請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10736完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 闕志鴻(Tzihong Chiueh) | |
| dc.contributor.author | Hung-Yu Jian | en |
| dc.contributor.author | 簡鴻裕 | zh_TW |
| dc.date.accessioned | 2021-05-20T21:54:19Z | - |
| dc.date.available | 2010-08-01 | |
| dc.date.available | 2021-05-20T21:54:19Z | - |
| dc.date.copyright | 2010-07-27 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-07-27 | |
| dc.identifier.citation | Allen, P. D., Driver, S. P., Graham, A. W., Cameron, E., Liske, J., & de Propris, R. 2006, MNRAS, 371, 2
Bell, E. F., McIntosh, D. H., Katz, N., & Weinberg, M. D. 2003, ApJS, 149, 289 Berlind, A. A. et al. 2003, ApJ, 593, 1 Berrier, J. C., Bullock, J. S., Barton, E. J., Guenther, H. D., Zentner, A. R., & Wechsler, R. H. 2006, ApJ, 652, 56 Blanton, M. R. et al. 2003, ApJ, 592, 819 Budavari, T. et al. 2003, ApJ, 595, 59 Coil, A. L., Newman, J. A., Cooper, M. C., Davis, M., Faber, S. M., Koo, D. C., & Willmer, C. N. 2006, ApJ, 644, 671 Cole, S., Aragon-Salamanca, A., Frenk, C. S., Navarro, J. F., & Zepf, S. E. 1994, MNRAS, 271, 781 Conroy, C. et al. 2005, ApJ, 635, 982 Conroy, C., Wechsler, R., & Kravtsov, A. 2006, ApJ, 647, 201 Cooper, M. C. et al. 2006, MNRAS, 370, 198 Cooper, M. C., Newman, J. A., Madgwick, D. S., Gerke, B. F., Yan, R., & Davis, M. 2005, ApJ, 634, 833 da Costa, L. N. et al. 1998, AJ, 116, 1 Davis, M., Efstathiou, G., S., F. C., & White, S. D. M. 1985, ApJ, 292, 371 Davis, M. et al. 2003, SPIE, 4834, 161 ——. 2007, ApJ, 660, L1 Driver, S. P., Liske, J., Cross, N. J. G., De Propris, R., & Allen, P. D. 2005, MNRAS, 360, 81 Dunkley, J. et al. 2009, ApJS, 180, 306 Faber, S. M. et al. 2007, ApJ, 665, 265 Gabasch, A. et al. 2004, A&A, 412, 41 Ghigna, S., Moore, B., Governato, F., Lake, G., Quinn, T., & Stadel, J. 1998, MNRAS, 300, 146 Governato, F., Moore, B., Cen, R., Stadel, J., Lake, G., & Quinn, T. 1997, New Astronomy, 2, 91 Hester, J., & Tasitsiomi, A. 2010, ApJ, 715, 342 Hoekstra, H., Hsieh, B. C., Yee, H. K. C., Lin, H., & Gladders, M. D. 2005, ApJ, 635, 73 Ilbert, O. et al. 2005, A&A, 439, 863 Katz, N., Weinberg, D. H., Hernquist, L., & Miralda-Escude, J. 1996, ApJ, 457, L57 Kauffmann, G., Colberg, J. M., Diaferio, A., & White, S. D. M. 1999, MNRAS, 303, 188 Kauffmann, G., White, S. D. M., & Guiderdoni, B. 1993, MNRAS, 264, 201 Kitayama, Tetsu; Suto, Y. 1996, ApJ, 469, 480 Klypin, A., Gottl¨ober, S., & Kravsov, A. V. 1999, ApJ, 516, 530 Kravtsov, A. V., Berlind, A. A., Wechsler, R. H., Klypin, A. A., Gottloeber, S., Allgood, B., & Primack, J. R. 2004, ApJ, 609, 35 Lin, L. et al. 2010, ApJ, 718, 1158 Lin, L. et al. 2004, ApJ, 617, L9 ——. 2008, ApJ, 681 Liske, J., Lemon, D. J., Driver, S. P., Cross, N. J. G., & Couch, W. J. 2003, MNRAS, 344, 307 Lotz, J. M., Jonsson, P., Cox, T. J., & Primack, J. R. 2008, MNRAS, 391, 1137 Neyrinck, M. C., Hamilton, A. J. S., & Gnedin, N. Y. 2004, MNRAS, 348, 1 Norberg, P. et al. 2002, MNRAS, 332, 827 Okamoto, T., & Habe, A. 1999, ApJ, 516, 591 Okamoto, T., & Nagashima, M. 2001, ApJ, 547, 109 ——. 2003, ApJ, 587, 500 Riess, A. G. et al. 1998, Astron. J., 116, 1009 Sanchez, A. G., Baugh, C. M., Percival, W. J., Peacock, J. A., Padilla, N. D., Cole, S., Frenk, C. S., & Norberg, P. 2006, MNRAS, 336, 189 Sanchez, A. G., Crocce, M., Cabre, A., Baugh, C. M., & Gaztanaga, E. 2010, MNRAS, 400, 1643 Seljak, U. et al. 2005, Phys. Rev., D71, 103515 Spergel, D. N. et al. 2003, ApJS, 148, 175 Springel, V. 2005, MNRAS, 364, 1105 Springel, V. et al. 2005a, Nature, 435, 629 ——. 2005b, Nature, 435, 629 Springel, V., White, S. D. M., Tormen, G., & Kauffmann, G. 2001a, MNRAS, 328, 726 Springel, V., Yoshidaa, N., & White, S. D. 2001b, New Astronomy, 6, 79 Stadel, J., Katz, N., Weinberg, D. H., & Hernquist, L. 1997, SKID Tegmark, M. et al. 2004, ApJ, 606, 702 Weinberg, D. H., Dave, R., Katz, N., & Hernquist, L. 2004, ApJ, 601, 1 White, S. D. M., Navarro, J. F., Evrard, A. E., & Frenk, C. S. 1993, Nature, 366, 429 Wirth, G. D. et al. 2004, AJ, 127, 3121 Yee, H. K. C. et al. 2000, ApJS, 129, 475 Zehavi, I. et al. 2002, ApJ, 571, 172 ——. 2005, ApJ, 630, 1 Zentner, A. R., Berlind, A. A., Bullock, J. S., Kravtsov, A. V., & Wechsler, R. H. 2005, ApJ, 624, 505 Zheng, Z. et al. 2005, ApJ, 633, 791 Zheng, Z., Coil, A. L., & Zehavi, I. 2007, ApJ, 667, 760 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10736 | - |
