Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10719
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳宏宇
dc.contributor.authorNien-Chiao Tsouen
dc.contributor.author鄒年喬zh_TW
dc.date.accessioned2021-05-20T21:52:49Z-
dc.date.available2012-08-03
dc.date.available2021-05-20T21:52:49Z-
dc.date.copyright2010-07-29
dc.date.issued2010
dc.date.submitted2010-07-27
dc.identifier.citation中文部分
水利署 (2009) 台灣水文年報總冊,經濟部水利署。
北區水資源局 (2005) 經濟部水利署北區水資源局九十四年年報,共307頁。
北區水資源局 (2008) 經濟部水利署北區水資源局九十七年年報,共314頁。
北區水資源局 (2009) 經濟部水利署北區水資源局九十八年年報,共305頁。
何春蓀 (1986) 台灣地質概論-台灣地質圖說明書,經濟部中央地質調查所,共163頁。
吳舜華 (2006) 利用雨滴譜儀分析不同醬水系統之微物理特性研究,國立中央大學大氣物理研究所碩士論文,共100頁。
呂銘翔、陳宏宇 (2009) 新武呂溪流域的山崩與輸砂量在地震與颱風事件中的相對應關係,工程環境會刊,第22期,21-54。
林雨我、徐晉準 (1988) 侵襲台灣颱風之分析研究,氣象學報,34,4,196-215。
林冠瑋、莊善傑、袁承偉、陳宜徽、陳宏宇 (2007) 台灣中北部地區河流集水區之山崩與輸砂量之關係,工程環境會刊,第19期,81-96。
林業試驗所 (2007) 97年台灣土壤資源資訊建置報告書,共182頁。
胡剛、毛爾威 (1986) 台灣地質圖說明書-圖幅第8號,桃園,經濟部中樣地質調查所。
國家災害防救科技中心 (2005) 石門水庫土砂災害問題分析,共45頁。
陳培元 (2008) 台灣地質,台灣省應用地質技師公會,共500頁。
塗明寬、陳文政 (1991) 台灣地質圖說明書-圖幅第13號,竹東,經濟部中樣地質調查所。
楊政潭 (2002) 雷達回波應用於颱風降雨空間分佈與總量之研究-以納莉颱風為例,國立中央大學水文科學研究所碩士論文,共93頁。
鳳雷 (1992) 雷達回波垂直結構與降水定量估計-楊希颱風,國立台灣大學大氣科學研究所碩士論文,共69頁。
外文部分
Agassi, M., Morin, J. and Shainberg, I. (1985) Effect of Raindrop Impact Energy and Water Salinity on Infiltration Rates of Sodic Soils. Soil Science Society of America Journal, Vol. 49, pp. 186-190.
Aleotti, P. (2004) A warming system for rainfall-induced shallow failures. Engineering Geology, Vol. 73, pp. 247-265.
ASTM (2006) Annual books of ASTM standards.
Atlas, D. and Ulbrich, C. W. (1977) Path- and area integrated rainfall measurement by microwave attenuation in the 1-3 cm band. Journal of Applied Meteorology, Vol. 16, pp. 1322-1331.
Battan, L. J. (1973) Radar Observations of the Atmosphere. University of Chicago Press, pp. 324.
Beard, K. V. (1976) Terminal velocity and shape of cloud and precipitation drops aloft. Journal of Atmosperic Sciences, Vol. 33, pp. 851-864.
Bent, A. E. (1943) Radar echoes from atmospheric phenomena. MIT radiation laboratory Rep., No. 173, pp. 10.
Brandes, E. A., Zhang, G. and Vivekanandan, J. (2003) An evaluation of a drop distribution based rainfall estimator. Journal of Applied Meteorology, Vol. 42, pp. 652-660.
Caine, N. (1980) The rainfall intensity – duration control of shallow landslides and debris flows. Geografiska Annaler. Series A, Physical Geography, Vol. 62, No. 1/2, pp.23-27.
Chang, K. T., Chiang, S. H. and Lei, F. (2008) Analysing the Relationship Between Typhoon-Triggered Landslides and Critical Rainfall Conditions. Earth Surface Processes and Landforms, Vol. 33, pp. 1261-1271.
Chen, C. S., Chen, W. C., Chen, Y. L., Lin, P. L. and Lai, H. C. (2005) Investigation of orographic effects on two heavy rainfall events over southwestern Taiwan during the Mei-yu season. Atmospheric Research, Vol. 25, pp. 101-130.
Chuang, S. J., Chen, H., Lin, G. W., Lin, C. W. and Chang, C. P. (2009) Increase in basin sediment yield from landslides in storms following major seismic disturbance. Engineering Geology, Vol. 103, pp. 59-65.
Dadson, S. J. (2004) Erosion of an Active Mountain Belt. Ph. D. Thesis, Department of Earth Sciences, University of Cambridge.
