請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10695
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃義侑(Yi-You Huang) | |
dc.contributor.author | Hsien-Yi Lo | en |
dc.contributor.author | 羅賢益 | zh_TW |
dc.date.accessioned | 2021-05-20T21:50:44Z | - |
dc.date.available | 2010-08-06 | |
dc.date.available | 2021-05-20T21:50:44Z | - |
dc.date.copyright | 2010-08-06 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-07-30 | |
dc.identifier.citation | 參考文獻
1. diZerega GS. Use of adhesion prevention barriers in pelvic reconstructive and gynecologic surgery. In: diZerega GS, ed. Peritoneal Surgery. New York: Springer, 2000;379–99. 2. Holmdahl L, Ivarsson M-L. The role of cytokines, coagulation, and fibrinolyis in peritoneal tissue repair. Eur J Surg 1999;165: 1012–9. 3. Diamond MP, Decherney AH. Pathogenesis of adhesion formation/reformation: application to reproductive pelvic surgery. Microsurgery 1987;8:103–7. 4. Lee MW, Hung CL, Cheng JC, et al. A new anti-adhesion film synthesized from polygalacturonic acid with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide crosslinker. Biomaterials 2005;26:3793–9. 5. Hutmacher DW. Scaffold in tissue engineering bone and cartilage. Biomaterials 2000;21:2529–43. 6. Rutkowska M, Jastrzebska M, Janik H. Biodegradation of polycaprolactone in sea water. React Funct Polym 1998;38:27–30. 7. Ellis H, Crowe A. Medico-legal consequences of post-operative intra-abdominal adhesions. Int J Surg 2009;7:187–191 8. Lee JH, Go AK, Oh SH, et al. Tissue anti-adhesion potential of ibuprofen-loaded PLLA–PEG diblock copolymer films. Biomaterials 2005;26:671-8. 9. Suslick KS. Ultrasound: its chemical physical and biological effects. NewYork:VCH; 1988. 10. Hodgkin T. Lectures on the morbid anatomy of the serous and muco us membranes, Vol 1. London: Simpkin Marshall and Co;1836. 11. Rokitansky C. A Manual of pathological anatomy, Vol 2. London: Sydenham Society; 1849. 12. Bryant T. Clinical Lectures on intestinal obstructions. Medical Times Gazette 1872;1:363. 13. Gibson CL. A study of 1000 operations for acute intestinal obstruction. Ann Surg 1900;32:486-514. 14. Vick RM. Statistics of acute intestinal obstruction. BMJ 1932; 2:546-52. 15. McEntee G, Pender D, Mulvin D, McCullough M, Naeeder S,Farah S, et al. Current spectrum of intestinal obstruction.Br J Surg 1987;74:976-80. 6. Cox MR, Gunn IF, Eastman MC, Hunt RF, Heinz AW. The operative aetiology and types of adhesions causing small bowel obstruction. Aust N Z J Surg 1993;63:848-52. 17. Ellis H. The clinical significance of adhesions: focus on intestinal obstruction. Eur J Surg Suppl 1997;557:5-9. 18. Menzies D. Peritoneal adhesions: incidence, cause, and prevention. Surg Annu Surg 1992;24:27-45. 19. Stricker B, Blanco J, Fox HE. The gynecologic contribution to intestinal obstruction in females. J Am Coll Surg 1994;178:617-20. 20. Wilkins BM, Spitz L. Incidence of postoperative adhesion obstruction following neonatal laparotomy. Br J Surg 1986;73:762-4. 21. Solomkin JS, Wittmann DW, West MA, Barie PF. Intra-abdominal infection. In: Schwartz SL, Shires GT, Spencer FC, Daly JM, Ficher JE, Galloway AC, editors. Principles of surgery. 7th ed, Vol 2. New York: McGraw-Hill; 1999. p. 1515-34. 22. Trompke R, Siegner R. Ein Beitrag zu den Verhu¨tungsmabnahmen postoperativer interabdomineller Verwachsungen. Arch Klin Chir 1956;281:323-8. 23. Buckman Jr RF, Buckman PD, Hufnagel HV, Gervin AS. A physiologic basis for the adhesion-free healing of deperitonealized surfaces. J Surg Res 1976;21:67-76. 24. Drolette CM, Badawy SZA. Pathophysiology of pelvic adhesions: modern trends in preventing infertility. J Reprod Med 1992;37:107-22. 25. Di Zerega GS. The peritoneum: postsurgical repair and adhesion formation. In: Rock JA, Murphy AA, Jones HW, editors. Female reproductive surgery. Baltimore: Williams & Wilkins; 1992. p. 2-18. 26. Menzies D. Peritoneal adhesions: incidence, cause, and prevention. Surg Annu Surg 1992;24:27-45 27. Di Zerega GS. Biochemical events in peritoneal tissue repair. Eur J Surg Suppl 1997;577:10-6. 28. Liakakos T, Thomakos N, Fine PM, Dervenis C, Young RL. Peritoneal adhesions: etiology, pathophysiology, and clinical significance. Dig Surg 2001;18:260-73. 29. Saed GM, Diamond MP. Differential expression of alpha smooth muscle cell actin in human fibroblasts isolated from intraperitoneal adhesions and normal peritoneal tissues. Fertil Steril 2004;82(3):1188-92. 30. Ellis H. The aetiology of post-operative abdominal adhesions:an experimental study. Br J Surg 1962;50:10-6. 31. Raftery AT. Regeneration of peritoneum: a fibrinolytic study. J Anat 1979;129:659-64. 32. Raftery AT. Effect of peritoneal trauma on peritoneal fibrinolytic activity and intraperitoneal adhesion formation. Eur Surg Res 1981;13:397-401. 33. Gomel V, Urman B, Gurgan T. Pathophysiology of adhesion formation and strategies for prevention. J Reprod Med 1996;41:35-41. 34. Ryan GB, Grobety J, Majno G. Postoperative peritoneal adhesions. Am J Pathol 1971;65:117-48. 35. Polubinska A, Winckiewicz M, Staniszewski R, Breborowicz A, Oreopoulos DG. Time to reconsider saline as the ideal rinsing solution during abdominal surgery. Am J Surg 2006;192:281-5. 36. Weibel MA, Majno G. Peritoneal adhesions and their relation to abdominal surgery. Am J Surg 1973;126:345-53. 37. Down RHL, Whitehead R, Watts JMcK. Do surgical packs cause peritoneal adhesions? Aust NZ J Surg 1979;49:379-84. 38. Holtz G. Adhesion induction by suture of varying tissue reactivity and caliber. Int J Fertil 1982;27:134-5. 39. Sanfilippo JS, Barrows GH, Yussman MA. Comparison of Avitene, topical thrombin, and Gelfoam as sole haemostatic agents in tuboplasties. Fertil Steril 1980;33:311-6. 40. Larsson B, Nisell H, Grandberg I. Surgicel-an absorbable haemostatic material in prevention of peritoneal adhesions in rats. Acta Chir Scand 1978;133:375-8. 41. Raftery A. Absorbable haemostatic materials and intraperitoneal adhesion formation. Br J Surg 1980;67:57-8. 42. Tingstedt B, Nehez L, Lindman B, Andersson R. Efficacy of bioactive polypeptides on bleeding and intra-abdominal adhesions. Eur Surg Res 2007;39(1):35-40. 43. Goldberg EP, Sheets JW, Habal MB. Peritoneal adhesions: prevention with the use of hydrophilic polymer coatings. Arch Surg 1980;115:776-80. 44. Frankfurter D, De Cherney AH. Pelvic adhesive disease. Postgrade Obstet Gynecol 1996;16:1-5. 45. Sutton C, MacDonald R. Laser laparoscopic adhesiolysis. J Gynecol Surg 1990;6(3):155-9. 46. Phillips JM. Gynecologic microsurgery, a de´ja` vu of laparoscopy. J Reprod Med 1979;22:135. 47. Kavic SM, Kavic SM. Adhesions and adhesiolysis: the role of laparoscopy. JSLS 2002;6(2):99-109. 48. Brokelman WJ, Holmdahl L, Bergstrom M, Falk P, Klinkenbijl JH, Reijnen MM. Peritoneal fibrinolytic response to various aspects of laparoscopic surgery: a randomized trial. J Surg Res 2006;136:309-13. 49. Di Zerega GS. Contemporary adhesion prevention. Fertil Steril 1994;61:219-35. 50. Risberg BO. Adhesions: preventive strategies. Eur J Surg Suppl 1997;577:32-9. 51. Sarr MG, Tito WA. Intestinal obstruction. In: Zuidema GD, editor. Shackelford’s surgery of the alimentary tract. 4th ed, Vol 5. Philadelphia: WB Saunders Company; 1996. p. 387-9. 52. Tulandi T. Adhesion prevention in laparoscopic surgery. Int J Fertil Menopausal Stud 1996;41:452-7. 53. Turkcapar AG, Ozarslan C, Erdem E, Bumin C, Erverdi N, Kutlay J. The effectiveness of LMWH on adhesion formation in experimental rat model. Int Surg 1995;80:92-4. 54. Arikan S, Adas G, Barut G, Toklu AS, Kocakusak A, Uzun H, et al. An evaluation of low molecular weight heparin and hyperbaric oxygen treatment in the prevention of intraabdominal adhesions and wound healing. Am J Surg 2005;189:155-60. 55. Gutmann JN, Penzias AS, Diamond MP. Adhesions in reproductive surgery. In: Wallach EE, Zaccur HA, editors. Reproductive medicine and surgery. St. Louis: Mosby; 1995. p. 681-93. 56. Doody KJ, Dunn RC, Buttram Jr VC. Recombinant tissue plasminogen activator reduces adhesion formation in a rabbit uterine horn model. Fertil Steril 1989;51:509-12. 57. Sanfilippo JS, Booth RJ, Burns CD. Effect of vitamin E on adhesion formation. J Repro Med 1995;40:278-82. 58. de la Portilla F, Ynfante I, Bejarano D, Conde J, Fernandez A, Ortega JM, et al. Prevention of peritoneal adhesions by intraperitoneal administration of vitamin E: an experimental study. Dis Colon Rectum 2004;47(12):2157-61. 59. Salaris SC, Babbs Cf, Voorhees III WD. Methylene blue as an inhibitor of superoxide generation by xanthine oxidase. A potential new drug for the attenuation of ischemia/reperfusion injury. Biochem Pharmacol 1991;42:499-506. 60. Matsuoka I, Sakurai K, Ono T, Nakanishi H. Involvement of endogenous noradrenaline release in Methylene blue induced contraction of isolated rabbit aorta. Jpn J Pharmacol 1987; 44:23-33. 61. Kluger Y, Weinbroum A, Ben-Avraham R, Galili Y, Klausner J, Rabau M. Reduction in formation of peritoneal adhesions by methylene blue in rats: a dose response study. Eur J Surg 2000;166:568-71. 62. Dinc S, Ozaslan C, Kuru B, Karaca S, Ustun H, Alagol H, et al. Methylene blue prevents surgery-induced peritoneal adhesions but impairs the early phase of anastomotic wound healing. Can J Surg 2006;49:321-8. 63. Alkharfy KM, Kellum JA, Matzke GR. Unintended immunomodulation: part II. Effects of pharmacological agents on cytokine activity. Shock 2000;13:346-60. 64. Tarhan OR, Barut I, Sutcu R, Akdeniz Y, Akturk O. Pentoxifylline, a methyl xanthine derivative, reduces peritoneal adhesions and increases peritoneal fibrinolysis in rats. Tohoku J Exp Med 2006;209:249-55. 65. Aarons CB, Cohen PA, Gower A, Reed KL, Leeman SE, Stucchi AF, et al. Statins (HMG-CoA Reductase inhibitors) decrease postoperative adhesions by increasing peritoneal fibrinolytic activity. Ann Surg 2007;245:176-84. 66. Liakakos T, Thomakos N, Fine PM, Dervenis C, Young RL. Peritoneal adhesions: etiology, pathophysiology, and clinical significance. Dig Surg 2001;18:260-73. 67. diZerega GS, Verco SJ, Young P, Kettel M, Kobak W, Martin D, et al. A randomized, controlled pilot study of the safety and efficacy of 4% icodextrin solution in the reduction of adhesions following laparoscopic gynecological surgery. Hum Reprod 2002;7:1031-8. 68. van den Tol P, ten Raa S, van Grevenstein H, Marquet R, van Eijck C, Jeekel H. Icodextrin reduces postoperative adhesion formation in rats without affecting peritoneal metastasis. Surgery 2005;137:348-54. 69. Davies D. Kinetics of icodextrin. Perit Dial Int 1994;14:45-50. 70. Carta G, Cerrone L, Iovenitti P. Postoperative adhesion prevention in gynecologic surgery with hyaluronic acid. Clin Exp Obstet Gynecol 2004;31:39-41. 71. Hills BA. Role of surfactant in peritoneal dialysis. Perit Dial Int 2000;20:503-15. 72. Muller SA, Treutner KH, Anurov M, Titkova S, Oettinger AP, Schumpelick V. Experimental evaluation of phospholipids and icodextrin in re-formation of peritoneal adhesions. Br J Surg 2003;90:1604-7. 73. Liakakos T, Thomakos N, Fine PM, Dervenis C, Young RL. Peritoneal adhesions: etiology, pathophysiology, and clinical significance. Dig Surg 2001;18:260-73. 74. Wallwiener D, Meyer A, Bastert G. Adhesion formation of the parietal and visceral peritoneum: an explanation for the controversy on the use of autologous and alloplastic barriers? Fertil Steril 1998;69:132-7. 75. De Cherney AH, di Zerega GS. Clinical problem of intraperitoneal postsurgical adhesion formation following general surgery and the use of adhesion prevention barriers. Surg Clin North Am 1997;77:671-88. 76. Mediana M, Paddock HN, Connelly RJ, Schwaitzberg SD. Novel antiadhesion barrier does not prevent anastomotic healing in a rabbit model. J Invest Surg 1995;8:179-86. 77. Sawada T, Nishizawa H, Nishio E, Kadowaki M. Postoperative adhesion prevention with an oxidized regenerated cellulose adhesion barrier in infertile woman. J Reprod Med 2000;45:387-9. 78. Wallwiener M, Brucker S, Hierlemann H, Brochhausen C, Solomayer E, Wallwiener C. Innovative barriers for peritoneal adhesion prevention: liquid or solid? A rat uterine horn model. Fertil Steril 2006;86:1266-76. 79. Haney AF. Removal of surgical barriers of expanded polytetrafluoroethylene at second-look laparoscopy was not associated with adhesion formation. Fertil Steril 1997;68:721-3. 80. Duan HF, Wu CT, Wu DL, Lu Y, Liu HJ, Ha XQ, et al. Treatment of myocardial ischemia with bone marrow derived mesenchymal stem cells overexpressing hepatocyte growth factor. Mol Ther 2003;8:467-74. 81. Yang J, Dai C, Liu Y. Systemic administration of naked plasmid encoding Hepatocyte growth factor ameliorates chronic renal fibrosis in mice. Gene Ther 2001;8:1470-9. 82. Greenawalt K, Masi L, Muir C, Burns J. Thephysical properties of a hyaluronic acid based bioresorbable membrane for theprevention of postsurgical adhesions. Mat Res Soc Symp Proc 1993;292:265. 83. Burns JW, Skinner K, Colt J, Sheidlin A, Bronson R, Yaacobi Y, et al. Prevention of tissue injury and postsurgical adhesions by precoating tissues with hyaluronic acid solutions. J Surg Res 1995;59:644-52. 84. Fukuhira Y, Ito M, Kaneko H, et al. Prevention of postoperative adhesions by a novel honeycomb-patterned poly(lactide) film in a rat experimental model. J Biomed Mater Res B Appl Biomater 2008;86B:353–9. 85. Liu Y, Shu XZ, Prestwich GD. Reduced postoperative intraabdominal adhesions using Carbylan-SX, a semisynthetic glycosaminoglycan hydrogel. Fertil Steril 2007;87:940–8. 86. Moreno MM, Garidel P, Suwalsky M, et al. The membrane-activity of Ibuprofen, Diclofenac, and Naproxen: A physico-chemical study with lecithin phospholipids Biochimica et Biophysica Acta 2009;1788:1296. 87. Griffin MR. Epidemiology of non-steroidal anti-inflammatory drug associated gastrointestinal injury. Am J Med 1998;104:23S. 88. Little U, Buchanan F, Harkin-Jones E, Graham B, Fox B, Boyd A , Meenan B, Dickson G. Surface modification of poly(e-caprolactone) using a dielectric barrier discharge in atmospheric pressure glow discharge mode. Acta Biomaterialia 2009;5:2025–32. 89. Engelberg I, Kohn J. Physico-mechanical properties of degradable polymers used in medical applications: a comparative study. Biomaterials 1991;12:292–304. 90. Balakrishan B, Mohanty M, Fernandez AC, Mohanan PV, Jayakrishnan A. Evaluation of the effect of incorporation of dibutyryl cyclic adenosinemonophosphate in an in situ-forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials 2006;27:1355-61. 91. Thomas, S., Hughes, G., Fram, P., Hallett, A. An in vitro comparison of the physical characteristics of hydrocolloids, hydrogels, foams and alginated/ cmc fibrous dressing, http://www.dressings.org/ TechnicalPublications/ PDF/Coloplast -dressings -testing-2003-2004.pdf. 92. Sofie PK. Novel wound models for characterizing ibuprofen release from foam dressings Bente Steffansena, Herpingb International Journal of Pharmaceutics 2008; 364:150-3. 93. Suslick KS. Ultrasound: its chemical physical and biological effects. NewYork:VCH; 1988. 94. Becker JM, Dayton MT, Fazio VW, et al. Prevention of postoperative abdominal adhesions by a sodium hyaluronatebased bioresorbable membrane: a prospective, randomized, double-blind multicenter study. J Am Coll Surg 1996;183:297–306. 95. Diamond MP. Reduction of adhesions after uterine myomectomy by Seprafilm membrane (HAL-F): a blinded, prospective, randomized, multicenter clinical study. Fertil Steril 1996;66:904–10. 96. Kumari TV, Vasuder U, Kumari A, Mennon B. Cell surface interactions in the study of biocompatibility. Trends Biomater Artif Organs 2002;15:37–41. 97. Zhu Y, Gao C, Shen J. Surface modification of polycaprolactone with poly(methacrylic acid) and gelatin covalent immobilization for promoting its cytocompatibility. Biomaterials 2002;23:4889–95. 98. Wang Y, Chang HI, Wertheim DF, Jones AS, Jackson C, Coombes AG. Characterisation of the macroporosity of polycaprolactone-based biocomposites and release kinetics for drug delivery. Biomaterials 2007;28:4619–27. 99. Murphy WL, Peters MC, Kohn DH, Mooney DJ. Sustained release of vascular endothelial growth factor from mineralized poly(lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials 2000;21:2521–7. 100. Pamula E, Dobrzynski P, BeroM, Paluszkiewicz C. Hydrolytic degradation of porous scaffolds for tissue engineering from terpolymer of L-lactide, 3-caprolactone and glycolide. J Mol Struct 2005;744–7:557–62. 101. Kim SS, Sun Park M, Jeon O, Yong Choi C, Kim B. Poly(lactide-co-glycolide)/ hydroxyapatite composite scaffolds for bone tissue engineering. Biomaterials 2006;27:1399–409. 102. Arnold PB, Green CW, Foresman PA, et al. Evaluation of resorbable barriers for preventing surgical adhesions. Fertil Steril 2000;73:157-61. 103. Dunn R, Lyman MD, Edelman PG, et al. Evaluation of the SprayGel adhesion barrier in the rat cecum abrasion and rabbit uterine horn adhesion models. Fertil Steril 2001;75:411-6. 104. Buckman RF Jr, Buckman PD, Hufnagel HV, Gervin AS. A physiologic basis for the adhesion-free healing of deperitonealized surfaces. J Surg Res 1976;21:67-76. 105. Fukuhira Y, Ito M, Kaneko H, et al. Prevention of postoperative adhesions by a novel honeycomb-patterned poly(lactide) film in a rat experimental model. J Biomed Mater Res B Appl Biomater 2008;86B:353–9. 106. Cigna E, Tarallo M, Bistoni G, Anniboletti T, Trignano E, Tortorelli G, Scuderi N. Evaluation of polyurethane dressing with ibuprofen in the management of split-thickness skin graft donor sites. In Vivo 2009;23:983-6 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10695 | - |
dc.description.abstract | 聚己內酯於抗粘黏之應用
術後粘黏是傷口癒合不可避免的過程,但隨之而來會造成許多問題,包括慢性腹部不適疼痛、小腸阻塞、婦女不孕症、二度手術的困難。 爲了預防粘黏,曾有很多方法被使用。在減少手術傷害方面,可經由腹腔鏡手術、使用沒有滑石粉的外科手套、精細輕巧的操作、細心止血等,但即使如此,成功率仍然很低。而使用纖維溶解酵素、非類固醇抗發炎藥物、類固醇藥物等,都有某種程度的危險。 抗粘黏薄膜使用在手術後受傷的漿膜上,形成保護層。聚己內酯是個醫學工程上常用、易獲取、便宜、無毒、生物相容性高的物質,因此被選為抗粘黏的材料。 本研究包括三個部分,以聚己內酯為對象,首先確定其是否適合作為抗粘黏材料,再加上布洛芬(ibuprofen),觀察是否增加其黏附力,最後利用超音波造成表面孔洞化,以研究表面粗糙度,及是否增加生物黏附力。 聚己內酯先製備成薄膜,接觸角約為97度,其表面具有一些微小孔洞。在布洛芬加入後,電子顯微鏡檢查顯示表面變得較粗糙,接觸角下降到56度,其生物黏附力從12N增加到18N。另外聚己內酯薄膜經超音波處理後,電子顯微鏡觀察發現孔洞變大,所占面積由1.5%增加到46%。以原子力顯微鏡檢測的粗糙度 由8.6 nm增加至25.2 nm。接觸角在140分鐘處理後的薄膜為52度,生物黏附力也一樣達到18N。 在細胞毒性方面,Seprafilm、聚己內酯薄膜、聚己內酯─布洛芬(10)薄膜都沒有不良的細胞毒性。聚己內酯─布洛芬(10)薄膜的藥物釋放測驗,顯示半小時釋出50%,到4小時釋出69.4%,此時達到高原期,整個釋出量在168小時是76.1%。 在動物試驗方面,粘黏積分評估得到結果是Seprafilm、聚己內酯薄膜與控制組相比,均有統計學上差異。另一實驗也顯示Seprafilm、聚己內酯薄膜(無縫線)、聚己內酯─布洛芬(10)薄膜與控制組相比,有統計學上差異,但各組間差異沒有達到統計學上差異。在粘黏面積的定量試驗方面,Seprafilm、聚己內酯薄膜、聚己內酯─布洛芬(10)薄膜與控制組相比,有統計學上差異,但各組間差異沒有達到統計學上差異。不過加入布洛芬,有比Seprafilm及聚己內酯薄膜更好的傾向。超音波處理後的聚己內酯薄膜沒有老化(aging)的現象。 因此,以聚己內酯為基礎的抗粘黏薄膜,可以達到不錯的效果, | zh_TW |
dc.description.abstract | Polycaprolactone in prevention of post-surgical adhesion
Abstract Adhesions are unavoidable consequences of surgery and other trauma. Although adhesion is a physiologically inevitable and important part of wound healing, undesirable postsurgical adhesions can cause serious complications including: pain, functional obstruction, and harder second surgeries. To reduce postsurgical adhesion formation, fibrinolytic agents, anticoagulants, anti-inflammatory agents, and antibiotics have been used . However, these agents alone cannot prevent adhesion formation effectively because clearance occurs too rapidly. Recently, a variety of bioresorbable anti-adhesion barriers have been developed. Polycaprolactone (PCL) is a biodegradable polyester with a low melting point of around 60°C and a glass transition temperature of about -60°C. PCL holds certain advantages over other polymers such as polylactic acid. These advantages are that: (i) it is more stable in ambient conditions; (ii) it is significantly less expensive; and (iii) it is readily available in large quantities. Firstly, this study was based on polycaprolactone to evaluate the efficacy of its anti-adhesion, and the anti-adhesion result was promising. Additionally, ibuprofen was loaded to polycaprolactone and fabricated to films in different fraction. This novel film had rougher surface, lower contact angle, more bioadhesive strength and better anti-adhesion ability than control group. Thirdly, polycaprolactone was ultrasound treated at different period, and resulted in many more micropores, the roughness of film surface enhanced under atomic force microscopy, and bioadhesive strength increased as well. No aging phenomenon was found for ultrasound treated PCL film. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T21:50:44Z (GMT). No. of bitstreams: 1 ntu-99-D93548006-1.pdf: 2704698 bytes, checksum: afadcd6ede5b4acaf2c5c1f38ae33df7 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 目錄 VI
中文摘要 XII 英文摘要 Abstract XIV 第一章 緒論 1 第二章 文獻回顧 4 2-1 粘黏的歷史回顧 4 2-2 粘黏的發生率 4 2-3 腹膜的構造及功能 5 2-4腹膜癒合及粘黏形成 7 2-5外科醫師預防粘黏的方法 8 2-6預防性藥物投與療法 11 2-7 分隔物溶液 Barrier solutions 14 2-8 固態分隔物 Solid barriers 15 2-9 基因治療 Gene therapy 17 2-10 結論 17 第三章 研究動機與目的 18 第四章 實驗材料 20 4-1實驗藥品與器材 20 4-2實驗儀器 20 4-3實驗溶液與培養液 21 第五章 以聚己內酯薄膜作為抗粘黏薄膜 22 5-1 實驗方法 22 5-1-1製備聚己內酯薄膜 22 5-1-2聚己內酯薄膜的電子顯微鏡檢查 22 5-1-3 聚己內酯薄膜的親水性測試(接觸角測量) 22 5-1-4 Seprafilm與聚己內酯薄膜的細胞毒性測試 23 5-1-5 Seprafilm與聚己內酯薄膜的動物實驗 24 5-1-6 Seprafilm與聚己內酯薄膜的動物實驗粘黏之評估 24 5-1-7統計分析 25 5-2研究結果與討論 25 5-2-1 聚己內酯薄膜的電子顯微鏡檢查 25 5-2-2 聚己內酯薄膜親水性測試(接觸角測量) 27 5-2-3 Seprafilm與聚己內酯薄膜的細胞毒性測試 28 5-2-4 Seprafilm與聚己內酯薄膜的動物實驗與粘黏評估 28 5-3 結論 31 第六章 含Ibuprofen之聚己內酯薄膜做為抗粘黏薄膜 32 6-1 實驗方法 32 6-1-1製備聚己內酯─布洛芬薄膜 32 6-1-2 聚己內酯─布洛芬(10)薄膜的表面的電子顯微鏡檢查 33 6-1-3聚己內酯薄膜與聚己內酯─布洛芬薄膜親水性測試 (接觸角測量) 33 6-1-4聚己內酯薄膜與聚己內脂─布洛芬薄膜的體外生物黏附 性強度試驗 33 6-1-5聚己內酯─布洛芬薄膜的細胞毒性測試 34 6-1-6體外布洛芬藥物釋放試驗 35 6-1-7聚己內酯─布洛芬薄膜的動物實驗 35 6-1-8聚己內酯─布洛芬薄膜的粘黏之評估 36 6-1-9統計分析 37 6-2 研究結果與討論 37 6-2-1 聚己內酯─布洛芬薄膜的電子顯微鏡檢查 38 6-2-2聚己內酯─布洛芬薄膜的親水性測試(接觸角測量) 39 6-2-3聚己內酯─布洛芬薄膜的體外生物黏附性強度試驗 39 6-2-4聚己內酯─布洛芬薄膜的細胞毒性測試 40 6-2-5體外布洛芬藥物釋放試驗 41 6-2-6 聚己內酯─布洛芬薄膜的動物實驗與粘黏評估 43 6-3 結論 47 第七章 含微結構之聚己內酯薄膜做為抗粘黏薄膜 48 7-1 實驗方法 48 7-1-1製備聚己內酯薄膜並以超音波處理 48 7-1-2超音波處理的聚己內酯薄膜的電子顯微鏡檢查 49 7-1-3原子力顯微鏡測量超音波處理後聚己內酯薄膜 49 7-1-4超音波處理後聚己內酯薄膜接觸角測量 49 7-1-5超音波處理後聚己內酯薄膜的體外生物黏附性強度試驗 50 7-1-6老化試驗(Aging phenomenon) 50 7-1-7統計分析 50 7-2研究結果與討論 51 7-2-1超音波處理的聚己內酯薄膜的電子顯微鏡檢查 51 7-2-2超音波處理的聚己內酯薄膜結果原子力顯微鏡測量 54 7-2-3超音波處理的聚己內酯薄膜的親水性測試 56 7-2-4超音波處理的聚己內酯薄膜的體外生物黏附性強度試驗 57 7-2-5超音波處理的聚己內酯薄膜的老化試驗 57 7-3 結論 59 第八章 綜合討論 60 第九章 總結論 64 參考文獻 65 圖目錄 圖 1聚己內酯的形成 2 圖 2腹腔的側剖面圖 5 圖3 腹腔的橫切面圖 6 圖4 聚己內酯薄膜的電子顯微鏡圖 26 圖5 聚己內酯薄膜與Seprafilm的接觸角測量 27 圖 6 Seprafilm、聚己內酯薄膜的細胞毒性測試 28 圖7 動物實驗 29 圖8 聚己內酯薄膜的粘黏積分結果 31 圖9聚己內酯─布洛芬(10)薄膜的電子顯微鏡圖 38 圖10 聚己內酯薄膜與聚己內酯─布洛芬薄膜(不同比例)的接觸角測量 39 圖11 聚己內酯薄膜與聚己內酯─布洛芬薄膜(不同比例) 的生物黏附力測試 40 圖12. 控制組、Seprafilm、聚己內酯薄膜、聚己內脂─布洛芬(10) 薄膜的毒性測試 41 圖13 聚己內酯─布洛芬(10)薄膜的的釋放圖 42 圖14 Seprafilm、聚己內酯薄膜、與聚己內酯─布洛芬薄膜的 粘黏積分結果 44 圖15 控制組、Seprafilm、聚己內酯薄膜、聚己內酯─布洛芬(10) 薄膜粘黏面積的定量評估 45 圖16. 聚己內酯薄膜經超音波處理後的電子顯微鏡影像 51 圖17 聚己內酯薄膜的原子動力顯微鏡影像 55 圖18 聚己內酯薄膜經過超音波處理後的粗糙度改變 55 圖 19.聚己內酯薄膜經過超音波處理後的接觸角變化 56 圖20. 聚己內酯薄膜經過超音波處理後的生物黏附力試驗 57 圖 21聚己內酯薄膜經過超音波處理後的老化試驗(接觸角測量) 58 圖 22聚己內酯薄膜經過超音波處理後的老化試驗(生物黏附力試驗) 59 | |
dc.language.iso | zh-TW | |
dc.title | 聚己內酯於抗粘黏之應用 | zh_TW |
dc.title | Polycaprolactone in prevention of post-surgical adhesion | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 黃意真(Yi-Cheng Huang),江鴻生,鍾次文,孫瑞昇 | |
dc.subject.keyword | 粘黏,分隔物,聚己內酯,布洛芬,超音波, | zh_TW |
dc.subject.keyword | adhesion,barrier,polycaprolactone,ibuprofen,ultrasound, | en |
dc.relation.page | 78 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2010-07-30 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
顯示於系所單位: | 醫學工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf | 2.64 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。