| dc.description.abstract | 我們提出在宇宙摸擬中新的尋找星系暈的方法,再配合一星系形成的模型,我們可建立一星系樣本,經過一系列的與觀測數劇的比對,皆出現吻合的結果,因此我們相信,我們找到的樣本能正確的反應出真實宇宙中星系的分佈與演化,這些樣本將可進一步的被利用來研究星系未被探所的一些性質 | zh_TW |
| dc.description.abstract | Galaxies can form in a sufficiently deep gravitational potential so that
efficient gas cooling occurs. We estimate that such potential is provided by a halo of mass $M gtsim M_{c} approx 7.0 imes 10^{12} ~ (Delta_{c}(z) (1+z)^{3})^{-1/2} Msun$, where $Delta_{c}(z)$ is the mean overdensity of spherically virialized objects formed at redshift $z$, and $M_{c} approx 4.0 imes 10^{11} Msun$ at $z = 0$. Based on this criterion, our galaxy samples are constructed from cosmology simulation data by using HiFOF to select subhalos in those FOF halos that are more massive than $M_{c}$. There are far more dark subhalos than galaxy-hosting subhalos. Several tests against observations have been performed to examine our galaxy samples, including: (1) The differential galaxy mass functions of this sample are found to be close to the observation derived from the combination of the luminosity function of the DEEP2 galaxies as well as the mass-to-light ratio from Red-Sequence Cluster Survey at $z = 0.3$. (2) The galaxy space density is analyzed as a function of redshift to examine the density evolution, which is found to be roughly consistent with the observational result based on the luminosity functions in cite{fab07}. (3) The projected two point correlation functions (CF) of our galaxy sample at $z$ = 0 and $z$ = 1 are in good agreement with those of the SDSS and DEEP2 galaxies, respectively. (4) The HODs of our galaxy samples show good agreement with the SDSS and DEEP2 data. (5) Finally, the kinematic pair fractions for $r_{max}$ = 50 and 100 $kpc$ are computed, and the evolution is parameterized as $(1+z)^{m}$. Comparing with the results, m = $0.41pm0.14$ ($r_{max}$ = 50) and m = $0.29pm0.05$ ($r_{max}$ = 100), in cite{lin08}, we found m $approx$ 0.96 and m $approx$ 0.48 respectively from one of our simulations. Based on the consistency with observations, our galaxy sample is believed to correctly represent galaxies in real universe, and can be used to study other unexplored galaxy properties. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T21:54:19Z (GMT). No. of bitstreams: 1 ntu-99-D89222003-1.pdf: 5775451 bytes, checksum: 30c7bc652f47f7d29675aad23dbb02ae (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | TABLE OF CONTENTS
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. Theoretical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Hierarchical Friends-of-Friends Algorithm (HiFOF) . . . . . . . . . . 5 2.3 Galaxy Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4 BDM and HiFOF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3. Simulation Results and Observations . . . . . . . . . . . . . . . . . . . . . 21 3.1 Differential Mass Function . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2 Galaxy Density Evolution . . . . . . . . . . . . . . . . . . . . . . . . 25 3.3 Two-Point Correlation Function . . . . . . . . . . . . . . . . . . . . . 27 3.4 Halo Occupation Distribution (HOD) . . . . . . . . . . . . . . . . . . 33 3.4.1 the HOD of HiFOF Samples . . . . . . . . . . . . . . . . . . . 33 3.4.2 Comparisons of the HOD between our galaxy samples and the observations . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.5 Pair Fraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4. Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.1 Possible Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5. The Environmental Effects on The Galaxy Merger Rate . . . . . . . . . . . 50 5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.3.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.3.2 Merger Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5.4.1 Environmental Indicators . . . . . . . . . . . . . . . . . . . . . 53 5.4.2 Cmg and Tmg . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.4.3 Fractional Merger Rate fmg . . . . . . . . . . . . . . . . . . . 62 5.5 Discussions and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 64 Appendix 67 A. the spline-softened potential . . . . . . . . . . . . . . . . . . . . . . . . . . 68 B. The influence of the virial parameter β and the highest level of the linking length dc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 C. Two-Point Correlation Function and the projected correlation function . . 72 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 LIST OF FIGURES 2.1 An example of the HiFOF algorithm . . . . . . . . . . . . . . . . . . 6 2.2 The remaining mass ratio in term of subhalo mass . . . . . . . . . . . 8 2.3 The cumulative mass functions of subhalo samples . . . . . . . . . . . 11 2.4 Map for the distribution of subhalos . . . . . . . . . . . . . . . . . . . 13 2.5 Map for the DM distribution of A FOF Halo . . . . . . . . . . . . . . 14 2.6 A locally enlarged Map for the DM distribution of A FOF Halo . . . 16 2.7 Correlation functions for HiFOF and BDM Vmax selected subhalos . 17 2.8 Cumulative number density in terms of vmax . . . . . . . . . . . . . 19 2.9 Subhalo mass Vs. Vmax . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.1 The Mh-Mg Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2 Differential mass functions . . . . . . . . . . . . . . . . . . . . . . . . 24 3.3 The Galaxy Density Evolution Diagram . . . . . . . . . . . . . . . . 25 3.4 The CF Diagram at z = 0 . . . . . . . . . . . . . . . . . . . . . . . . 27 3.5 The CFs from galaxy samples and from HiFOF samples . . . . . . . . 28 3.6 The projected CF at z = 1 . . . . . . . . . . . . . . . . . . . . . . . . 29 3.7 r0 and γ as a function of density n at z = 0 . . . . . . . . . . . . . . 31 3.8 r0 and γ as a function of density n at z = 1 . . . . . . . . . . . . . . 32 3.9 The HOD Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.10 Mean number of subhalos ⟨Ns⟩ as a function of host halo mass in unit of Mmin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.11 Comparisons between the Observational HODs and ours . . . . . . . 39 3.12 The pair fraction Diagram . . . . . . . . . . . . . . . . . . . . . . . . 40 4.1 The 3-D density and Mass profiles for HiFOF and BDM identified subhalos in a cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.2 The comparison of CFs at z = 0 between galaxy samples with and without the improvement process . . . . . . . . . . . . . . . . . . . . 48 4.3 The comparison of Nc at z = 0 between galaxy samples with and without the improvement process . . . . . . . . . . . . . . . . . . . . 49 5.1 The nth-nearest-neighbor VS. median Distance Dp,n to the nth-nearestneighbor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.2 The correlation between two environmental indicators, Mh and (1+δn) 54 5.3 Cmg and Tmg in terms of redshift z and the host halo mass Mh . . . . 56 5.4 Cmg and Tmg in terms of redshift z and overdensity (1 + δn) . . . . . 57 5.5 Cmg (a) and Tmg (b) in terms of overdensity (1 + δn) for different redshift z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.6 the projection effect and 3-D rphysical vs. peculiar velocity difference . 61 5.7 Pair type fraction as a function of (1+δn) and 3-D rphysical vs. peculiar velocity difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.8 Fractional merger rate as a function of (1 + δn) and redshift z . . . . 64 B.1 The influence of the virial parameter, β, and the highest level of the linking length, dc, on the correlation function . . . . . . . . . . . . . 70 B.2 Mh-Mg relation with different values of dc . . . . . . . . . . . . . . . 71 LIST OF TABLES 2.1 Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.1 Fit Parameters for ⟨Ns⟩ Fitting Function . . . . . . . . . . . . . . . 36 | |
| dc.language.iso | en | |
| dc.title | 在拉姆達冷暗物質宇宙模擬中銀河系暈的分佈及其演化 | zh_TW |
| dc.title | Distribution of Galactic Halos and their Evolution
in Lambda CDM Cosmology | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 黃崇源(Chorng-Yuan Hwang),梅津敬一(Keiichi Umetsu),賴詩萍(Shih-Ping Lai),林俐暉(Lihwai Lin,) | |
| dc.subject.keyword | 宇宙模擬,星系形成,星系演化, | zh_TW |
| dc.subject.keyword | cosmology: theory,galaxies: formation,galaxies: evolution,halos: large-scale-structure,methods: numerical, | en |
| dc.relation.page | 83 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2010-07-27 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf | 5.64 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