Dahal, R. K., and Hasegawa, S. (2009) Representative rainfall thresholds for landslides in the Nepal Himalaya. Geomorphology, Vol. 100, pp. 498-510.
Das, B. M. (2006) Principles of Geotechnical Engineering. 6th edition.
Diskin, M. H. and Nazimmov, N. (1996) Ponding time and infiltration capacity variation during steady rainfall. Journal of Hydrology, Vol. 178, pp. 369-380.
Ellison, W. D. (1944) Studies of raindrop erosion. Agricultural Engineering, Vol. 25, pp. 131-136 see also pp. 181-182.
Hall, M. J. (1970) Use of the stain method in determining the drop size distribution of coarse liquid sprays. Transactions of the American Society of Agricultural Engineers, Vol. 13, pp. 33-37 see also pp. 41.
Head, K. H. (1994) Manual of soil laboratory testing. 2nd edition.
Hovious, N., Stark, C. P., and Allen, P. A. (1997) Sediment flux from an active mountain belt derived by landslide mapping. Geology, Vol. 25, pp. 231-234.
Hovious, N., Stark, C. P., Chu, H., and Lin, J. (2000) Supply and removal of sediment in a landslide-dominated mountain belt: Central Range, Taiwan. Journal of Geology, Vol. 108, pp. 73-89.
ISRM (1981) Rock characterization testing & monitoring: ISRM suggested methods. Pergamon, pp. 1-121.
Iverson, R. M. (2000) Landslide triggering by rain infiltration. Water Resources Research, Vol. 36, No. 7, pp. 1897-1910.
Johnson and Wichern, D. W. (1982) Applied Multivariate Statistical Analysis. Prentice Hall, Englewood Cliffs, NJ.
Joss, J., Schram, and Waldvogel, A. (1967) Ein Spectrograph für Nieder-slagströpfe mit automatischer Auswertung. Pure and Applied Geophysics, Vol. 68, pp. 240-246.
Joss, J., Schram, Thomas, J. C. and Waldvogel, A. (1968) On the quantitative determination of precipitation by radar. Scientific Communication, No. 63, Department of the Federal Commission on the study of Hail Formation and Hail Suppression, Ticinese Observatory of the Swiss Central Meteorological Institute, Federal Institute of Technology, Zurich, pp. 38.
Kinnell, P. I. A. (1980) Rainfall intensity-kinetic energy relationships for soil loss prediction. Soil Science Society of America Proceedings, Vol. 45, pp. 153-155.
Law, J. O. (1941) Measurements of fall-velocity of water-drops and raindrops. Transactions of the American Geophysical Union, Vol. 24, pp. 452.
Law, J. O. and Parsons, D. A. (1943) The relation of raindrop size to intensity. Transactions of the American Geophysical Union, Vol. 26, pp. 452-460.
Lin, G. W., Chen, H., Chen, Y. H. and Horng, M. J. (2008) Influence of typhoons and earthquakes on rainfall-induced landslides and suspended sediments discharge, Engineering Geology. Vol. 97, pp. 32-41.
Lin, G. W., Chen, H., Hovius, N., Horng, M. J., Dadson, S., Meunier, P. and Lines, M. (2008) Effects of earthquake and cyclone sequencing on landsliding and fluvial sediment transfer in a mountain catchmen. Earth Surface Processes and Landforms, Vol. 33, pp. 1354-1373
Marshall, J. S. and Palmer, W. Mc K. (1948) The distribution of raindrops with size. Journal of Meteorology, Vol. 5, pp. 165-166.
Marshall, J. S., Langille, R. C. and Palmer, W. Mc K. (1947) Measurement of rainfall by radar. Journal of Meteorology, Vol. 4, pp. 186-192.
Mihara, Y. (1951) Raindrops and soil erosion. Bulletin of the National Institute of Agricultural Science, Series A1, Japan, pp. 48-51
Rayleigh, L. (1871) On the scattering of light by small particles. Philosophical Magazine, Vol. 41, pp. 447-452.
Sidle, R. C., Swanston, D. N. (1982) Analysis of small debris flow in coastal Alaska. Canadian Geotechnical Journal, Vol. 19, pp. 167-174.
van Dijk, A.I.J.M, Bruijnzeel, L. A., and Rosewell, C. J. (2002) Rainfall intensity-kinetic energy relationships: a critical literature appraisal. Journal of Hydrology, Vol. 261, pp. 1-23.
Walling, D. E. (1977) Assessing the accuracy of suspended sediment rating curves for a small basin. Water Resources Research, Vol. 13, pp. 531-538.
Wiesner, J. (1895) Beiträge zur Kentniss der Grösze de tropischen Regens, Akademie der Wissenschaften. Mathematika-Naturwissenschaften Klasse, Vol. 104, Sitz Berlin Verlag, pp. 1397-1434.
Wilson, J. W. (1970) Integration of radar and raingauge data for improved rainfall measurement. Journal of Applied Meteorology, Vol. 9, pp. 489-497.
Wischmeier, W. H. and Simth, D. D. (1958) Rainfall energy and its relation to soil loss. Transactions of the American Geophysical Union, Vol. 39, pp. 285-291.
Wischmeier, W. H., and Smith, D. D. (1978) Prediction Rainfall Erosion Losses. USDA Agricultural Handbook No. 537.
Xin, L., Recuter, G. and Larochelle, B. (1997) Reflectivity-rain rate relationship for convective rainshowers in Edmonton. Atmosphere Ocean, Vol. 35, pp. 513-521.
Zhang, G., Vivekanandan, J. and Brandes, E. A. (2001) A method for estimating rainrate and drop size distribution from polarmetric radar measurements. IEEE Transactions on Geosciences and Remote sensing, Vol. 39, No.4, pp. 830-841.
Zhang, J., Howard, K. and Gourley, J. J. (2005) Constructing three-dimensional multiple radar reflectivity mosaics: examples of convective storms and stratiform rain echoes. Journal of Atmosphere and Ocean Technology, Vol. 22, pp. 30-42.
Zhang, J., Howard, K., Chang, P. L., Chiu, T. K., Chen, C. R., Langston, C., Xia, W., Kaney, B. and Lin, P. F. (2009) High-Resolution QPE System for Taiwan. Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications, pp. 147-162.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10719-
dc.description.abstract本研究主要是利用中央氣象局之劇烈天氣監測系統 (QPESUMS) 所收集的雨量資料,並配合現地撞擊式雨滴譜儀 (JWD) 的觀測資料,來探討2005年瑪莎颱風及2008年辛樂克颱風期間,在石門水庫集水區內的降雨特性相對崩塌及輸砂量的影響關係。研究結果顯示,當降雨強度超過40 mm/hr時,本研究區之降雨動能會趨近於 28.73 J/m2 mm。而白石溪子集水區在兩次颱風事件中,所累積之降雨動能皆超過17000 J/m2,為所有子集水區中分佈最高者,其輸砂量佔了全區的45%以上。另外,從福衛二號衛星影像判釋發現,研究區內的崩塌率,在兩次颱風事件中分別為1.03%及0.96%,沒有明顯的差異,而區域內的澳底層、乾溝層及大桶山層,之崩塌面積佔了全區的80%以上,其中又以大桶山層的33%為最高,這與其岩石強度57.1 MPa,以及單位體積節理數約19.5條/m3有相當之關連性。2005年瑪莎颱風崩塌的新生率74.7%,及重現率31.9%,比2008年辛樂克颱風的66.1%及24.6%高,這可能與瑪莎颱風於44小時內的累積雨量632.5 mm有關。
從兩次颱風事件中的降雨動能與輸砂量對比發現,當降雨動能累積超過2000 J/m2時,河水中的輸砂量會有明顯上升的趨勢,這可能是因為當降雨動能累積到此門檻值時,舊有的崩塌地會開始再次的活動,或是新的崩塌地開始發生,使得這些崩塌材料被大量地表逕流沖刷至河道中。另外,從雙偏極化雷達所估算之降雨量及降雨動能,雖然較劇烈天氣監測系統與現地撞擊式雨滴譜儀觀測資料小,但其有關空間解析度之雨滴粒徑分布估算能力,則有助於了解降雨量及降雨動能的分布對崩塌及輸砂量之影響。
zh_TW
dc.description.abstractRainfall properties had been mentioned as an important factor to trigger landslides of watershed in many literatures. In this study, I try to use the rainfall data of the QPSUMS (Quantitative Precipitation Estimation and Segregation Using Multiple Sensor) from Central Weather Bureau and JWD (Joss-Waldvogel Disdrometer) data to figure out the relationship between rainfall, landslides and sediment discharge during the typhoon Matsa and typhoon Sinlaku. Investigation results indicate that the rainfall kinetic energy is approach to the 29 J/m2-mm when the rainfall intensity exceeds 40 mm/hr. During these events, the highest kinetic energy of accumulated rainfall was reached to 17,000 J/m2 around the Siouluan sub-watershed. The sediment discharge of the Bai-shi sub-watershed was more than 2.6 Mt, and occupied around 45% in total of the study area. The landslide ratio of the study area is 1.03% in Matsa typhoon event and 0.96% in Sinlaku typhoon event by using the Formosa II images judgments. The various formations of Aoti, Kankou and Datunshang have more than 80% landslide distribution in total study areas, and the Datunshang Formation have highest distribution 33%. The results on the above mentioned have links with rock strength 57.1 MPa and volumetric joint 19.5. The new generation ratio 74.7% and reactivated ratio 31.9% in typhoon Matsa are higher than typhoon Sinlaku in 66.1% and 24.6%. It seems to have relative connection with accumulated rainfall 632.5 mm in 44 hours during typhoon Matsa.
Compared with rainfall kinetic energy and sediment discharge in these events, the sediment discharge increased obviously when the accumulated rainfall kinetic energy exceeds 2000 J/m2. This result show that the accumulated rainfall kinetic energy of 2000 J/m2 is seems a thresholds value in triggering landslide. It means the previous landslides were reactive or new landslides occur when the accumulated rainfall kinetic energy exceeds this thresholds value. And these materials were be flush out by the massive runoff. In this study, I also use the Polarmetric Dopplar Radar to estimate the rainfall rate and kinetic energy. Although the results from Polarmetric Dopplar Radar are smaller than QPESUMS couples with JWD estimation, the high resolution in spaces of the rainfall rate and kinetic energy are very helpful to understanding the rainfall distribution affect the landslide and sediment yields.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T21:52:49Z (GMT). No. of bitstreams: 1
ntu-99-R97224115-1.pdf: 5989341 bytes, checksum: a6bcd7b66b58b15c4f1abc4333498c8b (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents致謝
中文摘要............................................................I
英文摘要...........................................................II
目錄...............................................................IV
圖目錄............................................................VII
表目錄.............................................................IX
第一章 緒論........................................................1
1.1 研究動機與目的.........................................1
1.2 地理位置與交通概況.....................................2
第二章 前人研究....................................................4
2.1 雷達與降雨.............................................4
2.2 雨滴粒徑及降雨動能.....................................6
2.3 降雨與崩塌及輸砂.......................................8
第三章 區域概況...................................................10
3.1 地形概況..............................................10
3.2 區域地質概況..........................................13
3.3 區域土壤分佈..........................................16
3.4 氣候與水文概況........................................19
3.5 颱風事件..............................................21
第四章 研究方法...................................................23
4.1 野外調查..............................................23
4.1.1 地質踏勘........................................23
4.1.2 樣品採集........................................23
4.2 實驗室試驗............................................24
4.2.1 岩石部分........................................24
4.2.2 土壤部分........................................24
4.3 降雨資料之估算........................................27
4.3.1 撞擊式雨滴譜儀..................................27
4.3.2 雷達降雨資料....................................29
4.4 地理資訊系統分析......................................33
4.4.1 衛星影像正射....................................33
4.4.2 崩塌地判釋......................................33
4.4.3 降雨量之統計....................................34
4.5 輸砂量之計算..........................................36
第五章 研究結果...................................................37
5.1 岩石部分..............................................37
5.2 土壤部分..............................................39
5.3 雨滴譜儀觀測結果..,,..................................41
5.4 全區降雨量及降雨動能..................................46
5.5 雙偏極化雷達降雨量及降雨動能..........................51
5.6 崩塌地之統計..........................................52
5.7 颱風期間輸砂量........................................60
第六章 降雨特性與崩塌及輸砂量之關係...............................62
6.1 降雨動能與降雨強度....................................62
6.2 降雨因子與崩塌率......................................63
6.3 降雨因子與崩塌及輸砂量之關係..........................65
6.4 降雨動能之崩塌門檻....................................71
第七章 討論.......................................................74
7.1 雷達降雨估算之差異....................................74
7.2 降雨估算結果比較......................................78
7.3 雨滴譜儀參數..........................................81
第八章 結論.......................................................83
參考文獻...........................................................84
附錄一 年度雨量表.................................................91
附錄二 年度降雨天數統計表.........................................92
附錄三 野外露頭調查結果...........................................93
附錄四 岩石部分之試驗方法.........................................95
附錄五 土壤自然物理性質試驗方法..................................100
附錄六 土壤直接剪力試驗方法......................................104
附錄七 山崩判釋之衛星影像列表....................................105
附錄八 崩塌率計算公式............................................106
附錄九 岩體性質對照表............................................107
附錄十 土壤自然物理性質試驗結果..................................108
附錄十一 土壤力學試驗結果........................................110
附錄十二 雨滴譜儀觀測統計........................................112
附錄十三 颱風事件崩塌統計表......................................113
dc.language.isozh-TW
dc.title石門水庫集水區之降雨特性對崩塌及輸砂量的關係zh_TW
dc.titleThe relationship between rainstorm , landslide and sediment discharge in Shihmen reservoiren
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee周仲島,陳連晃,俞旗文,尹孝元
dc.subject.keyword降雨動能,崩塌,輸砂量,zh_TW
dc.subject.keywordRainfall kinetic energy,Landslide,Sediment discharge,en
dc.relation.page114
dc.rights.note同意授權(全球公開)
dc.date.accepted2010-07-29
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf5.85 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved