 2 1-3 研究目標與內容 2 第二章 文獻回顧 3 2-1 全氟化合物之汙染源與危害 3 2-1-1 全氟辛酸之物化特性與其應用 3 2-1-2 全氟辛酸之環境宿命 5 2-1-3 全氟辛酸之危害 6 2-1-4 全氟辛酸相關法規 6 2-1-5 全氟化物相關之化合物簡介 7 2-2 臭氧高級氧化處理方法介紹 9 2-3 超音波反應機制與原理 12 2-4 處理全氟化物之相關文獻 14 第三章 實驗方法與材料 17 3-1 實驗內容與項目 17 3-1-1 控制實驗(吸附、酸鹼值影響) 19 3-1-2 臭氧濃度實驗 20 3-1-3 臭氧添加過氧化氫(O3/H2O2)實驗 22 3-1-4 自由基抑制(Radical scavenger)與基質影響(Matrix effect)實驗 23 3-1-5 初始濃度影響實驗 25 3-1-6 外加超音波場源影響實驗 26 3-1-7 實場廢水操作實驗 27 3-2 實驗材料與器材 29 3-2-1 藥品 29 3-2-2 儀器器材 31 3-3 實驗設備 32 3-4 分析方法與儀器 34 3-4-1 高效能液相層析串聯質譜儀 (HPLC-MS/MS) 34 3-4-2 離子層析儀 (Ion Chromatography) 36 第四章 結果與討論 37 4-1 控制實驗 – 反應器吸附實驗 37 4-2 臭氧直接反應(pH=5~6)實驗 38 4-3 臭氧濃度實驗 40 4-4 臭氧添加過氧化氫(O3/H2O2)實驗 45 4-5 自由基抑制(Radical scavenger)與基質影響(Matrix effect)實驗 47 4-6 初始濃度影響實驗 49 4-7 臭氧外加超音波場源影響實驗 51 4-8 實場廢水操作實驗 54 4-9 中間產物與反應機制 57 4-10 PFOA、PFOS混合處理實驗 65 4-11 鹼性臭氧處理PFOS實驗 65 第五章 結論與建議 67 5-1 結論 67 5-2 建議 69 第六章 未來工作 70 參考文獻 71 附錄 77 | |
dc.language.iso | zh-TW | |
dc.title | 鹼性條件下臭氧去除水中全氟辛酸 | zh_TW |
dc.title | Perfluorooctanoic acid ozonation in alkaline condition | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林正芳,康佩群 | |
dc.subject.keyword | 全氟碳化物,全氟辛酸,臭氧,鹼性臭氧,氫氧自由基, | zh_TW |
dc.subject.keyword | perfluorinated compounds (PFCs),perfluorooctanoic acid (PFOA),ozonation,alkaline ozonation,hydroxyl radical, | en |
dc.relation.page | 88 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2010-07-20 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
顯示於系所單位: | 環境工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf | 1.29 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。