Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10756
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林依依
dc.contributor.authorChao-Yuan Yangen
dc.contributor.author楊朝淵zh_TW
dc.date.accessioned2021-05-20T21:56:02Z-
dc.date.available2012-07-29
dc.date.available2021-05-20T21:56:02Z-
dc.date.copyright2010-07-29
dc.date.issued2010
dc.date.submitted2010-07-23
dc.identifier.citation王如馨,2005:颱風引發海表面溫度冷卻影響大氣邊界層之機制探討,國立台灣大學大氣科學研究所碩士論文,66p。
Barnes, G. M. and R. Fuentes, 2010: Eye Excess Energy and the Rapid Intensification of Hurricane Lili (2002). Mon. Wea. Rev., 138, 1446-1458.
Bister, M., and K.A. Emanuel, 1998: Dissipative heating and hurricane intensity. Meteor. Atm. Phys., 52, 233-240.
Braun, S. A., 2002: A cloud resolving simulation of Hurricane Bob (1991): Storm structure and eyewall buoyancy. Mon. Wea. Rev., 130, 1573–1592.
Chen, S. S., J. F. Price, W. Zhao, M. A. Donelan, and E. J. Walsh , 2007: The CBLAST Hurricane program and the next generation fully coupled atmosphere‐wave‐ocean models for hurricane research and prediction, Bull. Am. Meteorol. Soc., 88, 311–317.
Chu, J. H., C. R. Sampson, A. S. Levine, and E. Fukada, 2002: The Joint Typhoon Warning Center Tropical Cyclone Best-Tracks, 1945-2000, Available from JTWC.
Cram, T. A., J. Persing, M. T. Montgomery, and S. A. Braun, 2007: A Lagrangian trajectory view on transport and mixing processes between the eye, eyewall, and environment using a highresolution simulation of Hurricane Bonnie (1998). J. Atmos. Sci., 64, 1835–1856.
Dvorak, V., 1975: Tropical cyclone intensity analysis and forecasting from satellite imagery. Mon. Wea. Rev., 103, 420-430.
______, 1984: Tropical cyclone intensity analysis using satellite data. NOAA Tech. Report NESDIS 11. Available from NOAA/NESDIS, 5200 Auth Rd., Washington DC, 20233, 47pp.
______, 1995: Tropical clouds and cloud systems observed in satellite imagery: Tropical cyclones. Workbook Volume 2. Available from NOAA/NESDIS, 5200 Auth Rd., Washington DC, 20233.
Eastin, M. D., W. M. Gray, and P. G. Black, 2005a: Buoyancy of convective vertical motions in the inner core of intense hurricanes. Part I: General statistics. Mon. Wea. Rev., 133, 188–208.
Emanuel, K.A., 1988: The maximum intensity of hurricanes. J. Atmos. Sci., 45, 1143-1155.
______, 1991: The theory of hurricanes. Annual Rev. Fluid Mech., 23, 179-196.
______, 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 3969-3976.
______, 2000: Thermodynamic control of hurricane intensity. Nature, 401, 665–669.
Gray, W. M., and D. J. Shea, 1973: The hurricane’s inner core region. II. Thermal stability and dynamic characteristics. J. Atmos. Sci., 30, 1565–1576.
Guimond, S. R., G. M. Heymsfield and F. J. Turk, 2010: Multiscale Observations of Hurricane Dennis (2005): The Effects of Hot Tower on Rapid Intensification. J. Atmos. Sci., 67, 633–654.
Hayes, S. P., M. J. McPhaden, and J. M. Wallace, 1989: The influence of sea surface temperature on surface wind in the eastern equatorial Pacific. J. Clim., 2, 1500-1506.
Hendricks, E. A., M. T. Montgomery, and C. A. Davis, 2004: The role of ‘‘vortical’’ hot towers in the formation of Tropical Cyclone Diana (1984). J. Atmos. Sci., 61, 1209–1232.
Holland, G. J., 1997: The maximum potential intensity of tropical cyclones. J. Atmos. Sci., 54, 2519–2541.
Holliday, C. R., and A. H. Thompson, 1979: Climatological characteristics of rapidly intensifying typhoons. Mon. Wea. Rev., 107, 1022–1034.
Hong, X., S. W. Chang, S. Raman, L. K. Shay, and R. Hodur, 2000: The interaction between Hurricane Opal (1995) and a warm core eddy in the Gulf of Mexico. Mon. Wea Rev., 128, 1347–1365.
Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 1093–1108.
______, ______, and J. A. Knaff, 2010: A Revised Tropical Cyclone Rapid Intensification Index for the Atlantic and Eastern North Pacific Basins. Wea. Forecasting, 22, 220–241.
Lee, W. C., and M. M. Bell, 2007: Rapid intensification, eyewall contraction, and breakdown of Hurricane Charley (2004) near landfall. Geophys. Res. Lett., 34, L02802.
Levitus, S. and R. Gelfeld. 1992: NODC Inventory of Physical Oceanographic Profiles. Key to Oceanographic Records Documentation No. 18,NODC, Washington, D.C.
Lin, I-I, W. T. Liu, C.-C. Wu, J. C. H. Chiang, and C.-H. Sui, 2003: Satellite observations of modulation of surface winds by typhoon-induced upper ocean cooling. Geophys. Res. Lett., 30, 1131.
______, C. C. Wu, K. A. Emanuel, I. H. Lee, C. R. Wu, and I. F. Pun, 2005: The interaction of Supertyphoon Maemi (2003) with a warm ocean eddy. Mon. Wea. Rev., 133, 2635–2649.
______, ______, I. F. Pun, and D. S. Ko, 2008: Upper-Ocean Thermal Structure and the Western North Pacific Category 5 Typhoons. Part I: Ocean Features and the Category 5 Typhoons’ Intensification, Mon. Wea. Rev., 136, 3288–3306.
______, C. H. Chen, I. F. Pun, W. T. Liu, and C. C. Wu, 2009: Warm ocean anomaly, air sea fluxes, and the rapid intensification of tropical cyclone Nargis (2008). Geophys. Res. Lett., 36, L03817.
Marks, F. D., and L. K. Shay, 1998: Landfalling tropical cyclones: Forecast problems and associated research opportunities. Bull. Amer. Meteor. Soc., 79, 305–323.
Montgomery, M. T., M. M. Bell, S. D. Aberson, and M. L. Black, 2006: Hurricane Isabel (2003): New insights into the physics of intense storms. Part I: Mean vortex structure and maximum intensity estimates. Bull. Amer. Meteor. Soc., 87, 1335–1347.
______ and R. K. Smith, 2010: Notes and Correspondence On an analytical model for the rapid intensification of tropical cyclone. Q. J. R. Meteorol. Soc. 136, 549–551.
Ooyama K., 1969: Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci. 26: 3–40.
______, 1982: Conceptual evolution of the theory and modeling of the tropical cyclone. J. Meteor. Soc. Japan, 60, 369–380.
Persing, J., and M. T. Montgomery, 2003: Hurricane superintensity. J. Atmos. Sci., 60, 2349–2371.
Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys.Oceanogr., 11, 153–175.
______, T. B. Sanford, and G. Z. Forristall, 1994: Forced stage response to a moving hurricane. J. Phys. Oceanogr., 24, 233–260.
Reynolds, R. W., and T. M. Smith, 1994: Improved Global Sea Surface Temperature Analyses Using Optimum Interpolation. J. Clim., 7, 929-948.
Reasor, P. D., M. D. Eastin, and J. F. Gamache, 2009: Rapidly Intensifying Hurricane Guillermo (1997). Part I: Low-Wavenumber Structure and Evolution. Mon. Wea. Rev., 137, 603–631.
Rogers, R., 2010: Convective-Scale Structure and Evolution during a High-Resolution Simulation of Tropical Cyclone Rapid Intensification. J. Atmos. Sci., 67, 44–70.
Sanford, T.B., J. F. Price, J. B. Girton, and D. C. Webb, 2007: Highly resolved observations and simulations of the ocean response to a hurricane. Geophys. Res. Lett., 34, L13604.
Shay, L. K., G. J. Goni, and P. G. Black, 2000: Effects of a warm oceanic feature on Hurricane Opal. Mon. Wea. Rev., 128, 1366–1383.
Shea, D. J., and W. M. Gray, 1973: The hurricane’s inner core region. I. Symmetric and asymmetric structure. J. Atmos. Sci., 30, 1544–1564.
Sitkowski, M., and G. M. Barnes, 2009: Low-level thermodynamic, kinematic, and reflectivity fields of Hurricane Guillermo (1997) during rapid intensification. Mon. Wea. Rev., 137, 645–663.
Steiner, M., R. A. Houze, and S. E. Yuter, 1995: Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteor., 34, 1978–2007.
Venthem, J. D., and Bin Wang, 2007: Large-Scale Flow Patterns and Their Influence on the Intensification Rates of Western North Pacific Tropical Storms. Mon. Wea. Rev., 135, 1110–1127.
Webster, P., 2008: Myanmar’s deadly daffodil, Nature Geosci., 1, 488– 490.
Wallace, J. M., T. P. Mitchell, and C. Deser, 1989: The Influence of Sea-Surface Temperature on Surface Wind in the Eastern Equatorial Pacific: Seasonal and Interannual Variability. J. Clim., 2, 1492-1499.
Wang, Y., and C- C. Wu, 2004: Current understanding of tropical cyclone structure and intensity changes—A review. Meteor. Atmos. Phys., 87, 257–278.
Wu, C.-C., C. Y. Lee, and I-I Lin, 2007: The effect of the ocean eddy on tropical cyclone intensity. J. Atmos. Sci., 64, 3562–3578.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10756-
dc.description.abstract在熱帶氣旋的路徑預報已有長足進步的近20年間,強度預報精確度的進步仍然是十分地緩慢,因為強度變化是一個包含多重空間尺度的複雜問題,包含綜觀尺度、渦旋尺度、對流尺度、紊流尺度以及徵尺度,而在其中更加難以預報的現象就是快速增強(Rapid Intensification, RI)的現象。
在西北太平洋上近15年間,屬於超級颱風強度(強度達130kt以上)的颱風個案之中有百分之七十以上有發生快速增強的現象,只要當快速增強的現象發生在即將登陸前的時間點,在預警時間不足的狀況下將會對近岸地區造成十分大的損害。
本研究主要針對1994至2008年間西北太平洋上發生之70個超級颱風個案利用全球網格資料以及衛星觀測資料進行統計分析以及2009年兩個增強速率一快一慢的超級颱風個案利用海氣耦合模式進行高解析度數值模擬。在全球網格資料統計分析的結果顯示在颱風強度從category-1達到最大強度的過程中,綜觀環境場以及海洋場並沒有隨著不同的增強速度有明顯的關係;利用高解析度數值模擬的結果進行分析發現到內核區平均淨質量通量變化趨勢和強度變化趨勢配合地相當好,另外將內核區區分為對流區�層狀區可以發現到層狀區的動力結構對颱風強度有抑制作用而對流區的動力結構則是有助於颱風增強,而當層狀區佔內核區的比例減少後對流區佔的比例隨後增加使得低層垂直向上之淨質量通量增加,颱風強度就會有明顯的增強使得快速增加的產生。
zh_TW
dc.description.abstractWhile TC track forecasts have improved evidently in the past 20 years, progress in the accuracy of TC intensity forecasting is not obvious in contrast. Intensity change is a multi-scale interaction issue, including environmental, vortex, convective, turbulent and micro-scales. In such a complex problem, one of most difficult phenomenon to predict is rapid intensification (RI).
In the past 15 years, there are over 70 percents of supertyphoons in western North Pacific underwent RI once during their life time. If the onset of RI was just before landfall, it would cause tremendous damage to the area TC passes trough in the shortage of precaution.
This study will use the global analysis data and satellite observation to do the statistic for 70 supertyphoons during 1994-2008 period in western North Pacific and employ air-sea coupled model to proceed high-resolution simulations for two cases, one is RI case and the other is non-RI case.
The result of statistic of observation does not show apparent relationship between RI index and environment during TC intensifying period. While analyzing the output of high-resolution simulations, it shows the trend of vertical net mass flux well matched the simulated intensity trend. Besides, using the method of partitioning TC into convective and stratiform components demonstrates the stratiform components play a role in inhibiting vortex intensification while convective components play a role in helping the strengthening of vortex. If the percentage of stratiform components decreases and the percentage of convective components increases, RI will happen.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T21:56:02Z (GMT). No. of bitstreams: 1
ntu-99-R97229003-1.pdf: 34589279 bytes, checksum: 8ea4d737e11c3524840a68349ec17639 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents目錄
致謝 i
Abstract ii
摘要 iii
目錄 iv
圖表目錄 vi
第一章 前言 1
1.1 研究背景回顧 1
1.2 研究動機與目的 6
第二章 研究工具與研究方法 7
2.1 資料簡介 7
(a) JTWC Best Track Archive 7
(b) ECMWF TOGA Advanced Dataset 7
(c) TMI/AMSR-E Microwave Optimally Interpolated Sea Surface Temperature 7
(d) AVISO Sea Surface Height Anomaly 8
(e) HYCOM/NCODA Global 1/12° Analysis 8
(f) NODC World Ocean Atlas 1994 9
2.2 模式介紹 9
2.3 研究方法 10
2.3.1 颱風增強期及快速增強指數 (RI Index) 10
2.3.2 全球網格資料及衛星資料分析方法 10
第三章 研究結果 I - 1994~2008年70個超級颱風個案之觀測資料分析 13
3.1 綜觀環境場與快速增強指數分析結果 13
3.2 海洋場與快速增強指數分析結果 14
3.3 討論 14
(a) 快速增強指數的本質問題 14
(b) 超級颱風快速增強現象中綜觀環境場與海洋場的角色 15
第四章 研究結果 II - 高解析度數值模擬結果分析 17
4.1 個案選擇與模式設定 17
4.2 大氣場分析 19
4.2.1 綜觀尺度分析 19
4.2.2 軸對稱結構分析 20
4.2.3 渦旋尺度分析 21
4.2.4 對流尺度分析 26
4.3 海洋場分析 27
4.3.1 海表面溫度變化 27
4.3.2 上層海洋熱力結構變化 28
4.3.3 焓通量變化 29
4.4 討論 29
4.4.1 分析綜合討論 30
4.4.2 Choi-Wan_UN v.s. Melor_UN 31
4.4.3 Choi-Wan_UN v.s. Choi-Wan_CO 32
4.4.4 Melor_UN v.s. Melor_CO 33
第五章 總結及後續研究方向 35
參考文獻 38
附表 43
附圖 45
dc.language.isozh-TW
dc.title西北太平洋超級颱風快速增強現象之原因探討zh_TW
dc.titleRapid Intensification of Supertyphoons in the western North Pacificen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.coadvisor吳俊傑
dc.contributor.oralexamcommittee李清勝,隋中興,周昆炫
dc.subject.keyword快速增強,超級颱風,海氣耦合模式,內核動力結構,淨質量通量,zh_TW
dc.subject.keywordRapid Intensification,Supertyphoon,Air-sea Coupled Model,Internal Dynamics,Net Mass Flux.,en
dc.relation.page95
dc.rights.note同意授權(全球公開)
dc.date.accepted2010-07-26
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept大氣科學研究所zh_TW
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf33.78 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved