Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10736
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor闕志鴻(Tzihong Chiueh)
dc.contributor.authorHung-Yu Jianen
dc.contributor.author簡鴻裕zh_TW
dc.date.accessioned2021-05-20T21:54:19Z-
dc.date.available2010-08-01
dc.date.available2021-05-20T21:54:19Z-
dc.date.copyright2010-07-27
dc.date.issued2010
dc.date.submitted2010-07-27
dc.identifier.citationAllen, P. D., Driver, S. P., Graham, A. W., Cameron, E., Liske, J., & de Propris, R. 2006, MNRAS, 371, 2
Bell, E. F., McIntosh, D. H., Katz, N., & Weinberg, M. D. 2003, ApJS, 149, 289
Berlind, A. A. et al. 2003, ApJ, 593, 1
Berrier, J. C., Bullock, J. S., Barton, E. J., Guenther, H. D., Zentner, A. R., & Wechsler, R. H. 2006, ApJ, 652, 56
Blanton, M. R. et al. 2003, ApJ, 592, 819
Budavari, T. et al. 2003, ApJ, 595, 59
Coil, A. L., Newman, J. A., Cooper, M. C., Davis, M., Faber, S. M., Koo, D. C., & Willmer, C. N. 2006, ApJ, 644, 671
Cole, S., Aragon-Salamanca, A., Frenk, C. S., Navarro, J. F., & Zepf, S. E. 1994, MNRAS, 271, 781
Conroy, C. et al. 2005, ApJ, 635, 982
Conroy, C., Wechsler, R., & Kravtsov, A. 2006, ApJ, 647, 201
Cooper, M. C. et al. 2006, MNRAS, 370, 198
Cooper, M. C., Newman, J. A., Madgwick, D. S., Gerke, B. F., Yan, R., & Davis, M. 2005, ApJ, 634, 833
da Costa, L. N. et al. 1998, AJ, 116, 1
Davis, M., Efstathiou, G., S., F. C., & White, S. D. M. 1985, ApJ, 292, 371
Davis, M. et al. 2003, SPIE, 4834, 161
——. 2007, ApJ, 660, L1
Driver, S. P., Liske, J., Cross, N. J. G., De Propris, R., & Allen, P. D. 2005, MNRAS, 360, 81
Dunkley, J. et al. 2009, ApJS, 180, 306
Faber, S. M. et al. 2007, ApJ, 665, 265
Gabasch, A. et al. 2004, A&A, 412, 41
Ghigna, S., Moore, B., Governato, F., Lake, G., Quinn, T., & Stadel, J. 1998, MNRAS, 300, 146
Governato, F., Moore, B., Cen, R., Stadel, J., Lake, G., & Quinn, T. 1997, New Astronomy, 2, 91
Hester, J., & Tasitsiomi, A. 2010, ApJ, 715, 342
Hoekstra, H., Hsieh, B. C., Yee, H. K. C., Lin, H., & Gladders, M. D. 2005, ApJ, 635, 73
Ilbert, O. et al. 2005, A&A, 439, 863
Katz, N., Weinberg, D. H., Hernquist, L., & Miralda-Escude, J. 1996, ApJ, 457, L57
Kauffmann, G., Colberg, J. M., Diaferio, A., & White, S. D. M. 1999, MNRAS, 303, 188
Kauffmann, G., White, S. D. M., & Guiderdoni, B. 1993, MNRAS, 264, 201
Kitayama, Tetsu; Suto, Y. 1996, ApJ, 469, 480
Klypin, A., Gottl¨ober, S., & Kravsov, A. V. 1999, ApJ, 516, 530
Kravtsov, A. V., Berlind, A. A., Wechsler, R. H., Klypin, A. A., Gottloeber, S., Allgood, B., & Primack, J. R. 2004, ApJ, 609, 35
Lin, L. et al. 2010, ApJ, 718, 1158
Lin, L. et al. 2004, ApJ, 617, L9
——. 2008, ApJ, 681
Liske, J., Lemon, D. J., Driver, S. P., Cross, N. J. G., & Couch, W. J. 2003, MNRAS, 344, 307
Lotz, J. M., Jonsson, P., Cox, T. J., & Primack, J. R. 2008, MNRAS, 391, 1137
Neyrinck, M. C., Hamilton, A. J. S., & Gnedin, N. Y. 2004, MNRAS, 348, 1
Norberg, P. et al. 2002, MNRAS, 332, 827
Okamoto, T., & Habe, A. 1999, ApJ, 516, 591
Okamoto, T., & Nagashima, M. 2001, ApJ, 547, 109
——. 2003, ApJ, 587, 500
Riess, A. G. et al. 1998, Astron. J., 116, 1009
Sanchez, A. G., Baugh, C. M., Percival, W. J., Peacock, J. A., Padilla, N. D., Cole,
S., Frenk, C. S., & Norberg, P. 2006, MNRAS, 336, 189
Sanchez, A. G., Crocce, M., Cabre, A., Baugh, C. M., & Gaztanaga, E. 2010, MNRAS, 400, 1643
Seljak, U. et al. 2005, Phys. Rev., D71, 103515
Spergel, D. N. et al. 2003, ApJS, 148, 175
Springel, V. 2005, MNRAS, 364, 1105
Springel, V. et al. 2005a, Nature, 435, 629
——. 2005b, Nature, 435, 629
Springel, V., White, S. D. M., Tormen, G., & Kauffmann, G. 2001a, MNRAS, 328, 726
Springel, V., Yoshidaa, N., & White, S. D. 2001b, New Astronomy, 6, 79
Stadel, J., Katz, N., Weinberg, D. H., & Hernquist, L. 1997, SKID
Tegmark, M. et al. 2004, ApJ, 606, 702
Weinberg, D. H., Dave, R., Katz, N., & Hernquist, L. 2004, ApJ, 601, 1
White, S. D. M., Navarro, J. F., Evrard, A. E., & Frenk, C. S. 1993, Nature, 366, 429
Wirth, G. D. et al. 2004, AJ, 127, 3121
Yee, H. K. C. et al. 2000, ApJS, 129, 475
Zehavi, I. et al. 2002, ApJ, 571, 172
——. 2005, ApJ, 630, 1
Zentner, A. R., Berlind, A. A., Bullock, J. S., Kravtsov, A. V., & Wechsler, R. H. 2005, ApJ, 624, 505
Zheng, Z. et al. 2005, ApJ, 633, 791
Zheng, Z., Coil, A. L., & Zehavi, I. 2007, ApJ, 667, 760
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10736-
dc.description.abstract我們提出在宇宙摸擬中新的尋找星系暈的方法,再配合一星系形成的模型,我們可建立一星系樣本,經過一系列的與觀測數劇的比對,皆出現吻合的結果,因此我們相信,我們找到的樣本能正確的反應出真實宇宙中星系的分佈與演化,這些樣本將可進一步的被利用來研究星系未被探所的一些性質zh_TW
dc.description.abstractGalaxies can form in a sufficiently deep gravitational potential so that
efficient gas cooling occurs. We estimate that such potential is provided
by a halo of mass $M gtsim M_{c} approx 7.0 imes 10^{12} ~
(Delta_{c}(z) (1+z)^{3})^{-1/2} Msun$, where $Delta_{c}(z)$ is
the mean overdensity of spherically virialized objects formed at
redshift $z$, and $M_{c} approx 4.0 imes 10^{11} Msun$ at $z =
0$. Based on this criterion, our galaxy samples are constructed from cosmology simulation data by using HiFOF to select subhalos in those FOF halos that are more massive than $M_{c}$. There are far more dark subhalos than galaxy-hosting subhalos. Several tests against observations have been performed to examine our galaxy samples, including: (1) The differential galaxy
mass functions of this sample are found to be close to the
observation derived from the combination of the luminosity function
of the DEEP2 galaxies as well as the mass-to-light ratio from
Red-Sequence Cluster Survey at $z = 0.3$. (2) The galaxy
space density is analyzed as a function of redshift to examine the density
evolution, which is found to be roughly consistent with the
observational result based on the luminosity functions in
cite{fab07}. (3) The projected two point correlation functions (CF) of
our galaxy sample at $z$ = 0 and $z$ = 1 are in good agreement with those of the SDSS and DEEP2 galaxies,
respectively. (4) The HODs of our galaxy
samples show good agreement with the SDSS and DEEP2 data. (5) Finally,
the kinematic pair fractions for $r_{max}$ = 50 and 100 $kpc$ are
computed, and the evolution is parameterized as $(1+z)^{m}$.
Comparing with the results, m = $0.41pm0.14$ ($r_{max}$ = 50) and m
= $0.29pm0.05$ ($r_{max}$ = 100), in cite{lin08}, we found m
$approx$ 0.96 and m $approx$ 0.48 respectively from one of our
simulations.
Based on the consistency with observations, our galaxy
sample is believed to correctly represent galaxies in real universe,
and can be used to study other unexplored galaxy properties.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T21:54:19Z (GMT). No. of bitstreams: 1
ntu-99-D89222003-1.pdf: 5775451 bytes, checksum: 30c7bc652f47f7d29675aad23dbb02ae (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsTABLE OF CONTENTS
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2. Theoretical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Hierarchical Friends-of-Friends Algorithm (HiFOF) . . . . . . . . . . 5
2.3 Galaxy Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 BDM and HiFOF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3. Simulation Results and Observations . . . . . . . . . . . . . . . . . . . . . 21
3.1 Differential Mass Function . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Galaxy Density Evolution . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Two-Point Correlation Function . . . . . . . . . . . . . . . . . . . . . 27
3.4 Halo Occupation Distribution (HOD) . . . . . . . . . . . . . . . . . . 33
3.4.1 the HOD of HiFOF Samples . . . . . . . . . . . . . . . . . . . 33
3.4.2 Comparisons of the HOD between our galaxy samples and the
observations . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5 Pair Fraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4. Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.1 Possible Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5. The Environmental Effects on The Galaxy Merger Rate . . . . . . . . . . . 50
5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3.2 Merger Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.4.1 Environmental Indicators . . . . . . . . . . . . . . . . . . . . . 53
5.4.2 Cmg and Tmg . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.4.3 Fractional Merger Rate fmg . . . . . . . . . . . . . . . . . . . 62
5.5 Discussions and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 64
Appendix 67
A. the spline-softened potential . . . . . . . . . . . . . . . . . . . . . . . . . . 68
B. The influence of the virial parameter β and the highest level of the linking
length dc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
C. Two-Point Correlation Function and the projected correlation function . . 72
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
LIST OF FIGURES
2.1 An example of the HiFOF algorithm . . . . . . . . . . . . . . . . . . 6
2.2 The remaining mass ratio in term of subhalo mass . . . . . . . . . . . 8
2.3 The cumulative mass functions of subhalo samples . . . . . . . . . . . 11
2.4 Map for the distribution of subhalos . . . . . . . . . . . . . . . . . . . 13
2.5 Map for the DM distribution of A FOF Halo . . . . . . . . . . . . . . 14
2.6 A locally enlarged Map for the DM distribution of A FOF Halo . . . 16
2.7 Correlation functions for HiFOF and BDM Vmax selected subhalos . 17
2.8 Cumulative number density in terms of vmax . . . . . . . . . . . . . 19
2.9 Subhalo mass Vs. Vmax . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1 The Mh-Mg Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Differential mass functions . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 The Galaxy Density Evolution Diagram . . . . . . . . . . . . . . . . 25
3.4 The CF Diagram at z = 0 . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5 The CFs from galaxy samples and from HiFOF samples . . . . . . . . 28
3.6 The projected CF at z = 1 . . . . . . . . . . . . . . . . . . . . . . . . 29
3.7 r0 and γ as a function of density n at z = 0 . . . . . . . . . . . . . . 31
3.8 r0 and γ as a function of density n at z = 1 . . . . . . . . . . . . . . 32
3.9 The HOD Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.10 Mean number of subhalos ⟨Ns⟩ as a function of host halo mass in unit
of Mmin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.11 Comparisons between the Observational HODs and ours . . . . . . . 39
3.12 The pair fraction Diagram . . . . . . . . . . . . . . . . . . . . . . . . 40
4.1 The 3-D density and Mass profiles for HiFOF and BDM identified
subhalos in a cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 The comparison of CFs at z = 0 between galaxy samples with and
without the improvement process . . . . . . . . . . . . . . . . . . . . 48
4.3 The comparison of Nc at z = 0 between galaxy samples with and
without the improvement process . . . . . . . . . . . . . . . . . . . . 49
5.1 The nth-nearest-neighbor VS. median Distance Dp,n to the nth-nearestneighbor
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 The correlation between two environmental indicators, Mh and (1+δn) 54
5.3 Cmg and Tmg in terms of redshift z and the host halo mass Mh . . . . 56
5.4 Cmg and Tmg in terms of redshift z and overdensity (1 + δn) . . . . . 57
5.5 Cmg (a) and Tmg (b) in terms of overdensity (1 + δn) for different
redshift z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.6 the projection effect and 3-D rphysical vs. peculiar velocity difference . 61
5.7 Pair type fraction as a function of (1+δn) and 3-D rphysical vs. peculiar
velocity difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.8 Fractional merger rate as a function of (1 + δn) and redshift z . . . . 64
B.1 The influence of the virial parameter, β, and the highest level of the
linking length, dc, on the correlation function . . . . . . . . . . . . . 70
B.2 Mh-Mg relation with different values of dc . . . . . . . . . . . . . . . 71
LIST OF TABLES
2.1 Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.1 Fit Parameters for ⟨Ns⟩ Fitting Function . . . . . . . . . . . . . . . 36
dc.language.isoen
dc.title在拉姆達冷暗物質宇宙模擬中銀河系暈的分佈及其演化zh_TW
dc.titleDistribution of Galactic Halos and their Evolution
in Lambda CDM Cosmology
en
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree博士
dc.contributor.oralexamcommittee黃崇源(Chorng-Yuan Hwang),梅津敬一(Keiichi Umetsu),賴詩萍(Shih-Ping Lai),林俐暉(Lihwai Lin,)
dc.subject.keyword宇宙模擬,星系形成,星系演化,zh_TW
dc.subject.keywordcosmology: theory,galaxies: formation,galaxies: evolution,halos: large-scale-structure,methods: numerical,en
dc.relation.page83
dc.rights.note同意授權(全球公開)
dc.date.accepted2010-07-27
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf5.64 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved