Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10683
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝正義
dc.contributor.authorShih-Min Chengen
dc.contributor.author鄭詩憫zh_TW
dc.date.accessioned2021-05-20T21:49:45Z-
dc.date.available2010-08-05
dc.date.available2021-05-20T21:49:45Z-
dc.date.copyright2010-08-05
dc.date.issued2010
dc.date.submitted2010-07-30
dc.identifier.citationAndreas, E. L., R. J. Hill, J. R. Gosz, D. I. Moore, W. D. Otto, and A. D. Sarma, 1998: Statistics of surface-layer turbulence over terrain with metre-scale heterogeneity. Boundary-Layer Meteorology, Vol. 86, pp.379-408.
Arya, S. P., 1994: Introduction to micrometeorology, pp. 213
Baldocchi, D., J. Finnigan, K. Wilson, K. T. Paw U, and E. Falge, 2000: On measuring net ecosystem carbon exchange over tall vegetation on complex terrain. Boundary-Layer Meteorology, Vol. 96, pp. 257-291.
Cava, D., G. G. Katul, A. M. Sempreviva, U. Giostra, and A. Scrimieri, 2008: On the anomalous behavior of scalar flux-variance similarity functions within the canopy sub-layer of a dense alpine forest. Boundary-Layer Meteorology, Vol. 128, pp. 33-57.
Choi, T. J., J. K. Hong, J. Kim, H. C. Lee, J. Asanuma, H. Ishikawa, O. Tsukamoto, Z. Q. Gao, Y. M. Ma, K. Ueno, J. M. Wang, T. Koike, and T. Yasunari, 2004: Turbulent exchange of heat, water vapor, and momentum over a Tibetan prairie by eddy covariance and flux variance measurements. Journal of Geophysical Research-Atmospheres, Res., 109, D21106.
De Bruin, H. A. R., W. Kohsiek, and B. J. J. M. Vandenhurk, 1993: A Verification of Some Methods to Determine the Fluxes of Momentum, Sensible Heat, and Water-Vapor Using Standard-Deviation and Structure Parameter of Scalar Meteorological Quantities. Boundary-Layer Meteorology, Vol. 63, pp. 231-257.
Detto, M., G. Katul, M. Mancini, N. Montaldo, and J. D. Albertson, 2008: Surface heterogeneity and its signature in higher-order scalar similarity relationships. Agricultural and Forest Meteorology, Vol. 148, pp. 902-916.
Foken, T., 2006: 50 years of the Monin-Obukhov similarity theory. Boundary-Layer Meteorology, Vol. 119, pp. 431-447.
Garratt, J.R.1992: The Atmospheric Boundary Layer, pp. 11.
Gockede, M., C. Rebmann, and T. Foken, 2004: A combination of quality assessment tools for eddy covariance measurements with footprint modelling for the characterisation of complex sites. Agricultural and Forest Meteorology, Vol. 127, pp. 175-188.
Guo, X., H. Zhang, X. Cai, L. Kang, T. Zhu, and M. Y. Leclerc, 2009: Flux-Variance Method for Latent Heat and Carbon Dioxide Fluxes in Unstable Conditions. Boundary-Layer Meteorology, Vol. 131, pp. 363-384.
Hiller, R., M. J. Zeeman, and W. Eugster, 2008: Eddy-covariance flux measurements in the complex terrain of an Alpine valley in Switzerland. Boundary-Layer Meteorology, Vol. 127, pp. 449-467.
Hollinger, D. Y., J. Aber, B. Dail, E. A. Davidson, S. M. Goltz, H. Hughes, M. Y. Leclerc, J. T. Lee, A. D. Richardson, C. Rodrigues, N. A. Scott, D. Achuatavarier, and J. Walsh, 2004: Spatial and temporal variability in forest-atmosphere CO2 exchange. Global Change Biology, Vol. 10, pp. 1689-1706.
Högström, U. and A. S. Smedman-Högström, 1974: Turbulence mechanisms at an
agricultural site. Boundary-Layer Meteorology, Vol. 7, pp. 373-389.
Hsieh, C. I., M. C. Lai, Y. J. Hsia, and T. J. Chang, 2008: Estimation of sensible heat, water vapor, and CO2 fluxes using the flux-variance method. International Journal of Biometeorology, Vol. 52, pp. 521-533.
Kaimal, J. and J. Finnigan, 1994: Atmospheric Boundary Bayer Flows: Their Structure and Measurement. Oxford Univ. Press, New York, pp.71, 289.
Katul, G., C. I. Hsieh, D. Bowling, K. Clark, N. Shurpali, A. Turnipseed, J. Albertson, K. Tu, D. Hollinger, B. Evans, B. Offerle, D. Anderson, D. Ellsworth, C. Vogel, and R. Oren, 1999: Spatial variability of turbulent fluxes in the roughness sublayer of an even-aged pine forest. Boundary-Layer Meteorology, Vol. 93, pp. 1-28.
Lamaud, E. and M. Irvine, 2006: Temperature-humidity dissimilarity and heat-to-water-vapor transport efficiency above and within a pine forest canopy: The role of the Bowen ratio. Boundary-Layer Meteorology, Vol. 120, pp. 87-109.
Marques, E. P., L. D. A. Sa, H. A. Karam, R. C. S. Alvala, A. Souza, and M. M. R. Pereira, 2008: Atmospheric surface layer characteristics of turbulence above the Pantanal wetland regarding the similarity theory. Agricultural and Forest Meteorology, Vol. 148, pp. 883-892.
Moraes, O. L. L., O. C. Acevedo, G. A. Degrazia, D. Anfossi, R. da Silva, and V. Anabor, 2005: Surface layer turbulence parameters over a complex terrain. Atmospheric Environment, Vol. 39, pp. 3103-3112.
Moritz, E., 1989: Heat and Momentum Transport in an Oak Forest Canopy. Boundary-Layer Meteorology, Vol. 49, pp. 317-329.
Ohtaki, E., 1985: On the Similarity in Atmospheric Fluctuations of Carbon-Dioxide, Water-Vapor and Temperature over Vegetated Fields. Boundary-Layer Meteorology, Vol. 32, pp. 25-37.
Oren, R., C. I. Hseih, P. Stoy, J. Albertson, H. R. McCarthy, P. Harrell, and G. G. Katul, 2006: Estimating the uncertainty in annual net ecosystem carbon exchange: spatial variation in turbulent fluxes and sampling errors in eddy-covariance measurements. Global Change Biology, Vol. 12, pp. 883-896.
Panofsky, H. A. and A. Dutton, 1984: Atmospheric Turbulence: Models and Method for Engineering Applications. John Wiley &Sons, New York, pp.397.
Pattey, E., I. B. Strachan, R. L. Desjardins, and J. Massheder, 2002: Measuring nighttime CO2 flux over terrestrial ecosystems using eddy covariance and nocturnal boundary layer methods. Agricultural and Forest Meteorology, Vol. 113, pp. 145-158.
Raupach, M. R., J. J. Finnigan, and Y. Brunet, 1996: Coherent eddies and turbulence in vegetation canopies: The mixing-layer analogy. Boundary-Layer Meteorology, Vol. 78, pp. 351-382.
Staebler, R. M. and D. R. Fitzjarrald, 2004: Observing subcanopy CO2 advection. Agricultural and Forest Meteorology, Vol. 122, pp. 139-156.
Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology, pp. 666.
Wilson, K. B. and T. P. Meyers, 2001: The spatial variability of energy and carbon dioxide fluxes at the floor of a deciduous forest. Boundary-Layer Meteorology, Vol. 98, pp. 443-473.
Wilson, N. R. and R. H. Shaw, 1977: Higher-Order Closure Model for Canopy Flow. Journal of Applied Meteorology, Vol. 16, pp. 1197-1205.
Yaglom, A. M., 1979: Similarity Laws for Constant-Pressure and Pressure-Gradient Turbulent Wall Flows. Annual Review of Fluid Mechanics, Vol. 11, pp. 505-540.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10683-
dc.description.abstract地表之可感熱、潛熱以及二氧化碳通量,常以渦流相關法估測於近似理想的地形,但如何在複雜地形中合適地使用,仍是一大挑戰,而檢測單一測點是否能有效代表複雜地形中的流體特性是必須的。本研究選擇的實驗地位於台灣南投的溪頭實驗林,是一57年生的人工柳杉山林地,海拔高度介於800~2000公尺高,且山地坡度為13.6度。研究結果顯示,雖然實驗地地形複雜,空間的變異係數幾乎都小於15%,另外,白天之變異係數小於晚上的變異係數,可見白天有較好的均質特性,而地表通量的空間變異性比較中,潛熱會大於可感熱及二氧化碳通量,原因可能是水氣有較複雜的源或匯存在。在大氣於不穩定的狀況下,垂直與水平風速會符合Monin-Obukhov相似理論,但相似常數因位置不同而有不同;在純量部分,以溫度最符合Monin-Obukhov相似理論,二氧化碳普通,而水氣並不符合。zh_TW
dc.description.abstractUnder ideal or near-ideal conditions, the eddy-covariance (EC) method is a widely used technique in the measurement of sensible heat, water vapor, and CO2 fluxes. Nowadays, adapting the EC method to complex terrain measurements is a challenging topic. It is necessary to examine whether measurements from single eddy covariance system can represent the flow properties of turbulence at complex terrain. The experimental site in this study is located in a valley covered with 57-year-old Cryptomeria plantation at Sitou, Taiwan. The weather is warm and humid through the whole year. The elevation of this area is from 800 to 2000 m above sea level, and the averaged slope is 13.6 degree. The results showed that almost all the coefficient of spatial variation (CV) values for surface fluxes in this study are less than 15%. Moreover, the values of CV in the daytime are smaller than those in the nighttime. This indicates that the flow variables are more homogeneous during daytime. It is noted that the spatial variability of water vapor flux is larger than those for sensible heat and CO2 fluxes; this may due to the complex sources/sinks distribution of water vapor in this site. Under unstable condition, vertical and horizontal wind velocities meet the Monin-Obukhov similarity theory (MOST) predictions, though the similarity constants at different locations are not the same. For scalar variances, temperature follows MOST well, CO2 meets it fairly, but water vapor does not follow the MOST predictions for all the three locations.en
dc.description.provenanceMade available in DSpace on 2021-05-20T21:49:45Z (GMT). No. of bitstreams: 1
ntu-99-R97622008-1.pdf: 3895695 bytes, checksum: b5d46872625f52eda4dfb09fe6c9f547 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsContents
Acknowledgement……………………………………………… I
Chinese Abstract………………………………………………Ⅱ
Abstract…………………………………………………………Ⅲ
List of Tables…………………………………………………Ⅵ
List of Figures……………………………………………… Ⅹ
Chapter 1 Introduction …………………………………… 1
Chapter 2 Experiment….…………………………………… 4
2.1 Site Description…………………………………………4
2.2 The Instruments and Data Logging……………………5
Chapter 3 Theory and Method……………………………… 7
3.1 The Monin-Obukhov Similarity Theory……………… 7
3.2 Tools for Analysis………………………………………9
Chapter 4 Results and Discussion ……………………… 11
4.1 The Time Series of Environmental Statistics and Comparisons of Flow Statistics……………………………11
4.2 Temporal Variability of Flow Statistics………… 13
4.3 Spatial Variability of Flow Statistics……………15
4.4 Homogeneity of Similarity Relationships………… 17
Chapter 5 Conclusions ………………………………………22
References …………………………………………………… 23
Tables ………………………………………………………… 27
Figures …………………………………………………………42
Appendix ……………………………………………………… 80
A Eddy Covariance Method……………………………………80
B Data Processing…………………………………………… 83
C Coordination Rotation…………………………………… 85
D The Instruments………...……………………………… 91
E GSM…………………………………………………………… 98
F Footprint……………………………………………………103
G Temporal Variability of Flow Statistics (Whole
Day)…………………………………………………………… 108
H The Relationship Between Wind Velocity and Latent
Heat Flux The Relationship Between Wind Velocity
and CO2 Flux………………………………………………… 111
dc.language.isoen
dc.title山地柳杉森林之地表通量量測zh_TW
dc.titleSurface Flux Measurements Above a Mountainous Cryptomeria Foresten
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張倉榮,朱佳仁,陳明志
dc.subject.keyword地表通量,空間變異,變異係數,相似理論,複雜地形,zh_TW
dc.subject.keywordSurface fluxes,Spatial variance,Coefficient of variance,Similarity theory,Complex terrain,en
dc.relation.page115
dc.rights.note同意授權(全球公開)
dc.date.accepted2010-08-02
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf3.8 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved