Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10656
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor袁小琀
dc.contributor.authorChe-Chuan Yangen
dc.contributor.author楊哲權zh_TW
dc.date.accessioned2021-05-20T21:47:22Z-
dc.date.available2012-09-09
dc.date.available2021-05-20T21:47:22Z-
dc.date.copyright2010-09-09
dc.date.issued2010
dc.date.submitted2010-08-04
dc.identifier.citationAdams, P.D., Grosse-Kunstleve, R.W., Hung, L.W., Ioerger, T.R., McCoy, A.J., Moriarty, N.W., Read, R.J., Sacchettini, J.C., Sauter, N.K., and Terwilliger, T.C. (2002). PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr D Biol Crystallogr 58, 1948-1954.
Alderuccio, F., Chan, E.K., and Tan, E.M. (1991). Molecular characterization of an autoantigen of PM-Scl in the polymyositis/scleroderma overlap syndrome: a unique and complete human cDNA encoding an apparent 75-kD acidic protein of the nucleolar complex. J Exp Med 173, 941-952.
Allmang, C., Kufel, J., Chanfreau, G., Mitchell, P., Petfalski, E., and Tollervey, D. (1999a). Functions of the exosome in rRNA, snoRNA and snRNA synthesis. EMBO J 18, 5399-5410.
Allmang, C., Mitchell, P., Petfalski, E., and Tollervey, D. (2000). Degradation of ribosomal RNA precursors by the exosome. Nucleic Acids Res 28, 1684-1691.
Allmang, C., Petfalski, E., Podtelejnikov, A., Mann, M., Tollervey, D., and Mitchell, P. (1999b). The yeast exosome and human PM-Scl are related complexes of 3' --> 5' exonucleases. Genes Dev 13, 2148-2158.
Anderson, J.S., and Parker, R.P. (1998). The 3' to 5' degradation of yeast mRNAs is a general mechanism for mRNA turnover that requires the SKI2 DEVH box protein and 3' to 5' exonucleases of the exosome complex. EMBO J 17, 1497-1506.
Andreeva, L., Heads, R., and Green, C.J. (1999). Cyclophilins and their possible role in the stress response. International Journal of Experimental Pathology 80, 305-315.
Andrulis, E.D., Werner, J., Nazarian, A., Erdjument-Bromage, H., Tempst, P., and Lis, J.T. (2002). The RNA processing exosome is linked to elongating RNA polymerase II in Drosophila. Nature 420, 837-841.
Araki, Y., Takahashi, S., Kobayashi, T., Kajiho, H., Hoshino, S., and Katada, T. (2001). Ski7p G protein interacts with the exosome and the Ski complex for 3'-to-5' mRNA decay in yeast. EMBO J 20, 4684-4693.
Arigo, J.T., Carroll, K.L., Ames, J.M., and Corden, J.L. (2006a). Regulation of yeast NRD1 expression by premature transcription termination. Mol Cell 21, 641-651.
Arigo, J.T., Eyler, D.E., Carroll, K.L., and Corden, J.L. (2006b). Termination of cryptic unstable transcripts is directed by yeast RNA-binding proteins Nrd1 and Nab3. Mol Cell 23, 841-851.
Baginsky, S., Shteiman-Kotler, A., Liveanu, V., Yehudai-Resheff, S., Bellaoui, M., Settlage, R.E., Shabanowitz, J., Hunt, D.F., Schuster, G., and Gruissem, W. (2001). Chloroplast PNPase exists as a homo-multimer enzyme complex that is distinct from the Escherichia coli degradosome. RNA 7, 1464-1475.
Bluthner, M., and Bautz, F.A. (1992). Cloning and characterization of the cDNA coding for a polymyositis-scleroderma overlap syndrome-related nucleolar 100-kD protein. J Exp Med 176, 973-980.
Bonneau, F., Basquin, J., Ebert, J., Lorentzen, E., and Conti, E. (2009). The yeast exosome functions as a macromolecular cage to channel RNA substrates for degradation. Cell 139, 547-559.
Bousquet-Antonelli, C., Presutti, C., and Tollervey, D. (2000). Identification of a regulated pathway for nuclear pre-mRNA turnover. Cell 102, 765-775.
Briggs, M.W., Burkard, K.T., and Butler, J.S. (1998). Rrp6p, the yeast homologue of the human PM-Scl 100-kDa autoantigen, is essential for efficient 5.8 S rRNA 3' end formation. J Biol Chem 273, 13255-13263.
Brouwer, R., Pruijn, G.J., and van Venrooij, W.J. (2001). The human exosome: an autoantigenic complex of exoribonucleases in myositis and scleroderma. Arthritis Res 3, 102-106.
Brouwer, R., Vree Egberts, W.T., Hengstman, G.J., Raijmakers, R., van Engelen, B.G., Seelig, H.P., Renz, M., Mierau, R., Genth, E., Pruijn, G.J., et al. (2002). Autoantibodies directed to novel components of the PM/Scl complex, the human exosome. Arthritis Res 4, 134-138.
Brown, J.T., Bai, X., and Johnson, A.W. (2000). The yeast antiviral proteins Ski2p, Ski3p, and Ski8p exist as a complex in vivo. RNA 6, 449-457.
Brown, P.H., and Schuck, P. (2006). Macromolecular size-and-shape distributions by sedimentation velocity analytical ultracentrifugation. Biophys J 90, 4651-4661.
Burkard, K.T., and Butler, J.S. (2000). A nuclear 3'-5' exonuclease involved in mRNA degradation interacts with Poly(A) polymerase and the hnRNA protein Npl3p. Mol Cell Biol 20, 604-616.
Buttner, K., Wenig, K., and Hopfner, K.P. (2005). Structural framework for the mechanism of archaeal exosomes in RNA processing. Mol Cell 20, 461-471.
Buttner, S., Eisenberg, T., Carmona-Gutierrez, D., Ruli, D., Knauer, H., Ruckenstuhl, C., Sigrist, C., Wissing, S., Kollroser, M., Frohlich, K.U., et al. (2007). Endonuclease G regulates budding yeast life and death. Mol Cell 25, 233-246.
Chekanova, J.A., Shaw, R.J., Wills, M.A., and Belostotsky, D.A. (2000). Poly(A) tail-dependent exonuclease AtRrp41p from Arabidopsis thaliana rescues 5.8 S rRNA processing and mRNA decay defects of the yeast ski6 mutant and is found in an exosome-sized complex in plant and yeast cells. J Biol Chem 275, 33158-33166.
Chen, C.Y., Gherzi, R., Ong, S.E., Chan, E.L., Raijmakers, R., Pruijn, G.J., Stoecklin, G., Moroni, C., Mann, M., and Karin, M. (2001). AU binding proteins recruit the exosome to degrade ARE-containing mRNAs. Cell 107, 451-464.
Collins, R.H., Jr., Shpilberg, O., Drobyski, W.R., Porter, D.L., Giralt, S., Champlin, R., Goodman, S.A., Wolff, S.N., Hu, W., Verfaillie, C., et al. (1997). Donor leukocyte infusions in 140 patients with relapsed malignancy after allogeneic bone marrow transplantation. J Clin Oncol 15, 433-444.
de la Cruz, J., Kressler, D., Tollervey, D., and Linder, P. (1998). Dob1p (Mtr4p) is a putative ATP-dependent RNA helicase required for the 3' end formation of 5.8S rRNA in Saccharomyces cerevisiae. EMBO J 17, 1128-1140.
Deutscher, M.P., Marshall, G.T., and Cudny, H. (1988). RNase PH: an Escherichia coli phosphate-dependent nuclease distinct from polynucleotide phosphorylase. Proc Natl Acad Sci U S A 85, 4710-4714.
Doma, M.K., and Parker, R. (2006). Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation. Nature 440, 561-564.
Dominski, Z., Yang, X.C., Kaygun, H., Dadlez, M., and Marzluff, W.F. (2003). A 3' exonuclease that specifically interacts with the 3' end of histone mRNA. Mol Cell 12, 295-305.
Duchaine, T.F., Wohlschlegel, J.A., Kennedy, S., Bei, Y., Conte, D., Jr., Pang, K., Brownell, D.R., Harding, S., Mitani, S., Ruvkun, G., et al. (2006). Functional proteomics reveals the biochemical niche of C. elegans DCR-1 in multiple small-RNA-mediated pathways. Cell 124, 343-354.
Durrieu, F., Samejima, K., Fortune, J.M., Kandels-Lewis, S., Osheroff, N., and Earnshaw, W.C. (2000). DNA topoisomerase IIalpha interacts with CAD nuclease and is involved in chromatin condensation during apoptotic execution. Curr Biol 10, 923-926.
Dziembowski, A., Lorentzen, E., Conti, E., and Seraphin, B. (2007). A single subunit, Dis3, is essentially responsible for yeast exosome core activity. Nat Struct Mol Biol 14, 15-22.
Elbashir, S.M., Lendeckel, W., and Tuschl, T. (2001). RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15, 188-200.
Emsley, P., and Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60, 2126-2132.
Enari, M., Sakahira, H., Yokoyama, H., Okawa, K., Iwamatsu, A., and Nagata, S. (1998). A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391, 43-50.
Estevez, A.M., Kempf, T., and Clayton, C. (2001). The exosome of Trypanosoma brucei. EMBO J 20, 3831-3839.
Evguenieva-Hackenberg, E., Walter, P., Hochleitner, E., Lottspeich, F., and Klug, G. (2003). An exosome-like complex in Sulfolobus solfataricus. EMBO Rep 4, 889-893.
Ge, Q., Frank, M.B., O'Brien, C., and Targoff, I.N. (1992). Cloning of a complementary DNA coding for the 100-kD antigenic protein of the PM-Scl autoantigen. J Clin Invest 90, 559-570.
Gherzi, R., Lee, K.Y., Briata, P., Wegmuller, D., Moroni, C., Karin, M., and Chen, C.Y. (2004). A KH domain RNA binding protein, KSRP, promotes ARE-directed mRNA turnover by recruiting the degradation machinery. Mol Cell 14, 571-583.
Gouet, P., Robert, X., and Courcelle, E. (2003). ESPript/ENDscript: Extracting and rendering sequence and 3D information from atomic structures of proteins. Nucleic Acids Res 31, 3320-3323.
Green, D.R., Ferguson, T., Zitvogel, L., and Kroemer, G. (2009). Immunogenic and tolerogenic cell death. Nature Review Immun 9, 353-363.
Guo, X., Ma, J., Sun, J., and Gao, G. (2007). The zinc-finger antiviral protein recruits the RNA processing exosome to degrade the target mRNA. Proceedings of the National Academy of Sciences 104, 151-156.
Halenbeck, R., MacDonald, H., Roulston, A., Chen, T.T., Conroy, L., and Williams, L.T. (1998). CPAN, a human nuclease regulated by the caspase-sensitive inhibitor DFF45. Curr Biol 8, 537-540.
Harlow, L.S., Kadziola, A., Jensen, K.F., and Larsen, S. (2004a). Crystal structure of the phosphorolytic exoribonuclease RNase PH from Bacillus subtilis and implications for its quaternary structure and tRNA binding. Protein Sci 13, 668-677.
Harlow, L.S., Kadziola, A., Jensen, K.F., and Larsen, S. (2004b). Crystal structure of the phosphorolytic exoribonuclease RNase PH from Bacillus subtilis and implications for its quaternary structure and tRNA binding. Protein Sci 13, 668-677.
Harrington, J.J., and Lieber, M.R. (1994). The characterization of a mammalian DNA structure-specific endonuclease. EMBO J 13, 1235-1246.
Hedgecock, E.M., Sulston, J.E., and Thomson, J.N. (1983). Mutations affecting programmed cell deaths in the nematode Caenorhabditis elegans. Science 220, 1277-1279.
Hilleren, P., McCarthy, T., Rosbash, M., Parker, R., and Jensen, T.H. (2001). Quality control of mRNA 3'-end processing is linked to the nuclear exosome. Nature 413, 538-542.
Houseley, J., LaCava, J., and Tollervey, D. (2006). RNA-quality control by the exosome. Nat Rev Mol Cell Biol 7, 529-539.
Houseley, J., and Tollervey, D. (2006). Yeast Trf5p is a nuclear poly(A) polymerase. EMBO Rep 7, 205-211.
Hsiao, Y.Y., Nakagawa, A., Shi, Z., Mitani, S., Xue, D., and Yuan, H.S. (2009). Crystal structure of CRN-4: implications for domain function in apoptotic DNA degradation. Mol Cell Biol 29, 448-457.
Hutvagner, G., McLachlan, J., Pasquinelli, A.E., Balint, E., Tuschl, T., and Zamore, P.D. (2001). A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293, 834-838.
Inada, T., and Aiba, H. (2005). Translation of aberrant mRNAs lacking a termination codon or with a shortened 3'-UTR is repressed after initiation in yeast. EMBO J 24, 1584-1595.
Irvine, R.A., Adachi, N., Shibata, D.K., Cassell, G.D., Yu, K., Karanjawala, Z.E., Hsieh, C.L., and Lieber, M.R. (2005). Generation and characterization of endonuclease G null mice. Mol Cell Biol 25, 294-302.
Ishii, R., Nureki, O., and Yokoyama, S. (2003a). Crystal structure of the tRNA processing enzyme RNase PH from Aquifex aeolicus. J Biol Chem 278, 32397-32404.
Ishii, R., Nureki, O., and Yokoyama, S. (2003b). Crystal structure of the tRNA processing enzyme RNase PH from Aquifex aeolicus. J Biol Chem 278, 32397-32404.
Jensen, K.F., Andersen, J.T., and Poulsen, P. (1992). Overexpression and rapid purification of the orfE/rph gene product, RNase PH of Escherichia coli. J Biol Chem 267, 17147-17152.
Kadaba, S., Krueger, A., Trice, T., Krecic, A.M., Hinnebusch, A.G., and Anderson, J. (2004). Nuclear surveillance and degradation of hypomodified initiator tRNAMet in S. cerevisiae. Genes Dev 18, 1227-1240.
Kawane, K., Fukuyama, H., Yoshida, H., Nagase, H., Ohsawa, Y., Uchiyama, Y., Okada, K., Iida, T., and Nagata, S. (2003). Impaired thymic development in mouse embryos deficient in apoptotic DNA degradation. Nat Immunol 4, 138-144.
Kawane, K., Ohtani, M., Miwa, K., Kizawa, T., Kanbara, Y., Yoshioka, Y., Yoshikawa, H., and Nagata, S. (2006). Chronic polyarthritis caused by mammalian DNA that escapes from degradation in macrophages. Nature 443, 998-1002.
Kelly, K.O., Reuven, N.B., Li, Z., and Deutscher, M.P. (1992). RNase PH is essential for tRNA processing and viability in RNase-deficient Escherichia coli cells. J Biol Chem 267, 16015-16018.
Kolb, H.J., Mittermuller, J., Clemm, C., Holler, E., Ledderose, G., Brehm, G., Heim, M., and Wilmanns, W. (1990). Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood 76, 2462-2465.
Kolb, H.J., Schattenberg, A., Goldman, J.M., Hertenstein, B., Jacobsen, N., Arcese, W., Ljungman, P., Ferrant, A., Verdonck, L., Niederwieser, D., et al. (1995). Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. Blood 86, 2041-2050.
Koonin, E.V., Wolf, Y.I., and Aravind, L. (2001). Prediction of the archaeal exosome and its connections with the proteasome and the translation and transcription machineries by a comparative-genomic approach. Genome Res 11, 240-252.
Krieser, R.J., MacLea, K.S., Longnecker, D.S., Fields, J.L., Fiering, S., and Eastman, A. (2002). Deoxyribonuclease IIalpha is required during the phagocytic phase of apoptosis and its loss causes perinatal lethality. Cell Death Differ 9, 956-962.
Krizman, D.B., Wagner, L., Lash, A., Strausberg, R.L., and Emmert-Buck, M.R. (1999). The Cancer Genome Anatomy Project: EST sequencing and the genetics of cancer progression. Neoplasia 1, 101-106.
LaCava, J., Houseley, J., Saveanu, C., Petfalski, E., Thompson, E., Jacquier, A., and Tollervey, D. (2005). RNA degradation by the exosome is promoted by a nuclear polyadenylation complex. Cell 121, 713-724.
Laskowski, R.A., MacArthur, M.W., Moss, D.S., and Thornton, J.M. (1993). PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 26, 283-291.
Lee, Y.S., Nakahara, K., Pham, J.W., Kim, K., He, Z., Sontheimer, E.J., and Carthew, R.W. (2004). Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117, 69-81.
Lejeune, F., Li, X., and Maquat, L.E. (2003). Nonsense-mediated mRNA decay in mammalian cells involves decapping, deadenylating, and exonucleolytic activities. Mol Cell 12, 675-687.
Leszczyniecka, M., Kang, D.C., Sarkar, D., Su, Z.Z., Holmes, M., Valerie, K., and Fisher, P.B. (2002). Identification and cloning of human polynucleotide phosphorylase, hPNPase old-35, in the context of terminal differentiation and cellular senescence. Proc Natl Acad Sci U S A 99, 16636-16641.
Li, L.Y., Luo, X., and Wang, X. (2001). Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412, 95-99.
Li, Z., and Deutscher, M.P. (1994). The role of individual exoribonucleases in processing at the 3' end of Escherichia coli tRNA precursors. J Biol Chem 269, 6064-6071.
Lieber, M.R. (1997). The FEN-1 family of structure-specific nucleases in eukaryotic DNA replication, recombination and repair. Bioessays 19, 233-240.
Liu, J., Carmell, M.A., Rivas, F.V., Marsden, C.G., Thomson, J.M., Song, J.J., Hammond, S.M., Joshua-Tor, L., and Hannon, G.J. (2004). Argonaute2 is the catalytic engine of mammalian RNAi. Science 305, 1437-1441.
Liu, Q., Greimann, J.C., and Lima, C.D. (2006). Reconstitution, activities, and structure of the eukaryotic RNA exosome. Cell 127, 1223-1237.
Liu, Q., Rand, T.A., Kalidas, S., Du, F., Kim, H.E., Smith, D.P., and Wang, X. (2003a). R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway. Science 301, 1921-1925.
Liu, Q.L., Kishi, H., Ohtsuka, K., and Muraguchi, A. (2003b). Heat shock protein 70 binds caspase-activated DNase and enhances its activity in TCR-stimulated T cells. Blood 102, 1788-1796.
Liu, X., Li, P., Widlak, P., Zou, H., Luo, X., Garrard, W.T., and Wang, X. (1998). The 40-kDa subunit of DNA fragmentation factor induces DNA fragmentation and chromatin condensation during apoptosis. Proc Natl Acad Sci U S A 95, 8461-8466.
Liu, X., Zou, H., Slaughter, C., and Wang, X. (1997). DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89, 175-184.
Liu, X., Zou, H., Widlak, P., Garrard, W., and Wang, X. (1999). Activation of the apoptotic endonuclease DFF40 (caspase-activated DNase or nuclease). Oligomerization and direct interaction with histone H1. J Biol Chem 274, 13836-13840.
Long, F., Vagin, A.A., Young, P., and Murshudov, G.N. (2008). BALBES: a molecular-replacement pipeline. Acta Crystallogr D Biol Crystallogr 64, 125-132.
Lorentzen, E., and Conti, E. (2005). Structural basis of 3' end RNA recognition and exoribonucleolytic cleavage by an exosome RNase PH core. Mol Cell 20, 473-481.
Lorentzen, E., Dziembowski, A., Lindner, D., Seraphin, B., and Conti, E. (2007). RNA channelling by the archaeal exosome. EMBO Rep 8, 470-476.
Lorentzen, E., Walter, P., Fribourg, S., Evguenieva-Hackenberg, E., Klug, G., and Conti, E. (2005). The archaeal exosome core is a hexameric ring structure with three catalytic subunits. Nat Struct Mol Biol 12, 575-581.
Lykke-Andersen, S., Brodersen, D.E., and Jensen, T.H. (2009). Origins and activities of the eukaryotic exosome. J Cell Sci 122, 1487-1494.
McIlroy, D., Sakahira, H., Talanian, R.V., and Nagata, S. (1999). Involvement of caspase 3-activated DNase in internucleosomal DNA cleavage induced by diverse apoptotic stimuli. Oncogene 18, 4401-4408.
McIlroy, D., Tanaka, M., Sakahira, H., Fukuyama, H., Suzuki, M., Yamamura, K., Ohsawa, Y., Uchiyama, Y., and Nagata, S. (2000). An auxiliary mode of apoptotic DNA fragmentation provided by phagocytes. Genes Dev 14, 549-558.
Mi, H., Kops, O., Zimmermann, E., Jaschke, A., and Tropschug, M. (1996). A nuclear RNA-binding cyclophilin in human T cells. FEBS Lett 398, 201-205.
Mitchell, P., Petfalski, E., Shevchenko, A., Mann, M., and Tollervey, D. (1997). The exosome: a conserved eukaryotic RNA processing complex containing multiple 3'-->5' exoribonucleases. Cell 91, 457-466.
Mitchell, P., and Tollervey, D. (2003). An NMD pathway in yeast involving accelerated deadenylation and exosome-mediated 3'-->5' degradation. Mol Cell 11, 1405-1413.
Mukae, N., Yokoyama, H., Yokokura, T., Sakoyama, Y., and Nagata, S. (2002). Activation of the innate immunity in Drosophila by endogenous chromosomal DNA that escaped apoptotic degradation. Genes Dev 16, 2662-2671.
Mukherjee, D., Gao, M., O'Connor, J.P., Raijmakers, R., Pruijn, G., Lutz, C.S., and Wilusz, J. (2002). The mammalian exosome mediates the efficient degradation of mRNAs that contain AU-rich elements. EMBO J 21, 165-174.
Nakagawa, A., Shi, Y., Kage-Nakadai, E., Mitani, S., and Xue, D. (2010). Caspase-dependent conversion of Dicer ribonuclease into a death-promoting deoxyribonuclease. Science 328, 327-334.
Napirei, M., Karsunky, H., Zevnik, B., Stephan, H., Mannherz, H.G., and Moroy, T. (2000). Features of systemic lupus erythematosus in DNase I deficient mice. Nature Genet 25, 177-181.
Navarro, M.V., Oliveira, C.C., Zanchin, N.I., and Guimaraes, B.G. (2008). Insights into the mechanism of progressive RNA degradation by the archaeal exosome. J Biol Chem 283, 14120-14131.
Nurmohamed, S., Vaidialingam, B., Callaghan, A.J., and Luisi, B.F. (2009). Crystal structure of Escherichia coli polynucleotide phosphorylase core bound to RNase E, RNA and manganese: Implications for catalytic mechanism and RNA degradosome assembly. J Mol Biol 389, 17-33.
Okabe, Y., Sano, T., and Nagata, S. (2009). Regulation of the innate immune response by threonine-phosphatase of Eyes absent. Nature 460, 520-524.
Orban, T.I., and Izaurralde, E. (2005). Decay of mRNAs targeted by RISC requires XRN1, the Ski complex, and the exosome. RNA 11, 459-469.
Otwinowski, Z., and Minor, W. (1997). Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276, 307-326.
Parrish, J., Li, L., Klotz, K., Ledwich, D., Wang, X., and Xue, D. (2001). Mitochondrial endonuclease G is important for apoptosis in C. elegans. Nature 412, 90-94.
Parrish, J.Z., and Xue, D. (2003a). Functional genomic analysis of apoptotic DNA degradation in C. elegans. Mol Cell 11, 987-996.
Parrish, J.Z., and Xue, D. (2003b). Functional genomic analysis of apoptotic DNA degradation in C. elegans. Mol Cell 11, 987-996.
Parrish, J.Z., and Xue, D. (2006). Cuts can kill: the roles of apoptotic nucleases in cell death and animal development. Chromosoma 115, 89-97.
Parrish, J.Z., Yang, C., Shen, B., and Xue, D. (2003). CRN-1, a Caenorhabditis elegans FEN-1 homologue, cooperates with CPS-6/EndoG to promote apoptotic DNA degradation. EMBO J 22, 3451-3460.
Pham, J.W., Pellino, J.L., Lee, Y.S., Carthew, R.W., and Sontheimer, E.J. (2004). A Dicer-2-dependent 80s complex cleaves targeted mRNAs during RNAi in Drosophila. Cell 117, 83-94.
Piwowarski, J., Grzechnik, P., Dziembowski, A., Dmochowska, A., Minczuk, M., and Stepien, P.P. (2003). Human polynucleotide phosphorylase, hPNPase, is localized in mitochondria. J Mol Biol 329, 853-857.
Potterton, E., Briggs, P., Turkenburg, M., and Dodson, E. (2003). A graphical user interface to the CCP4 program suite. Acta Crystallogr D Biol Crystallogr 59, 1131-1137.
Raijmakers, R., Schilders, G., and Pruijn, G.J. (2004). The exosome, a molecular machine for controlled RNA degradation in both nucleus and cytoplasm. Eur J Cell Biol 83, 175-183.
Reichlin, M., Maddison, P.J., Targoff, I., Bunch, T., Arnett, F., Sharp, G., Treadwell, E., and Tan, E.M. (1984). Antibodies to a nuclear/nucleolar antigen in patients with polymyositis overlap syndromes. J Clin Immunol 4, 40-44.
Rivas, F.V., Tolia, N.H., Song, J.J., Aragon, J.P., Liu, J., Hannon, G.J., and Joshua-Tor, L. (2005). Purified Argonaute2 and an siRNA form recombinant human RISC. Nat Struct Mol Biol 12, 340-349.
Sakahira, H., Enari, M., and Nagata, S. (1998). Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 391, 96-99.
Samejima, K., and Earnshaw, W.C. (2005). Trashing the genome: the role of nucleases during apoptosis. Nat Rev Mol Cell Biol 6, 677-688.
Schaeffer, D., Tsanova, B., Barbas, A., Reis, F.P., Dastidar, E.G., Sanchez-Rotunno, M., Arraiano, C.M., and van Hoof, A. (2009). The exosome contains domains with specific endoribonuclease, exoribonuclease and cytoplasmic mRNA decay activities. Nat Struct Mol Biol 16, 56-62.
Schmid, M., and Jensen, T.H. (2008). The exosome: a multipurpose RNA-decay machine. Trends Biochem Sci 33, 501-510.
Schuck, P. (2000). Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys J 78, 1606-1619.
Shi, Z., Yang, W.Z., Lin-Chao, S., Chak, K.F., and Yuan, H.S. (2008). Crystal structure of Escherichia coli PNPase: central channel residues are involved in processive RNA degradation. RNA 14, 2361-2371.
Stickney, L.M., Hankins, J.S., Miao, X., and Mackie, G.A. (2005). Function of the conserved S1 and KH domains in polynucleotide phosphorylase. J Bacteriol 187, 7214-7221.
Suzuki, N., Noguchi, E., Nakashima, N., Oki, M., Ohba, T., Tartakoff, A., Ohishi, M., and Nishimoto, T. (2001). The Saccharomyces cerevisiae small GTPase, Gsp1p/Ran, is involved in 3' processing of 7S-to-5.8S rRNA and in degradation of the excised 5'-A0 fragment of 35S pre-rRNA, both of which are carried out by the exosome. Genetics 158, 613-625.
Symmons, M.F., Jones, G.H., and Luisi, B.F. (2000). A duplicated fold is the structural basis for polynucleotide phosphorylase catalytic activity, processivity, and regulation. Structure 8, 1215-1226.
Symmons, M.F., Williams, M.G., Luisi, B.F., Jones, G.H., and Carpousis, A.J. (2002). Running rings around RNA: a superfamily of phosphate-dependent RNases. Trends Biochem Sci 27, 11-18.
Takahashi, S., Araki, Y., Sakuno, T., and Katada, T. (2003). Interaction between Ski7p and Upf1p is required for nonsense-mediated 3'-to-5' mRNA decay in yeast. EMBO J 22, 3951-3959.
Thiebaut, M., Kisseleva-Romanova, E., Rougemaille, M., Boulay, J., and Libri, D. (2006). Transcription termination and nuclear degradation of cryptic unstable transcripts: a role for the nrd1-nab3 pathway in genome surveillance. Mol Cell 23, 853-864.
Thomas, D.A., Du, C., Xu, M., Wang, X., and Ley, T.J. (2000). DFF45/ICAD can be directly processed by granzyme B during the induction of apoptosis. Immunity 12, 621-632.
Toh, S.Y., Wang, X., and Li, P. (1998). Identification of the nuclear factor HMG2 as an activator for DFF nuclease activity. Biochem Biophys Res Commun 250, 598-601.
Torchet, C., Bousquet-Antonelli, C., Milligan, L., Thompson, E., Kufel, J., and Tollervey, D. (2002). Processing of 3'-extended read-through transcripts by the exosome can generate functional mRNAs. Mol Cell 9, 1285-1296.
Tran, H., Schilling, M., Wirbelauer, C., Hess, D., and Nagamine, Y. (2004). Facilitation of mRNA deadenylation and decay by the exosome-bound, DExH protein RHAU. Mol Cell 13, 101-111.
Treadwell, E.L., Alspaugh, M.A., Wolfe, J.F., and Sharp, G.C. (1984). Clinical relevance of PM-1 antibody and physiochemical characterization of PM-1 antigen. J Rheumatol 11, 658-662.
U.Z. Littauer and M. Grunberg-Manago (1999). Polynucleotide Phosphorylase, in: T.E. Creighton (Ed.). The Encyclopedia of Molecular Biology, John Willy and Sons Inc, New York, 1911-1918.
Vahsen, N., Cande, C., Briere, J.J., Benit, P., Joza, N., Larochette, N., Mastroberardino, P.G., Pequignot, M.O., Casares, N., Lazar, V., et al. (2004). AIF deficiency compromises oxidative phosphorylation. EMBO J 23, 4679-4689.
van Dijk, E.L., Schilders, G., and Pruijn, G.J. (2007). Human cell growth requires a functional cytoplasmic exosome, which is involved in various mRNA decay pathways. RNA 13, 1027-1035.
van Hoof, A., Frischmeyer, P.A., Dietz, H.C., and Parker, R. (2002). Exosome-mediated recognition and degradation of mRNAs lacking a termination codon. Science 295, 2262-2264.
van Hoof, A., Lennertz, P., and Parker, R. (2000a). Yeast exosome mutants accumulate 3'-extended polyadenylated forms of U4 small nuclear RNA and small nucleolar RNAs. Mol Cell Biol 20, 441-452.
van Hoof, A., Staples, R.R., Baker, R.E., and Parker, R. (2000b). Function of the ski4p (Csl4p) and Ski7p proteins in 3'-to-5' degradation of mRNA. Mol Cell Biol 20, 8230-8243.
Vanacova, S., Wolf, J., Martin, G., Blank, D., Dettwiler, S., Friedlein, A., Langen, H., Keith, G., and Keller, W. (2005). A new yeast poly(A) polymerase complex involved in RNA quality control. PLoS Biol 3, e189.
Vasiljeva, L., and Buratowski, S. (2006). Nrd1 interacts with the nuclear exosome for 3' processing of RNA polymerase II transcripts. Mol Cell 21, 239-248.
Wang, L., Lewis, M.S., and Johnson, A.W. (2005). Domain interactions within the Ski2/3/8 complex and between the Ski complex and Ski7p. RNA 11, 1291-1302.
Wang, X., Yang, C., Chai, J., Shi, Y., and Xue, D. (2002). Mechanisms of AIF-mediated apoptotic DNA degradation in Caenorhabditis elegans. Science 298, 1587-1592.
Widlak, P., Li, P., Wang, X., and Garrard, W.T. (2000). Cleavage preferences of the apoptotic endonuclease DFF40 (caspase-activated DNase or nuclease) on naked DNA and chromatin substrates. J Biol Chem 275, 8226-8232.
Wolf, B.B., Schuler, M., Echeverri, F., and Green, D.R. (1999). Caspase-3 is the primary activator of apoptotic DNA fragmentation via DNA fragmentation factor-45/inhibitor of caspase-activated DNase inactivation. J Biol Chem 274, 30651-30656.
Wu, C.J., Yang, X.F., McLaughlin, S., Neuberg, D., Canning, C., Stein, B., Alyea, E.P., Soiffer, R.J., Dranoff, G., and Ritz, J. (2000a). Detection of a potent humoral response associated with immune-induced remission of chronic myelogenous leukemia. J Clin Investig 106, 705-714.
Wu, Y.C., Stanfield, G.M., and Horvitz, H.R. (2000b). NUC-1, a Caenorhabditis elegans DNase II homolog, functions in an intermediate step of DNA degradation during apoptosis. Genes & Develop 14, 536-548.
Wyers, F., Rougemaille, M., Badis, G., Rousselle, J.C., Dufour, M.E., Boulay, J., Regnault, B., Devaux, F., Namane, A., Seraphin, B., et al. (2005). Cryptic pol II transcripts are degraded by a nuclear quality control pathway involving a new poly(A) polymerase. Cell 121, 725-737.
Wyllie, A.H. (1980). Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284, 555-556.
Xie, L.-H., Sin, F.W.-Y., Cheng, S.C.-S., Cheung, Y.-K., Chan, K.-T., Xie, Y., and Xie, Y. (2008). Activation of cytotoxic T lymphocytes against CML28-bearing tumors by dendritic cells transduced with a recombinant adeno-associated virus encoding the CML28 gene. Cancer Immunol Immunother 57, 1029-1038.
Yang, X.-F., Wu, C.J., Chen, L., Alyea, E.P., Canning, C., Kantoff, P., Soiffer, R.J., Dranoff, G., and Ritz, J. (2002). CML28 is a broadly immunogenic antigen, which is overexpressed in tumor cells. Cancer Res 62, 5517-5522.
Yang, X.C., Purdy, M., Marzluff, W.F., and Dominski, Z. (2006). Characterization of 3'hExo, a 3' exonuclease specifically interacting with the 3' end of histone mRNA. J Biol Chem 281, 30447-30454.
Yasutomo, K., Horiuchi, K., Kagami, T., Tsukamoto, H., Hashimura, C., Urushihara, M., and Kuroda, Y. (2001). Mutation of DNASE1 in people with systemic lupus erythematosus. Nature Genet 28, 313-314.
Yeates, T.O. (1997). Detecting and overcoming crystal twinning. Methods Enzymol 276, 344-358.
Yokoyama, H., Mukae, N., Sakahira, H., Okawa, K., Iwamatsu, A., and Nagata, S. (2000). A novel activation mechanism of caspase-activated DNase from Drosophila melanogaster. J Biol Chem 275, 12978-12986.
Zanchin, N.I., and Goldfarb, D.S. (1999). The exosome subunit Rrp43p is required for the efficient maturation of 5.8S, 18S and 25S rRNA. Nucleic Acids Res 27, 1283-1288.
Zhang, H., Kolb, F.A., Brondani, V., Billy, E., and Filipowicz, W. (2002). Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP. EMBO J 21, 5875-5885.
Zhang, H., Kolb, F.A., Jaskiewicz, L., Westhof, E., and Filipowicz, W. (2004). Single processing center models for human Dicer and bacterial RNase III. Cell 118, 57-68.
Zhang, J., Liu, X., Scherer, D.C., van Kaer, L., Wang, X., and Xu, M. (1998). Resistance to DNA fragmentation and chromatin condensation in mice lacking the DNA fragmentation factor 45. Proc Natl Acad Sci U S A 95, 12480-12485.
Zhou, H., Zhang, D., Wang, Y., Dai, M., Zhang, L., Liu, W., Liu, D., Tan, H., and Huang, Z. (2006). Induction of CML28-specific cytotoxic T cell responses using co-transfected dendritic cells with CML28 DNA vaccine and SOCS1 small interfering RNA expression vector. Biochem Biophys Res Commun 347, 200-207
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10656-
dc.description.abstractRrp46 原本是真核生物外切體(exosme)的組成蛋白之ㄧ;外切體複合物(exosome complex) 是一參與核醣核酸分解的重要的核醣核酸外切酶(exoribonuclease),可從單股的核醣核酸之3'端往5'端逐一進行分解作用,同時調控細胞內各種核醣核酸的生成與降解,此功能維繫了細胞活性的正常。因此,Rrp46 也是組成外切體複合物及維持細胞正常生長所必需。
在蛋白質分類上,Rrp46 屬於RNase PH 外切酶家族。此類核醣核酸分解酵素(RNase),廣泛保留在從原核生物(prokaryotes)到真核生物(eukaryotes)的各類生物體中,包括細菌、古代菌(archaea)、酵母菌,乃至於植物與人類。在線蟲(C.elegans)當中,CRN-5 是Rrp46 的同源蛋白質(homologue);被發現可能另外當作細胞凋亡(apoptosis)時,參與分解染色體去氧核醣核酸(chromosomal DNA)的新功能。本篇論文即結合了生化分析、生物物理及蛋白質晶體結構等方法,來探討Rrp46 及CRN-5 降解DNA 及RNA 時的生化特性及生理功能,為此類RNase PH外切酶的新功能提出更有利的佐証。
在此篇論文中,我們提出了CRN-5 以及稻米Rrp46 (oRrp46)的蛋白質晶體結構,它們的最高解析度分別是3.9 Å 及2.0 Å。經由分析三個不同物種(人類、稻米及線蟲)的Rrp46 重組蛋白質發現,它們以二具體(homodimer)的形式存在於體外。除了已知與外切體複合物結合外,我們也首次觀察到此二具體形式的Rrp46亦同時存在人類與稻米細胞環境中。由生化生析的結果,發現稻米二具體oRrp46重組蛋白質除了具有磷酸分解(phosphorolysis)RNA 的活性外,更首次發現能水解(hydrolysis)DNA 的生化活性;人類的hRrp46 及線蟲的CRN-5 蛋白則只具有結合DNA,而不具分解DNA 的活性。藉由蛋白質晶體結構與突變技術,我們分析稻米oRrp46 活性區域以及受質結合區裡的重要胺基酸殘基所扮演的角色。發現E160Q 的突變會明顯抑制稻米oRrp46 的DNA 水解活性,對分解RNA 的影響則有限;但是K75E/Q76E 的突變,則同時抑制了稻米oRrp46 對DNA 及RNA 的結合與分解。CRN-5 本身雖沒有DNA 分解活性,但經實驗確認,它能與另一個細胞凋亡核酸水解酶 (apoptotic nuclease) CRN-4 有直接的結合作用,並且增強CRN-4 的DNA 水解活性。推測了這兩個蛋白質可能在細胞凋亡時分解DNA 有協同作用。
綜合以上強力的研究證據,我們推測Rrp46 蛋白質會穩定形成外切體複合物以外的二具體;此二具體可能依照不同的物種,或直接扮演有活性的組成份,或扮演結構性組成份,參與細胞凋亡時分解DNA 的重要生理機制。
zh_TW
dc.description.abstractRrp46 was first identified as a protein component of the eukaryotic exosome, a protein complex involved in 3' processing of RNA during RNA turnover and surveillance. The C. elegans Rrp46 homologue, CRN-5, was subsequently characterized as a cell death-related nuclease, participating in DNA fragmentation during apoptosis.
Rrp46/CRN-5 has a conserved RNase PH domain, usually identified in 3'-to-5' exoribonucleases. To determine how an RNase PH protein could bind and digest DNA during apoptosis, we combined biochemical, biophysical and crystal structural approaches to study Rrp46/CRN-5 from various specises, including human, rice and C. elegans.
We have determined the crystal structures of CRN-5 and rice Rrp46 (oRrp46) at a resolution of 3.9 Å and 2.0 Å, respectively. We found that recombinant human Rrp46 (hRrp46), oRrp46, and CRN-5 are homodimers, and that endogenous hRrp46 and oRrp46 also form homodimers in a cellular environment, in addition to their association with a protein complex. Dimeric oRrp46 had both phosphorolytic RNase and hydrolytic DNase activities, whereas hRrp46 and CRN-5 bound to DNA without detectable nuclease activity. Site-directed mutagenesis in oRrp46 abolished either its DNase (E160Q) or RNase (K75E/Q76E) activities, confirming the critical importance of these residues in catalysis or substrate binding. Moreover, CRN-5 directly interacted with the apoptotic nuclease CRN-4, and enhanced the DNase activity of CRN-4, suggesting that CRN-5 cooperates with CRN-4 in apoptotic DNA degradation. Taken together all these results strongly suggest that Rrp46 forms a homodimer separately from exosome complexes and, depending on species, is either a structural or catalytic component of the machinery that cleaves DNA during apoptosis.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T21:47:22Z (GMT). No. of bitstreams: 1
ntu-99-D93442002-1.pdf: 9383501 bytes, checksum: 558cad553626a217f2adfb4f3bec962a (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsCONTENTS..................................................................................................................i
CONTENT OF TABLES............................................................................................iv
CONTENT OF FIGURES...........................................................................................v
中文摘要.....................................................................................................................vii
英文摘要ABSTRACT.................................................................................................ix
1. INTRODUCTION................................................................................................1
1.1 Apoptotic DNA fragmentation by nucleases.................................................1
1.2 DFF40/CAD and Dicer are caspase-activated DNases in mammals and C. elegans, respectively.................................................................................2
1.3 Endonuclease G is a mitochondrial apoptotic nuclease.................................3
1.4 DNase II digestes apoptotic DNA fragments into nucleotides after phagocyte engulfment....................................................................................4
1.5 Cell death-related nucleases in C. elegans are also involved in apoptotic DNA degradation including CRN-5, a homologue of human hRrp46..........4
1.6 CRN-5 is an RNase PH protein homolougous to human hRrp46 protein.....6
1.7 Rrp46 is a component of exosome complex involved in RNA processing, quality control and turnover...........................................................................7
1.8 The structures of RNase PH proteins and exosome complex........................9
1.9 Recombinant human and yeast exosomes are inactive in phosphorolysis...10
1.10 Cofactors regulate and activate exosome’s activity.....................................11
1.11 hRrp46 is a broadly immunogenic antigen, which is overexpressed in tumor cells..............................................................................................................13
1.12 Auto-antibodies against hRrp46 are also found in patients with autoimmune diseases........................................................................................................13
1.13 Specific aims................................................................................................14
2 MATERIALS AND METHODS........................................................................16
2.1 Cloning, protein expression, and purification..............................................16
2.2 Dynamics light scattering (DLS) and analytical ultracentrifugation (AUC)
.....................................................................................................................17
2.3 Fractionation of cell extracts and western blotting......................................18
2.4 DNA-binding and DNase activity assays....................................................18
2.5 RNA-binding and RNase activity assays.....................................................19
2.6 Crystallization and X-ray diffraction data collection..................................20
2.7 Structure determination and refinement......................................................21
2.8 His-tag pull-down assays.............................................................................22
3 RESULTS.............................................................................................................23
3.1 C. elegans’ CRN-5 is a homologue to human Rrp46..................................23
3.2 Overexpression and purification of CRN-5 and Rrp46 proteins.................23
3.3 Recombinant purified CRN-5/Rrp46 proteins form stable homodimer in vitro..............................................................................................................24
3.4 Endogenous Rrp46 forms a separated dimer in addition to associating with a protein complex in vivo.............................................................................25
3.5 CRN-5 and Rrp46 are DNA binding proteins, but only rice Rrp46 is a RNA binding protein.............................................................................................26
3.6 Dimeric rice oRrp46 shows metal-dependent DNase activity.....................26
3.7 Rice oRrp46 shows typical RNase PH activity...........................................27
3.8 Crystallization of CRN-5 and rice oRrp46 proteins....................................28
3.9 Overall structure of dimeric CRN-5 and momomeric rice oRrp46 proteins.........................................................................................................28
3.10 A metal binding residue is conserved in RNase PH family protein and critical to DNase activity of rice oRrp46.....................................................30
3.11 Substrate binding residues are variable in RNase PH family protein and important to both RNase and DNase activity of rice oRrp46......................31
3.12 CRN-5 interacts with another apoptotic nuclease CRN-4 and enhances CRN-4’s DNase activity..............................................................................32
4 DISCUSSIONS....................................................................................................34
4.1 RNA binding residues are critical for the enzyme activity of RNase PH proteins.........................................................................................................34
4.2 Dual roles of Rrp46 in RNA turnover and DNA degradation......................35
4.3 C. elegans uses functional-known proteins to accomplish apoptotic DNA degradation...................................................................................................38
5 FUTURE WORKS..............................................................................................38
5.1 The DNA hydrolysis mechanism of oRrp46................................................38
5.2 Critical roles of substrate binding residues in RNase PH proteins..............39
5.3 Cooperation between CRN proteins............................................................40
REFERENCES...........................................................................................................74
dc.language.isoen
dc.titleCRN-5與Rrp46參與核酸降解的結構及功能性研究zh_TW
dc.titleStructural and Functional Studies of CRN-5 and Rrp46 in Apoptotic DNA Degradationen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree博士
dc.contributor.oralexamcommittee吳惠南,林淑端,梁博煌,呂平江,蕭傳鐙
dc.subject.keyword核醣核酸之轉化,去氧核醣核酸之降解,晶體結構,去氧核醣核酸分解酵素 PH,核醣核酸分解酵素,去氧核醣核酸分解酵素,細胞凋亡核酸水解酵素,zh_TW
dc.subject.keywordRNA turnover,DNA degradation,Crystal Structure,RNase PH,RNase,DNase,apoptotic nuclease,en
dc.relation.page85
dc.rights.note同意授權(全球公開)
dc.date.accepted2010-08-05
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf9.16 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved